1
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
2
|
Hu C, Ji F, Lv R, Zhou H, Hou G, Xu T. Putrescine promotes MMP9-induced angiogenesis in skeletal muscle through hydrogen peroxide/METTL3 pathway. Free Radic Biol Med 2024; 212:433-447. [PMID: 38159892 DOI: 10.1016/j.freeradbiomed.2023.12.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Blood vessels play a crucial role in the development of skeletal muscle, ensuring the supply of nutrients and oxygen. Putrescine, an essential polyamine for eukaryotic cells, has an unclear impact on skeletal muscle angiogenesis. In this study, we observed lower vessel density and reduced putrescine level in the muscle of low-birth-weight piglet models, and identified a positive correlation between putrescine content and muscle vessel density. Furthermore, putrescine was found to promote angiogenesis in skeletal muscle both in vitro and in vivo by targeting matrix metalloproteinase 9 (MMP9). On a mechanistic level, putrescine augmented the expression of methyltransferase like 3 (METTL3) by attenuating hydrogen peroxide production, thereby increasing the level of N6-methyladenosine (m6A)-modified MMP9 mRNA. This m6A-modified MMP9 mRNA was subsequently recognized and bound by the YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), enhancing the stability of MMP9 mRNA and its protein expression, consequently accelerating angiogenesis in skeletal muscle. In summary, our findings suggest that putrescine enhances MMP9-mediated angiogenesis in skeletal muscle via the hydrogen peroxide/METTL3 pathway.
Collapse
Affiliation(s)
- Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hanlin Zhou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
3
|
Gogiraju R, Renner L, Bochenek ML, Zifkos K, Molitor M, Danckwardt S, Wenzel P, Münzel T, Konstantinides S, Schäfer K. Arginase-1 Deletion in Erythrocytes Promotes Vascular Calcification via Enhanced GSNOR (S-Nitrosoglutathione Reductase) Expression and NO Signaling in Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2022; 42:e291-e310. [PMID: 36252109 DOI: 10.1161/atvbaha.122.318338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Erythrocytes (red blood cells) participate in the control of vascular NO bioavailability. The purpose of this study was to determine whether and how genetic deletion of ARG1 (arginase-1) affects vascular smooth muscle cell NO signaling, osteoblastic differentiation, and atherosclerotic lesion calcification. METHODS Atherosclerosis-prone mice with conditional, erythrocyte-restricted deletion of ARG1 (apoE-/- red blood cell.ARG1 knockout) were generated and vascular calcification studied using molecular imaging of the osteogenic activity agent OsteoSense, Alizarin staining or immunohistochemistry, qPCR of osteogenic markers and ex vivo assays. RESULTS Atherosclerotic lesion size at the aortic root did not differ, but calcification was significantly more pronounced in apoE-/- mice lacking erythrocyte ARG1. Incubation of murine and human VSMCs with lysed erythrocyte membranes from apoE-/- red blood cell. ARG1-knockout mice accelerated their osteogenic differentiation, and mRNA transcripts of osteogenic markers decreased following NO scavenging. In addition to NO signaling via sGC (soluble guanylyl cyclase), overexpression of GSNOR (S-nitrosoglutathione reductase) enhanced degradation of S-nitrosoglutathione to glutathione and reduced protein S-nitrosation of HSP (heat shock protein)-70 were identified as potential mechanisms of vascular smooth muscle cell calcification in mice lacking ARG1 in erythrocytes, and calcium phosphate deposition was enhanced by heat shock and prevented by GSNOR inhibition. Messenger RNA levels of enzymes metabolizing the arginase products L-ornithine and L-proline also were elevated in VSMCs, paralleled by increased proliferation, myofibroblast marker and collagen type 1 expression. CONCLUSIONS Our findings support an important role of erythrocyte ARG1 for NO bioavailability and L-arginine metabolism in VSMCs, which controls atherosclerotic lesion composition and calcification.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Luisa Renner
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Magdalena L Bochenek
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Konstantinos Zifkos
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Michael Molitor
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Sven Danckwardt
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany.,Institute for Clinical Chemistry (S.D.), University Medical Center Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Stavros Konstantinides
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| |
Collapse
|
4
|
Polyamine concentration is increased in thoracic ascending aorta of patients with bicuspid aortic valve. Heart Vessels 2017; 33:327-339. [DOI: 10.1007/s00380-017-1087-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022]
|
5
|
Grossi M, Phanstiel O, Rippe C, Swärd K, Alajbegovic A, Albinsson S, Forte A, Persson L, Hellstrand P, Nilsson BO. Inhibition of Polyamine Uptake Potentiates the Anti-Proliferative Effect of Polyamine Synthesis Inhibition and Preserves the Contractile Phenotype of Vascular Smooth Muscle Cells. J Cell Physiol 2015; 231:1334-42. [PMID: 26529275 DOI: 10.1002/jcp.25236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/29/2022]
Abstract
Increased vascular smooth muscle cell (VSMC) proliferation is a factor in atherosclerosis and injury-induced arterial (re) stenosis. Inhibition of polyamine synthesis by α-difluoro-methylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, attenuates VSMC proliferation with high sensitivity and specificity. However, cells can escape polyamine synthesis blockade by importing polyamines from the environment. To address this issue, polyamine transport inhibitors (PTIs) have been developed. We investigated the effects of the novel trimer44NMe (PTI-1) alone and in combination with DFMO on VSMC polyamine uptake, proliferation and phenotype regulation. PTI-1 efficiently inhibited polyamine uptake in primary mouse aortic and human coronary VSMCs in the absence as well as in the presence of DFMO. Interestingly, culture with DFMO for 2 days substantially (>95%) reduced putrescine (Put) and spermidine (Spd) contents without any effect on proliferation. Culture with PTI-1 alone had no effect on either polyamine levels or proliferation rate, but the combination of both treatments reduced Put and Spd levels below the detection limit and inhibited proliferation. Treatment with DFMO for a longer time period (4 days) reduced Put and Spd below their detection limits and reduced proliferation, showing that only a small pool of polyamines is needed to sustain VSMC proliferation. Inhibited proliferation by polyamine depletion was associated with maintained expression of contractile smooth marker genes. In cultured intact mouse aorta, PTI-1 potentiated the DFMO-induced inhibition of cell proliferation. The combination of endogenous polyamine synthesis inhibition with uptake blockade is thus a viable approach for targeting unwanted vascular cell proliferation in vivo, including vascular restenosis.
Collapse
Affiliation(s)
- Mario Grossi
- Department of Experimental Medical Science, Lund University, Sweden
| | - Otto Phanstiel
- Department of Medical Education, University of Central Florida, Orlando, Florida
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Sweden
| | - Azra Alajbegovic
- Department of Experimental Medical Science, Lund University, Sweden
| | | | - Amalia Forte
- Department of Experimental Medicine, Second University of Naples, Italy
| | - Lo Persson
- Department of Experimental Medical Science, Lund University, Sweden
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Sweden
| | | |
Collapse
|
6
|
Grossi M, Rippe C, Sathanoori R, Swärd K, Forte A, Erlinge D, Persson L, Hellstrand P, Nilsson BO. Vascular smooth muscle cell proliferation depends on caveolin-1-regulated polyamine uptake. Biosci Rep 2014; 34:e00153. [PMID: 25301005 PMCID: PMC4240025 DOI: 10.1042/bsr20140140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/09/2014] [Indexed: 12/11/2022] Open
Abstract
Much evidence highlights the importance of polyamines for VSMC (vascular smooth muscle cell) proliferation and migration. Cav-1 (caveolin-1) was recently reported to regulate polyamine uptake in intestinal epithelial cells. The aim of the present study was to assess the importance of Cav-1 for VSMC polyamine uptake and its impact on cell proliferation and migration. Cav-1 KO (knockout) mouse aortic cells showed increased polyamine uptake and elevated proliferation and migration compared with WT (wild-type) cells. Both Cav-1 KO and WT cells expressed the smooth muscle differentiation markers SM22 and calponin. Cell-cycle phase distribution analysis revealed a higher proportion of Cav-1 KO than WT cells in the S phase. Cav-1 KO cells were hyper-proliferative in the presence but not in the absence of extracellular polyamines, and, moreover, supplementation with exogenous polyamines promoted proliferation in Cav-1 KO but not in WT cells. Expression of the solute carrier transporters Slc7a1 and Slc43a1 was higher in Cav-1 KO than in WT cells. ODC (ornithine decarboxylase) protein and mRNA expression as well as ODC activity were similar in Cav-1 KO and WT cells showing unaltered synthesis of polyamines in Cav-1 KO cells. Cav-1 was reduced in migrating cells in vitro and in carotid lesions in vivo. Our data show that Cav-1 negatively regulates VSMC polyamine uptake and that the proliferative advantage of Cav-1 KO cells is critically dependent on polyamine uptake. We provide proof-of-principle for targeting Cav-1-regulated polyamine uptake as a strategy to fight unwanted VSMC proliferation as observed in restenosis.
Collapse
Key Words
- caveolin-1
- cell cycle
- ornithine decarboxylase
- polyamine transporter
- polyamine
- vascular smooth muscle cell
- asmc, aortic smooth muscle cell
- cav-1, caveolin-1
- cea, carotid endarterectomy
- dfmo, difluoromethylornithine
- dmem, dulbecco’s modified eagle’s medium
- hbss, hanks balanced salt solution
- [3h]put, [3h]putrescine
- hrp, horseradish peroxidise
- [3h]spd, [3h]spermidine
- hsp90, heat-shock protein 90
- ko, knockout
- odc, ornithine decarboxylase
- pi, propidium iodide
- qrt-pcr, quantitative real-time pcr
- vsmc, vascular smooth muscle cell
- wt, wild-type
Collapse
MESH Headings
- Amino Acid Transport Systems, Basic/genetics
- Amino Acid Transport Systems, Basic/metabolism
- Animals
- Blotting, Western
- Calcium-Binding Proteins/metabolism
- Carotid Arteries/metabolism
- Carotid Arteries/surgery
- Caveolin 1/genetics
- Caveolin 1/metabolism
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- DNA/biosynthesis
- Gene Expression
- Immunohistochemistry
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/metabolism
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Ornithine Decarboxylase/genetics
- Ornithine Decarboxylase/metabolism
- Polyamines/metabolism
- Polyamines/pharmacokinetics
- Polyamines/pharmacology
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Calponins
Collapse
Affiliation(s)
- Mario Grossi
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Catarina Rippe
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ramasri Sathanoori
- †Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karl Swärd
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Amalia Forte
- ‡Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - David Erlinge
- †Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Lo Persson
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Per Hellstrand
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt-Olof Nilsson
- *Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|