1
|
Lei Q, Cheng Z, Jiang M, Ma Q, Gong X, Huo Y, Lin M. Effects of Saccharomyces cerevisiae fermentation products on growth performance, fecal short chain fatty acids, and microbiota of pre-weaning calves. Anim Biosci 2025; 38:955-967. [PMID: 39483010 PMCID: PMC12062800 DOI: 10.5713/ab.24.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE This research aims to explore the effects of incorporating Saccharomyces cerevisiae fermentation products (SCFP) on growth performance, nutrient digestibility, antioxidant capacity, fecal short-chain fatty acids, and microbial composition of pre-weaning calves. METHODS Twenty Holstein calves, 10 days old and weighing an average of 48.63±0.91 kg, were randomly assigned to either the control group (CON) or the SCFP group, with 10 calves in each group. The CON group received only a basal diet, while the SCFP group received the starter diet supplemented with 5 g/head/d of SCFP products. The pre-trial period lasted for 5 days, followed by a main experimental period of 45 days. RESULTS The SCFP group had significantly higher final weight, average daily gain, and feed efficiency compared to the CON group (p<0.05). Moreover, the SCFP group exhibited increased apparent digestibility of dry matter, crude protein, ether extract, acid detergent fiber, Ca, and P (p<0.05). Additionally, supplementation with SCFP led to elevated content of growth hormone, insulin-like growth factor-1, and glucagon-like peptide-1 in serum. The inclusion of SCFP also raised serum catalase content and reduced serum malondialdehyde content in pre-weaning calves. Furthermore, SCFP supplementation influenced the composition of intestinal microflora by decreasing Actinobacteriota abundance and increasing the abundance of Ruminococcus, Lachnospiraceae_AC2044_group, Parabacteroides, and Butyricimonas. CONCLUSION The addition of SCFP has a positive impact on the growth performance, nutrient digestibility, antioxidant capacity, and intestinal microflora composition of pre-weaning calves.
Collapse
Affiliation(s)
- Qian Lei
- College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Zhiqiang Cheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Maocheng Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Qianbo Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Xiaoxiao Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Yongjiu Huo
- College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| | - Miao Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou,
China
| |
Collapse
|
2
|
Xu Z, Yang L, Chen H, Liu S, Li X, Li S, Ying C, Li X, Du R, Liu D. Saccharomyces cerevisiae and Kluyveromyces marxianus yeast co-cultures modulate the ruminal microbiome and metabolite availability to enhance rumen barrier function and growth performance in weaned lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:139-152. [PMID: 39635413 PMCID: PMC11615919 DOI: 10.1016/j.aninu.2024.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/27/2024] [Accepted: 06/03/2024] [Indexed: 12/07/2024]
Abstract
In lambs, weaning imposes stress that can contribute to impaired rumen epithelial barrier functionality and immunological dysregulation. In this study, the effects of a yeast co-culture consisting of Saccharomyces cerevisiae and Kluyveromyces marxianus (NM) on rumen health in lambs was evaluated, with a focus on parameters including growth performance, ruminal fermentation, and epithelial barrier integrity, ruminal metabolic function, and the composition of the ruminal bacteria. In total, 24 lambs were grouped into four groups of six lambs including a control (C) group fed a basal diet, and N, M, and NM groups in which lambs were fed the basal diet respectively supplemented with S. cerevisiae yeast cultures (30 g/d per head), K. marxianus yeast cultures (30 g/d per head), and co-cultures of both yeasts (30 g/d per head), the experiment lasted for 42 d. Subsequent analyses revealed that relative to the C group, the average daily gain (ADG) of lambs in the NM group was significantly greater and exhibited significant increases in a range of mRNA relative expression including monocarboxylate transporter 1 (MCT1), (Na+)/hydrogen (H+) exchanger 1 (NHE1), (Na+)/hydrogen (H+) exchanger 3 (NHE3), proton-coupled amino acid transporter 1 (PAT1), vacuolar H+-ATPase (vH+ ATPase), claudin-1, occludin in the rumen epithelium (P < 0.05). Compared with the C group, the pH of the rumen contents in the NM group was significantly decreased , and the concentrations of acetate, propionate, and butyrate were significantly increased (P < 0.05). Analysis of the rumen bacteria showed that the NM group exhibited increases in the relative abundance of Prevotella, Treponema, Moryella, Fibrobacter, CF231 and Ruminococcus (P < 0.05). Metabolomics analyses revealed an increase in the relative content of phthalic acid and cinnamaldehyde in the NM group as compared to the C group (P < 0.05), together with the greater relative content of L-tyrosine, L-dopa, rosmarinic acid, and tyrosol generated by the tyrosine metabolic pathway (P < 0.05). Spearman's correlation analyses revealed relative abundance levels of Fibrobacter and Ruminococcus were positively correlated with the mRNA relative expression levels of PAT1, NHE3, and zonula occluden-1 (ZO-1), as well as with tyrosol, phthalic acid, and cinnamaldehyde levels (P < 0.05). Ultimately, these results suggest that dietary supplementation with NM has a wide range of beneficial effects on weaned lambs and is superior to single bacterial fermentation. These effects include improvements in daily gain and rumen epithelial barrier integrity, as well as improvements in the composition of the rumen microbiome, and alterations in tyrosine metabolic pathways.
Collapse
Affiliation(s)
- Zixuan Xu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lan Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hui Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shixiong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xueqiang Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Songjian Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chun Ying
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiao Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rui Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dacheng Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
Branco-Lopes R, Bernal-Córdoba C, Valldecabres A, Winder C, Canozzi ME, Silva-Del-Río N. Characterization of controlled trials on probiotic supplementation to dairy calves: A scoping review. J Dairy Sci 2023; 106:5388-5401. [PMID: 37331870 DOI: 10.3168/jds.2022-23017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 06/20/2023]
Abstract
The objective of this scoping review was to identify, describe, and characterize the literature on probiotic supplementation in dairy calves. Eligible studies were nonrandomized, quasi-randomized and randomized controlled trials in English, Spanish, or Portuguese that evaluated the effect of probiotic supplementation on growth and health of dairy calves. The search strategies were based on a modification of the PICO (Population, Intervention, Comparator, Outcome) framework and used synonyms and words related to "dairy calves" (population), "probiotics" (intervention), and "growth and health measurements" (outcomes). No restrictions for publication year or language were applied. Searches were conducted in Biosis, CAB Abstracts, Medline, Scopus, and the Dissertations and Theses Database. In total, the search identified 4,467 records, of which 103 studies (110 controlled trials) met the inclusion criteria. The studies were published between 1980 and 2021 and originated from 28 countries. Trials were randomized (80.0%), nonrandomized (16.4%), and quasi-randomized (3.6%), ranging in sample size from 5 to 1,801 dairy calves (mode = 24; average = 64). Enrolled calves were frequently Holstein (74.5%), males (43.6%), and younger than 15 d at the beginning of probiotic supplementation (71.8%). Often, trials were conducted in research facilities (47.3%). Trials evaluated probiotics with single or multiple species of the same genus: Lactobacillus (26.4%), Saccharomyces (15.4%), Bacillus (10.0%), Enterococcus (3.6%), or multiple species of various genera (31.8%). Eight trials did not report the probiotic species used. Lactobacillus acidophilus and Enterococcus faecium were the species most supplemented to calves. The duration of probiotic supplementation ranged from 1 to 462 d (mode = 56; average = 50). In trials with a constant dose, it ranged from 4.0 × 106 to 3.7 × 1011 cfu/calf per day. Most probiotics were administered mixed solely into feed (88.5%; whole milk, milk replacer, starter, or total mixed ration) and less frequently orally as a drench or oral paste (7.9%). Most trials evaluated weight gain (88.2%) as a growth indicator and fecal consistency score (64.5%) as a health indicator. Our scoping review summarizes the breadth of controlled trials evaluating probiotic supplementation in dairy calves. Differences in intervention design (mode of probiotic administration, dose, and duration of probiotic supplementation) and outcomes evaluation (type and methods) justify future efforts toward standardized guidelines in clinical trials.
Collapse
Affiliation(s)
- R Branco-Lopes
- Veterinary Medicine Teaching and Research Center, Tulare, CA 93274
| | - C Bernal-Córdoba
- Veterinary Medicine Teaching and Research Center, Tulare, CA 93274
| | - A Valldecabres
- Teagasc, Animal and Grassland Research and Innovation Center, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - C Winder
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - M E Canozzi
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa Producción de Carne y Lana, Estación Experimental INIA La Estanzuela, Colonia, Uruguay, 70000
| | - N Silva-Del-Río
- Veterinary Medicine Teaching and Research Center, Tulare, CA 93274; Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis 95616.
| |
Collapse
|
4
|
Burdick Sanchez NC, Broadway PR, Carroll JA. Influence of Yeast Products on Modulating Metabolism and Immunity in Cattle and Swine. Animals (Basel) 2021; 11:ani11020371. [PMID: 33540746 PMCID: PMC7913008 DOI: 10.3390/ani11020371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Nutritional supplementation has been used by livestock producers for many years in order to increase animal performance, improve animal health, and reduce negative effects associated with enteric and/or respiratory pathogens. Supplements such as yeast and yeast-based products have broad applications across many livestock production systems, including poultry, aquaculture, cattle, and swine and have been shown to benefit animal production at various stages. These benefits include improvement in milk production, weight gain and feed conversion, as well as immune function. Initial research into the mode of action for these effects has focused on stimulation of the immune system by the β-glucan fractions of yeast. However, emerging studies have revealed that some of the beneficial effects of yeast products may stem from altering metabolism, including the availability of glucose and fatty acids. These changes in metabolism, and potentially energy availability, may partially explain differences in immune function observed in yeast-supplemented livestock, as the energy demands of an activated immune system are extremely high. Thus, this paper explores the influence of yeast products on metabolism in cattle and swine, and how changes in metabolism and energy availability may contribute to improvements in immune function in supplemented animals.
Collapse
|
5
|
Alawneh JI, Barreto MO, Moore RJ, Soust M, Al-Harbi H, James AS, Krishnan D, Olchowy TWJ. Systematic review of an intervention: the use of probiotics to improve health and productivity of calves. Prev Vet Med 2020; 183:105147. [PMID: 32977172 DOI: 10.1016/j.prevetmed.2020.105147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022]
Abstract
The aims of this study were to undertake a systematic review and meta-analysis of the types of probiotic formulations that are commercially available and to critically appraise the available evidence for the effectiveness of probiotics in improving the health and productivity of calves. Relevant papers were identified to answer the question: 'In calves aged between birth to one year, is the use of probiotics associated with changes in haematological or biochemical parameters, faecal bacteria counts, average daily live weight gain, dry matter intake, or feed conversion ratio?' The search of the literature yielded 67 studies that fit the primary screening criteria. Included studies were assessed for bias and confounding using a predefined risk assessment tool adapted from the Cochrane Collaboration's tool for assessing risk of bias in randomised trials and GRADE guidelines. Meta-analysis was performed using Review Manager and R. Random sequence generation was low in more than 59 % of studies. Risk of allocation concealment and performance bias were largely unclear in over 68 % of studies. Calves fed probiotics had increased average daily live weight gains (ADG) from birth to weaning (mean difference [MD] = 83.14 g/d 95 % CI = 58.36-107.91, P < 0.001) compared with calves on a control diet. Calf age reduced the level of heterogeneity of the effect of probiotics on ADG for calves between one to three weeks of age (τ2 = 73.15; I2 = 4%; P = 0.40) but not for calves older than three weeks of age (τ2 = 2892.91; I2 = 73 %; P < 0.001). Feed conversion ratio (FCR) was lower for calves on probiotics (MD = -0.13 kg of dry matter intake (DMI) to kg of live weight (LW) gain, 95 % CI = -0.17 to -0.09, P < 0.001), and the heterogeneity of effect was large in younger aged calves (τ2 = 0.05; I2 = 78 %; P = 0.03). The risk of bias regarding the methodology in the included studies was high. The quality of evidence for each outcome was categorised as moderate. There is sufficient data to support the effectiveness of probiotic use in some applications such as for the improvement of performance and productivity parameters of calves. However, the evidence is weak for other potential probiotic uses in calves such as improved health and reduced risk of disease. Therefore, the existing data are inconclusive and do not support the use of probiotics as an alternative to antimicrobials to improve calf health and productivity.
Collapse
Affiliation(s)
- John I Alawneh
- Good Clinical Practice Research Group, The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia.
| | - Michelle O Barreto
- Good Clinical Practice Research Group, The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Melbourne, Victoria, 3083, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, Queensland, 4573, Australia
| | - Hulayyil Al-Harbi
- Good Clinical Practice Research Group, The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia
| | - Ameh S James
- Good Clinical Practice Research Group, The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia
| | - Divya Krishnan
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia
| | - Timothy W J Olchowy
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T3R 1J3, Canada
| |
Collapse
|