1
|
Martin DA, Telliez JB, Pleasic-Williams S, Zhang Y, Tierney B, Blatnik M, Gale JD, Banfield C, Zhou Y, Lejeune A, Zwillich SH, Stevens E, Tiwari N, Kieras E, Karanam A. Target Occupancy and Functional Inhibition of JAK3 and TEC Family Kinases by Ritlecitinib in Healthy Adults: An Open-Label, Phase 1 Study. J Clin Pharmacol 2024; 64:67-79. [PMID: 37691236 DOI: 10.1002/jcph.2347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Ritlecitinib is a small molecule in clinical development that covalently and irreversibly inhibits Janus kinase 3 (JAK3) and the TEC family of kinases (BTK, BMX, ITK, TXK, and TEC). This phase 1, open-label, parallel-group study assessed target occupancy and functional effects of ritlecitinib on JAK3 and TEC family kinases in healthy participants aged 18-60 years who received 50 or 200 mg single doses of ritlecitinib on day 1. Blood samples to assess ritlecitinib pharmacokinetics, target occupancy, and pharmacodynamics were collected over 48 hours. Target occupancy was assessed using mass spectroscopy. Functional inhibition of JAK3-dependent signaling was measured by the inhibition of the phosphorylation of its downstream target signal transducer and activator of transcription 5 (pSTAT5), following activation by interleukin 15 (IL-15). The functional inhibition of Bruton's tyrosine kinase (BTK)-dependent signaling was measured by the reduction in the upregulation of cluster of differentiation 69 (CD69), an early marker of B-cell activation, following treatment with anti-immunoglobulin D. Eight participants received one 50 mg ritlecitinib dose and 8 participants received one 200 mg dose. Ritlecitinib plasma exposure increased in an approximately dose-proportional manner from 50 to 200 mg. The maximal median JAK3 target occupancy was 72% for 50 mg and 64% for 200 mg. Ritlecitinib 50 mg had >94% maximal target occupancy of all TEC kinases, except BMX (87%), and 200 mg had >97% for all TEC kinases. For BTK and TEC, ritlecitinib maintained high target occupancy throughout a period of 48 hours. Ritlecitinib reduced pSTAT5 levels following IL-15- and BTK-dependent signaling in a dose-dependent manner. These target occupancy and functional assays demonstrate the dual inhibition of the JAK3- and BTK-dependent pathways by ritlecitinib. Further studies are needed to understand the contribution to clinical effects of inhibiting these pathways.
Collapse
|
2
|
Bame E, Tang H, Burns JC, Arefayene M, Michelsen K, Ma B, Marx I, Prince R, Roach AM, Poreci U, Donaldson D, Cullen P, Casey F, Zhu J, Carlile TM, Sangurdekar D, Zhang B, Trapa P, Santoro J, Muragan P, Pellerin A, Rubino S, Gianni D, Bajrami B, Peng X, Coppell A, Riester K, Belachew S, Mehta D, Palte M, Hopkins BT, Scaramozza M, Franchimont N, Mingueneau M. Next-generation Bruton's tyrosine kinase inhibitor BIIB091 selectively and potently inhibits B cell and Fc receptor signaling and downstream functions in B cells and myeloid cells. Clin Transl Immunology 2021; 10:e1295. [PMID: 34141433 PMCID: PMC8204096 DOI: 10.1002/cti2.1295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives Bruton's tyrosine kinase (BTK) plays a non-redundant signaling role downstream of the B-cell receptor (BCR) in B cells and the receptors for the Fc region of immunoglobulins (FcR) in myeloid cells. Here, we characterise BIIB091, a novel, potent, selective and reversible small-molecule inhibitor of BTK. Methods BIIB091 was evaluated in vitro and in vivo in preclinical models and in phase 1 clinical trial. Results In vitro, BIIB091 potently inhibited BTK-dependent proximal signaling and distal functional responses in both B cells and myeloid cells with IC50s ranging from 3 to 106 nm, including antigen presentation to T cells, a key mechanism of action thought to be underlying the efficacy of B cell-targeted therapeutics in multiple sclerosis. BIIB091 effectively sequestered tyrosine 551 in the kinase pocket by forming long-lived complexes with BTK with t 1/2 of more than 40 min, thereby preventing its phosphorylation by upstream kinases. As a key differentiating feature of BIIB091, this property explains the very potent whole blood IC50s of 87 and 106 nm observed with stimulated B cells and myeloid cells, respectively. In vivo, BIIB091 blocked B-cell activation, antibody production and germinal center differentiation. In phase 1 healthy volunteer trial, BIIB091 inhibited naïve and unswitched memory B-cell activation, with an in vivo IC50 of 55 nm and without significant impact on lymphoid or myeloid cell survival after 14 days of dosing. Conclusion Pharmacodynamic results obtained in preclinical and early clinical settings support the advancement of BIIB091 in phase 2 clinical trials.
Collapse
Affiliation(s)
- Eris Bame
- Clinical Sciences Biogen Cambridge MA USA
| | - Hao Tang
- Biogen Research Biogen Cambridge MA USA
| | | | | | - Klaus Michelsen
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA.,Present address: Relay Therapeutics Cambridge MA USA
| | - Bin Ma
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Isaac Marx
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Robin Prince
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Allie M Roach
- Biogen Research Biogen Cambridge MA USA.,Present address: Gilead Sciences Seattle WA USA
| | - Urjana Poreci
- Clinical Sciences Biogen Cambridge MA USA.,Present address: Pandion Therapeutics Watertown MA USA
| | - Douglas Donaldson
- Clinical Sciences Biogen Cambridge MA USA.,Present address: Giner Labs Newton MA USA
| | | | | | - Jing Zhu
- Biogen Research Biogen Cambridge MA USA
| | | | - Dipen Sangurdekar
- Biogen Research Biogen Cambridge MA USA.,Present address: Takeda Cambridge MA USA
| | | | - Patrick Trapa
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Joseph Santoro
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Param Muragan
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | | | | | - Davide Gianni
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Bekim Bajrami
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | - Xiaomei Peng
- Global Safety and Regulatory Sciences Biogen Cambridge MA USA
| | | | | | | | - Devangi Mehta
- Clinical Sciences Biogen Cambridge MA USA.,Present address: Immunologix Laboratories Cambridge MA USA
| | - Mike Palte
- MS Development Unit Biogen Cambridge MA USA
| | - Brian T Hopkins
- Biotherapeutics and Medicinal Sciences Biogen Cambridge MA USA
| | | | | | | |
Collapse
|
3
|
Carstensen S, Benediktus E, Litzenburger T, Hohlfeld JM, Müller M. Basophil activation test: Assay precision and BI 1002494 SYK inhibition in healthy and mild asthmatics. Cytometry A 2021; 101:86-94. [PMID: 33797185 DOI: 10.1002/cyto.a.24338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Application of basophil activation test (BAT) in clinical trials requires assay validity. Whether assay variability differs between healthy and asthmatic subjects is mostly unknown. This study compares basophil stimulation using blood from healthy and asthmatic subjects with or without inhibition of spleen tyrosine kinase (SYK). METHODS Whole blood of healthy and mild asthmatic subjects was stimulated with anti-dinitrophenyl (DNP) IgE/DNP bovine serum albumin and anti-IgE. Basophil activation was detected by CD63 and CD203c expression. CD63 expression levels were compared with serum IgE levels. Three operators repeated experiments with three subjects each from both groups at 3 days to observe assay precision. The effect of the SYK inhibitor BI 1002494 was assessed in BAT for both healthy and asthmatic subjects. RESULTS BAT was reproducible in both groups. Acceptance criteria of <25% CV were mostly fulfilled. Stimulation with anti-DNP (p < 0.001, r = -0.80) but not anti-IgE (p = 0.74, r = 0.05) was related to serum IgE with levels > 200 IU/ml limiting anti-DNP stimulation. BI 1002494 IC50 values were 497 nM and 1080 nM in healthy and 287 nM and 683 nM in asthmatics for anti-DNP and anti-IgE stimulation, respectively. CONCLUSION BAT, performed with blood from healthy or asthmatic subjects, is a robust test for the measurement of a physiological response in clinical trials. Blood from asthmatic donors with serum IgE > 200 IU/ml is less feasible when using anti-DNP stimulation. SYK inhibition was not affected by disease status.
Collapse
Affiliation(s)
- Saskia Carstensen
- Department of Biomarker Analysis and Development, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Ewald Benediktus
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tobias Litzenburger
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Jens M Hohlfeld
- Division of Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany.,Member of the German Center for Lung Research, Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Meike Müller
- Department of Biomarker Analysis and Development, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
4
|
von Hundelshausen P, Siess W. Bleeding by Bruton Tyrosine Kinase-Inhibitors: Dependency on Drug Type and Disease. Cancers (Basel) 2021; 13:1103. [PMID: 33806595 PMCID: PMC7961939 DOI: 10.3390/cancers13051103] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bruton tyrosine kinase (Btk) is expressed in B-lymphocytes, myeloid cells and platelets, and Btk-inhibitors (BTKi) are used to treat patients with B-cell malignancies, developed against autoimmune diseases, have been proposed as novel antithrombotic drugs, and been tested in patients with severe COVID-19. However, mild bleeding is frequent in patients with B-cell malignancies treated with the irreversible BTKi ibrutinib and the recently approved 2nd generation BTKi acalabrutinib, zanubrutinib and tirabrutinib, and also in volunteers receiving in a phase-1 study the novel irreversible BTKi BI-705564. In contrast, no bleeding has been reported in clinical trials of other BTKi. These include the brain-penetrant irreversible tolebrutinib and evobrutinib (against multiple sclerosis), the irreversible branebrutinib, the reversible BMS-986142 and fenebrutinib (targeting rheumatoid arthritis and lupus erythematodes), and the reversible covalent rilzabrutinib (against pemphigus and immune thrombocytopenia). Remibrutinib, a novel highly selective covalent BTKi, is currently in clinical studies of autoimmune dermatological disorders. This review describes twelve BTKi approved or in clinical trials. By focusing on their pharmacological properties, targeted disease, bleeding side effects and actions on platelets it attempts to clarify the mechanisms underlying bleeding. Specific platelet function tests in blood might help to estimate the probability of bleeding of newly developed BTKi.
Collapse
Affiliation(s)
- Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University (LMU), 80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Wolfgang Siess
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University (LMU), 80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|