1
|
Yang D, Li J, Mak WY, Zheng A, Zhu X, He Q, Wang Y, Xiang X. PBPK Modeling: Empowering Drug Development and Precision Dosing in China. CPT Pharmacometrics Syst Pharmacol 2025; 14:828-839. [PMID: 39967056 PMCID: PMC12072232 DOI: 10.1002/psp4.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/05/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling, a cornerstone of model-informed drug development and model-informed precision dosing, simulates drug disposition in the human body by integrating physiological, biochemical, and physicochemical parameters. While PBPK modeling has advanced globally since the 1970s, China's adoption of this technology has followed a distinctive path, characterized by accelerated growth over the past 2 decades. This review provides a comprehensive analysis of China's contributions to PBPK modeling, addressing knowledge gaps in publication trends, application domains, and platform preferences. A systematic literature search yielded 266 original PBPK research articles from PubMed up to August 08, 2024. The analysis revealed that drug disposition and drug-drug interaction studies constitute the largest proportion of PBPK analyses in China. Chinese universities and hospitals emerge as the leading contributors to PBPK research among institutions in China. Although established commercial PBPK platform such as GastroPlus and Simcyp remain popular within the Chinese pharmaceutical industry, open-source platforms like PK-Sim are gaining significant traction in PBPK applications across China. This review underscores the transformative potential of PBPK modeling in drug development within China, offering valuable insights into future directions and challenges in the field.
Collapse
Affiliation(s)
- Dongsheng Yang
- Department of Clinical Pharmacy and Pharmacy Administration, School of PharmacyFudan UniversityShanghaiChina
| | - Jian Li
- Center for Drug Evaluation, National Medical Products AdministrationBeijingChina
| | - Wen Yao Mak
- Department of Clinical Pharmacy and Pharmacy Administration, School of PharmacyFudan UniversityShanghaiChina
| | - Aole Zheng
- Department of Clinical Pharmacy and Pharmacy Administration, School of PharmacyFudan UniversityShanghaiChina
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of PharmacyFudan UniversityShanghaiChina
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of PharmacyFudan UniversityShanghaiChina
| | - Yuzhu Wang
- Center for Drug Evaluation, National Medical Products AdministrationBeijingChina
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of PharmacyFudan UniversityShanghaiChina
- Quzhou Fudan InstituteQuzhouChina
- National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery BarriersShanghaiChina
| |
Collapse
|
2
|
Chugh J, Dai J, Datta P, Krutsch K. Investigating the Transfer of Lisinopril Into Human Milk: A Quantitative Analysis. J Cardiovasc Pharmacol 2025; 85:84-87. [PMID: 39405564 DOI: 10.1097/fjc.0000000000001642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 01/18/2025]
Abstract
ABSTRACT Lisinopril is commonly prescribed to manage conditions such as hypertension and heart failure. Although concerns about fetal toxicity have traditionally limited the use of lisinopril in women of reproductive age, recent American College of Obstetricians and Gynecologists guidelines promote aggressive treatment of hypertension, which may require the use of pharmacologic agents not previously considered in the postpartum period. We aimed to estimate infant exposure to maternal lisinopril through breast milk and report the tolerance of the breastfed infant. Five volunteers taking lisinopril provided samples of their human milk and their associated health information for research through the InfantRisk Center Human Milk Biorepository. The milk pharmacokinetics of lisinopril were measured using liquid chromatography-mass spectrometry. The mean milk concentration of lisinopril was 0.49 ng/mL per 10 mg daily dose. The relative infant dose was 0.06% for lisinopril, more than 100 times lower than the standard 10% safety threshold. The minimal transfer of lisinopril into human milk in this study suggests the drug is unlikely to pose a clinically significant risk to healthy breastfed infants.
Collapse
Affiliation(s)
- Julie Chugh
- Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX; and
| | - Jean Dai
- Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX; and
| | - Palika Datta
- Department of Obstetrics & Gynecology, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX
| | - Kaytlin Krutsch
- Department of Obstetrics & Gynecology, Texas Tech University Health Sciences Center School of Medicine, Amarillo, TX
| |
Collapse
|
3
|
Wang Q, Yan Y, Li S, Yi H, Xie F. Physiologically based pharmacokinetic modelling of cefoperazone in paediatrics. Br J Clin Pharmacol 2024. [PMID: 38958222 DOI: 10.1111/bcp.16163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/23/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
AIMS Cefoperazone is commonly used off-label in the treatment of bacterial meningitis and sepsis in children, and the pharmacokinetic (PK) data are limited in this vulnerable population. The goal of this study was to develop a physiologically based pharmacokinetic (PBPK) model to predict pediatric cefoperazone exposure for rational dosing recommendations. METHODS A cefoperazone PBPK model for adults was first constructed using Simcyp V22 simulator. Subsequently, the model was extended to children based on the built in age-dependent physiological parameters, while the drug characteristics remained unchanged. The verified pediatric PBPK model was then utilized to assess the rationality of the common dosing regimens for children at different age groups. RESULTS Cefoperazone PBPK model included elimination via biliary excretion, glomerular filtration, and organic anion transporter 3 (OAT3)-mediated tubular secretion. 95.2% of the observed mean concentrations and 100% of the area under the plasma drug concentration-time curve (AUC) and peak concentration (Cmax) in adults were within a twofold range of model mean predictions. Good predictive accuracy was also observed in children, including neonates. 50 mg/kg q12h cefoperazone demonstrated effective target attainment in virtual term neonates (<1 month) when the MIC was ≤1 mg/L, adhering to the stringent PK/PD target of 75% fT > MIC. 37.5 mg/kg q12h cefoperazone achieved the common 50% fT > MIC target for an MIC ≤ 0. 25 mg/L in virtual pediatric patients ranging from 1 month to 18 years of age. CONCLUSIONS A pediatric PBPK model was developed for cefoperazone, and it could serve as the basis for deriving rational dosing regimens in children.
Collapse
Affiliation(s)
- Qiushi Wang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yunan Yan
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Sanwang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hanxi Yi
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
| | - Feifan Xie
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
4
|
Oosthuizen D, Ganief TA, Bernstein KE, Sturrock ED. Proteomic Analysis of Human Macrophages Overexpressing Angiotensin-Converting Enzyme. Int J Mol Sci 2024; 25:7055. [PMID: 39000163 PMCID: PMC11240931 DOI: 10.3390/ijms25137055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Angiotensin converting enzyme (ACE) exerts strong modulation of myeloid cell function independently of its cardiovascular arm. The success of the ACE-overexpressing murine macrophage model, ACE 10/10, in treating microbial infections and cancer opens a new avenue into whether ACE overexpression in human macrophages shares these benefits. Additionally, as ACE inhibitors are a widely used antihypertensive medication, their impact on ACE expressing immune cells is of interest and currently understudied. In the present study, we utilized mass spectrometry to characterize and assess global proteomic changes in an ACE-overexpressing human THP-1 cell line. Additionally, proteomic changes and cellular uptake following treatment with an ACE C-domain selective inhibitor, lisinopril-tryptophan, were also assessed. ACE activity was significantly reduced following inhibitor treatment, despite limited uptake within the cell, and both RNA processing and immune pathways were significantly dysregulated with treatment. Also present were upregulated energy and TCA cycle proteins and dysregulated cytokine and interleukin signaling proteins with ACE overexpression. A novel, functionally enriched immune pathway that appeared both with ACE overexpression and inhibitor treatment was neutrophil degranulation. ACE overexpression within human macrophages showed similarities with ACE 10/10 murine macrophages, paving the way for mechanistic studies aimed at understanding the altered immune function.
Collapse
Affiliation(s)
- Delia Oosthuizen
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Tariq A. Ganief
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Edward D. Sturrock
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
5
|
Sandra L, Degraeuwe E, De Bruyne P, De Baere S, Croubels S, Van Bocxlaer JFP, Raes A, Vande Walle J, Gasthuys E, Vermeulen A. Population pharmacokinetics of lisinopril in hypertensive children and adolescents with normal to mildly reduced kidney function. Br J Clin Pharmacol 2024; 90:504-515. [PMID: 37864281 DOI: 10.1111/bcp.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
AIMS Lisinopril, an angiotensin-converting enzyme inhibitor, is a frequently prescribed antihypertensive drug in the paediatric population, while being used off-label under the age of 6 years in the USA and for all paediatric patients globally. The SAFEPEDRUG project (IWT-130033) investigated lisinopril pharmacokinetics in hypertensive paediatric patients corresponding with the day-to-day clinical population. METHODS The dose-escalation pilot study included 13 children with primary and secondary hypertension who received oral lisinopril once daily in the morning; doses ranged from 0.05 to 0.2 mg kg-1 . Patients were aged between 1.9 and 17.9 years (median 13.5 years) and weight ranged between 9.62 and 97.2 kg (median 53.2 kg). All data were analysed using Monolix version 2020R1 (Lixoft, France) and R version 3.6.2. RESULTS A 1-compartment model with first-order absorption and first-order elimination optimally describes the data. Parameter estimates of absorption rate constant (0.075 h-1 [0.062, 0.088], typical value [95% confidence interval]), volume of distribution (31.38 L 70 kg-1 [10.5, 52.3]) and elimination clearance (24.2 L h-1 70 kg-1 [19.5, 28.9]) show good predictive ability. Significant covariate effects include total body weight on elimination clearance, and distribution volume and estimated glomerular filtration rate (eGFR) on elimination clearance. The effects of eGFR on the elimination clearance are optimally described by a linear effect centred around 105 mL min-1 1.73 m-2 . The effects of body weight were implemented using fixed allometric exponents centred around an adult weight of 70 kg. CONCLUSION Lisinopril dose and regimen adjustments for paediatric patients should include eGFR on top of weight adjustments. An expanded model characterizing the pharmacodynamic effect is required to identify the optimal dose and dosing regimen.
Collapse
Affiliation(s)
- Louis Sandra
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Eva Degraeuwe
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Ghent University Hospital (UZGent), Ghent, Belgium
| | - Pauline De Bruyne
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Ghent University Hospital (UZGent), Ghent, Belgium
| | - Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan F P Van Bocxlaer
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ann Raes
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Ghent University Hospital (UZGent), Ghent, Belgium
- ERKNET: European Rare Kidney Disease Network
| | - Johan Vande Walle
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Ghent University Hospital (UZGent), Ghent, Belgium
- ERKNET: European Rare Kidney Disease Network
| | - Elke Gasthuys
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - An Vermeulen
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Khalid R, Mahmood S, Mohamed Sofian Z, Hilles AR, Hashim NM, Ge Y. Microneedles and Their Application in Transdermal Delivery of Antihypertensive Drugs-A Review. Pharmaceutics 2023; 15:2029. [PMID: 37631243 PMCID: PMC10459756 DOI: 10.3390/pharmaceutics15082029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
One of the most cutting-edge, effective, and least invasive pharmaceutical innovations is the utilization of microneedles (MNs) for drug delivery, patient monitoring, diagnostics, medicine or vaccine delivery, and other medical procedures (e.g., intradermal vaccination, allergy testing, dermatology, and blood sampling). The MN-based system offers many advantages, such as minimal cost, high medical effectiveness, comparatively good safety, and painless drug application. Drug delivery through MNs can possibly be viewed as a viable instrument for various macromolecules (e.g., proteins, peptides, and nucleic acids) that are not efficiently administered through traditional approaches. This review article provides an overview of MN-based research in the transdermal delivery of hypertensive drugs. The critical attributes of microneedles are discussed, including the mechanism of drug release, pharmacokinetics, fabrication techniques, therapeutic applications, and upcoming challenges. Furthermore, the therapeutic perspective and improved bioavailability of hypertensive drugs that are poorly aqueous-soluble are also discussed. This focused review provides an overview of reported studies and the recent progress of MN-based delivery of hypertensive drugs, paving the way for future pharmaceutical uses. As MN-based drug administration bypasses first-pass metabolism and the high variability in drug plasma levels, it has grown significantly more important for systemic therapy. In conclusion, MN-based drug delivery of hypertensive drugs for increasing bioavailability and patient compliance could support a new trend of hypertensive drug delivery and provide an alternative option, overcoming the restrictions of the current dosage forms.
Collapse
Affiliation(s)
- Ramsha Khalid
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
| | - Ayah R. Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur 53100, Malaysia;
| | - Najihah Mohd Hashim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
7
|
Vijaywargi G, Kollipara S, Ahmed T, Chachad S. Predicting transporter mediated drug-drug interactions via static and dynamic physiologically based pharmacokinetic modeling: A comprehensive insight on where we are now and the way forward. Biopharm Drug Dispos 2022. [PMID: 36413625 DOI: 10.1002/bdd.2339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/07/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
The greater utilization and acceptance of physiologically-based pharmacokinetic (PBPK) modeling to evaluate the potential metabolic drug-drug interactions is evident by the plethora of literature, guidance's, and regulatory dossiers available in the literature. In contrast, it is not widely used to predict transporter-mediated DDI (tDDI). This is attributed to the unavailability of accurate transporter tissue expression levels, the absence of accurate in vitro to in vivo extrapolations (IVIVE), enzyme-transporter interplay, and a lack of specific probe substrates. Additionally, poor understanding of the inhibition/induction mechanisms coupled with the inability to determine unbound concentrations at the interaction site made tDDI assessment challenging. Despite these challenges, continuous improvements in IVIVE approaches enabled accurate tDDI predictions. Furthermore, the necessity of extrapolating tDDI's to special (pediatrics, pregnant, geriatrics) and diseased (renal, hepatic impaired) populations is gaining impetus and is encouraged by regulatory authorities. This review aims to visit the current state-of-the-art and summarizes contemporary knowledge on tDDI predictions. The current understanding and ability of static and dynamic PBPK models to predict tDDI are portrayed in detail. Peer-reviewed transporter abundance data in special and diseased populations from recent publications were compiled, enabling direct input into modeling tools for accurate tDDI predictions. A compilation of regulatory guidance's for tDDI's assessment and success stories from regulatory submissions are presented. Future perspectives and challenges of predicting tDDI in terms of in vitro system considerations, endogenous biomarkers, the use of empirical scaling factors, enzyme-transporter interplay, and acceptance criteria for model validation to meet the regulatory expectations were discussed.
Collapse
Affiliation(s)
- Gautam Vijaywargi
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| | - Siddharth Chachad
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Hyderabad, Telangana, India
| |
Collapse
|