1
|
Kir F, Sahin S, Jusko WJ. Minimal Physiologically-Based Pharmacokinetic Modeling of Atenolol and Metoprolol Absorption in Malnourished Rats. Eur J Drug Metab Pharmacokinet 2025; 50:251-263. [PMID: 40175632 PMCID: PMC12081501 DOI: 10.1007/s13318-025-00943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND AND OBJECTIVE The pharmacokinetics of drugs can be altered by pathophysiological changes in the body that result from malnutrition. The objective of this study was to evaluate the profiles derived from in vivo studies conducted on non-malnourished (control) and malnourished rats using minimal physiologically based pharmacokinetic (mPBPK) models. METHODS Single oral doses of atenolol (ATN) and metoprolol (MET) were administered to non-malnourished and malnourished rats. We demonstrate how plasma profiles can be evaluated using mPBPK models with high and low tissue-to-plasma partition coefficients (Kp) and elimination by either kidney or liver. A decrease in blood flow and cardiac output due to beta-blocker administration was assumed. Reference IV profiles from the literature were included to inform the mPBPK model and to help assess the absorption phases of individual oral profiles. Absorption was captured as two or three sequential zero-order processes for both drugs, and IV and oral profiles were assessed by joint fitting. Modeling was performed using both naïve pooling (ADAPT) and population (Monolix) analyses. RESULTS The experimental data show increased AUC values of MET and ATN in malnourished rats. Accordingly, an increased bioavailability (from 0.43 to 0.67) for ATN and an increased bioavailability (from 0.42 to 0.84) for MET in the malnourished group were related to higher absorption rates in both absorption phases. CONCLUSIONS This study demonstrated advantageous use of mPBPK modeling with malnutrition primarily altering drug absorption in this animal model. Also, our analysis offers a blend of known and assumed components assembled mechanistically to suggest a reasonable interpretation of the PK profiles.
Collapse
Affiliation(s)
- Fatma Kir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 404 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 404 Pharmacy Building, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
2
|
Liu XM, Zhang F, Lu XS, Xi HT, Zhao JZ. Effects and safety of propofol intravenous anesthesia in transvaginal oocyte retrieval on outcomes of in vitro fertilization and embryo transplantation. Front Endocrinol (Lausanne) 2024; 15:1497948. [PMID: 39741886 PMCID: PMC11686430 DOI: 10.3389/fendo.2024.1497948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Propofol, a widely utilized anesthetic, is employed to alleviate pain and anxiety in outpatient oocyte retrieval procedures. However, its potential impact and safety profile in the context of in vitro fertilization and embryo transfer (IVF-ET) remain unclear. Methods This retrospective study enrolled 1187 patients undergoing IVF-ET, and divided into two groups depending on whether they received propofol (propofol group, n=140) or not (control group, n=1047) for anesthesia during oocyte retrieval. Results The baseline characteristics were comparable between the groups. Compared with control group, the number of oocytes retrieved in propofol group was more (p=0.012), while both the estradiol (E2) level on the trigger day and the pre-ovulatory follicle count were higher in propofol group ((p<0.01). Additionally, the rate of preterm delivery was significantly higher in the propofol group (p<0.001). To further analyze the effect of propofol on the oocyte retrieval rate, patients were divided into three subgroups depending on the pre-ovulatory follicle count (≤10, 11-20, and >20) to eliminate the influence of inconsistency in the estimation of the pre-ovulatory follicle count between the two groups. Analysis revealed that the use of propofol during oocyte retrieval was particularly advantageous in the subgroup with a pre-ovulatory follicle count of 11-20, yielding a higher oocyte retrieval rate (p<0.001). Conclusion The use of propofol in oocyte retrieval did not adversely affect fertilization, embryo quality, or clinical outcomes. Moreover, it was found to increase the oocyte retrieval rate among patients with an estimated pre-ovulatory follicle count of 11-20. These findings offer valuable evidence supporting the clinical application of propofol in oocyte retrieval procedures.
Collapse
Affiliation(s)
| | | | | | | | - Jun-Zhao Zhao
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Meesters K, Balbas-Martinez V, Allegaert K, Downes KJ, Michelet R. Personalized Dosing of Medicines for Children: A Primer on Pediatric Pharmacometrics for Clinicians. Paediatr Drugs 2024; 26:365-379. [PMID: 38755515 DOI: 10.1007/s40272-024-00633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
The widespread use of drugs for unapproved purposes remains common in children, primarily attributable to practical, ethical, and financial constraints associated with pediatric drug research. Pharmacometrics, the scientific discipline that involves the application of mathematical models to understand and quantify drug effects, holds promise in advancing pediatric pharmacotherapy by expediting drug development, extending applications, and personalizing dosing. In this review, we delineate the principles of pharmacometrics, and explore its clinical applications and prospects. The fundamental aspect of any pharmacometric analysis lies in the selection of appropriate methods for quantifying pharmacokinetics and pharmacodynamics. Population pharmacokinetic modeling is a data-driven method ('top-down' approach) to approximate population-level pharmacokinetic parameters, while identifying factors contributing to inter-individual variability. Model-informed precision dosing is increasingly used to leverage population pharmacokinetic models and patient data, to formulate individualized dosing recommendations. Physiologically based pharmacokinetic models integrate physicochemical drug properties with biological parameters ('bottom-up approach'), and is particularly valuable in situations with limited clinical data, such as early drug development, assessing drug-drug interactions, or adapting dosing for patients with specific comorbidities. The effective implementation of these complex models hinges on strong collaboration between clinicians and pharmacometricians, given the pivotal role of data availability. Promising advancements aimed at improving data availability encompass innovative techniques such as opportunistic sampling, minimally invasive sampling approaches, microdialysis, and in vitro investigations. Additionally, ongoing research efforts to enhance measurement instruments for evaluating pharmacodynamics responses, including biomarkers and clinical scoring systems, are expected to significantly bolster our capacity to understand drug effects in children.
Collapse
Affiliation(s)
- Kevin Meesters
- Department of Pediatrics, University of British Columbia, 4480 Oak Street, Vancouver, BC, V6H 3V4, Canada.
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| | | | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Kevin J Downes
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
- qPharmetra LLC, Berlin, Germany
| |
Collapse
|
4
|
Shimamoto Y, Fukushima K, Mizuno T, Ichikawa H, Kurosaki K, Maeda S, Okuda M. Model-Informed Vancomycin Dosing Optimization to Address Delayed Renal Maturation in Infants and Young Children with Critical Congenital Heart Disease. Clin Pharmacol Ther 2024; 115:239-247. [PMID: 37994537 DOI: 10.1002/cpt.3095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023]
Abstract
Ensuring safe and effective drug therapy in infants and young children often requires accounting for growth and organ development; however, data on organ function maturation are scarce for special populations, such as infants with congenital diseases. Children with critical congenital heart disease (CCHD) often require multiple staged surgeries depending on their age and disease severity. Vancomycin (VCM) is used to treat postoperative infections; however, the standard pediatric dose (60-80 mg/kg/day) frequently results in overexposure in children with CCHD. In this study, we characterized the maturation of VCM clearance in pediatric patients with CCHD and determined the appropriate dosing regimen using population pharmacokinetic (PK) modeling and simulations. We analyzed 1,254 VCM serum concentrations from 152 postoperative patients (3 days-13 years old) for population PK analysis. The PK model was developed using a two-compartment model with allometrically scaled body weight, estimated glomerular filtration rate (eGFR), and postmenstrual age as covariates. The observed clearance in patients aged ≤ 1 year and 1-2 years was 33% and 40% lower compared with that of non-CCHD patients, respectively, indicating delayed renal maturation in patients with CCHD. Simulation analyses suggested VCM doses of 25 mg/kg/day (age ≤ 3 months, eGFR 40 mL/min/1.73 m2 ) and 35 mg/kg/day (3 months < age ≤ 3 years, eGFR 60 mL/min/1.73 m2 ). In conclusion, this study revealed delayed renal maturation in children with CCHD, could be due to cyanosis and low cardiac output. Model-informed simulations identified the lower VCM doses for children with CCHD compared with standard pediatric guidelines.
Collapse
Affiliation(s)
- Yuko Shimamoto
- Department of Pharmacy, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Hospital Pharmacy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keizo Fukushima
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hajime Ichikawa
- Department of Pediatric Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kenichi Kurosaki
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Shinichiro Maeda
- Center for Advanced Education and Research in Pharmaceutical Sciences Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masahiro Okuda
- Department of Hospital Pharmacy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Ide H, Kawasaki Y, Tamura K, Yoshida T, Fujihara R, Hara A, Taguchi M. Modeling Developmental Changes in Caffeine Clearance Considering Differences between Pre- and Postnatal Period. Biol Pharm Bull 2024; 47:861-867. [PMID: 38644196 DOI: 10.1248/bpb.b23-00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Taguchi et al. reported that postmenstrual age (PMA) is a promising factor in describing and understanding the developmental change of caffeine (CAF) clearance. The aim of the present study was to quantify how developmental changes occur and to determine the effect of the length of the gestational period on CAF clearance. We performed a nonlinear mixed effect model (NONMEM) analysis and evaluated the fit of six models. A total of 115 samples were obtained from 52 patients with a mean age of 34.3 ± 18.2 d. The median values of gestational age (GA) and postnatal age (PNA) were 196 and 31 d, respectively. Serum CAF levels corrected for dose per body surface area (BSA) (C/D ratioBSA) were dependent on PMA rather than PNA, which supports the findings of a previous study. NONMEM analysis provided the following final model of oral clearance: CL/F = 0.00603∙WT∙  ∙0.877GA ≤ 196 L/h. This model takes into account developmental changes during prenatal and postnatal periods separately. The model successfully described the variation in clearance of CAF. Our findings suggest that the dosage of CAF in preterm infants should be determined based not only on body weight (WT) but also on both PNA and GA.
Collapse
Affiliation(s)
- Haruka Ide
- Department of Pharmacy Practice and Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Toyama
| | - Yukako Kawasaki
- Division of Neonatology, Maternal and Perinatal Center, Toyama University Hospital
| | - Kentaro Tamura
- Division of Neonatology, Maternal and Perinatal Center, Toyama University Hospital
| | - Taketoshi Yoshida
- Division of Neonatology, Maternal and Perinatal Center, Toyama University Hospital
| | - Ryosuke Fujihara
- Department of Pharmacy Practice and Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Toyama
| | - Akane Hara
- Laboratory of Pharmaceutical Quality Assurance and Assessment, School of Pharmacy and Pharmaceutical Sciences, University of Toyama
| | - Masato Taguchi
- Department of Pharmacy Practice and Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
6
|
Research Progress of Population Pharmacokinetic of Metformin. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4071111. [PMID: 36578804 PMCID: PMC9792241 DOI: 10.1155/2022/4071111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Metformin is commonly used as first-line treatment for T2DM (type2 diabetes mellitus). Owing to the high pharmacokinetic (PK) variability, several population pharmacokinetic (PPK) models have been developed for metformin to explore potential covariates that affect its pharmacokinetic variation. This comprehensive review summarized the published PPK studies of metformin, aimed to summarize PPK models of metformin. Most studies described metformin pharmacokinetics as a 2-compartment (2-CMT) model with 4 study describing its pharmacokinetics as 1-compartment (1-CMT). Studies on metformin PPK have shown that obesity, creatinine clearance (CLCr), gene polymorphism, degree of renal function damage, and pathological conditions all have a certain impact on the PK parameters of metformin. It is particularly important to formulate individualized dosing regimens. For future PPK studies of metformin, we believe that more attention should be paid to special populations.
Collapse
|
7
|
Zhou X, Shao Y, Li S, Zhang S, Ding C, Zhuang L, Sun J. An intravenous anesthetic drug-propofol, influences the biological characteristics of malignant tumors and reshapes the tumor microenvironment: A narrative literature review. Front Pharmacol 2022; 13:1057571. [PMID: 36506511 PMCID: PMC9732110 DOI: 10.3389/fphar.2022.1057571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Malignant tumors are the second leading cause of death worldwide. This is a public health concern that negatively impacts human health and poses a threat to the safety of life. Although there are several treatment approaches for malignant tumors, surgical resection remains the primary and direct treatment for malignant solid tumors. Anesthesia is an integral part of the operation process. Different anesthesia techniques and drugs have different effects on the operation and the postoperative prognosis. Propofol is an intravenous anesthetic that is commonly used in surgery. A substantial number of studies have shown that propofol participates in the pathophysiological process related to malignant tumors and affects the occurrence and development of malignant tumors, including anti-tumor effect, pro-tumor effect, and regulation of drug resistance. Propofol can also reshape the tumor microenvironment, including anti-angiogenesis, regulation of immunity, reduction of inflammation and remodeling of the extracellular matrix. Furthermore, most clinical studies have also indicated that propofol may contribute to a better postoperative outcome in some malignant tumor surgeries. Therefore, the author reviewed the chemical properties, pharmacokinetics, clinical application and limitations, mechanism of influencing the biological characteristics of malignant tumors and reshaping the tumor microenvironment, studies of propofol in animal tumor models and its relationship with postoperative prognosis of propofol in combination with the relevant literature in recent years, to lay a foundation for further study on the correlation between propofol and malignant tumor and provide theoretical guidance for the selection of anesthetics in malignant tumor surgery.
Collapse
Affiliation(s)
- Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Lei Zhuang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Lei Zhuang,
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Lei Zhuang,
| |
Collapse
|