1
|
Zhong X, Sun Y, Lin Y, Deng S, Wang H, Zhou X, Lu J, Zheng Y, Luo R, Huang M, Song J. Ginsenoside Rd protects against acute liver injury by regulating the autophagy NLRP3 inflammasome pathway. Sci Rep 2025; 15:3569. [PMID: 39875579 PMCID: PMC11775168 DOI: 10.1038/s41598-025-87991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025] Open
Abstract
Ginsenoside Rd (Rd) is a bioactive compound predominantly found in Panax ginseng C.A. Meyer and Panax notoginseng (Burkill) F.H. Chen ex C.H. Chow, both species belonging to genus Panax in the Araliaceae family. However, its hepatic protective effect against acute liver injury and related mechanistic action remain unexplored. To investigate the protective effect of Rd against thioacetamide (TAA)-induced acute liver injury and assess its underlying regulatory mechanisms related to autophagy and inflammation. Forty-eight 8 weeks old C57BL/6 mice were treated with saline (control or model group), Rd (12.5 mg/kg, 25 mg/kg or 50 mg/kg), and diammonium glycyrrhizinate (DG, 30 mg/kg) for three days. Then the mice were stimulated with TAA to establish acute liver injury model, excluding the control group. HSC-T6 cells were treated with Rd at concentrations of 2.5, 5, or 10 µM, for 12 h with or without Lipopolysaccharide (LPS) stimulation at 100 ng/mL. Immunofluorescence staining, qPCR and Western blot were employed to analyze the expressions of genes and proteins associated with inflammation and autophagy. To validate the role of Rd in regulating autophagy and inflammation, the autophagy inducers, rapamycin and GSK621, were utilised in reverse validation experiments in cells. Rd exhibited significant hepatic protective effects in mice by reducing the serum levels of Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Glutathione S-transferase (GST) and Lactate dehydrogenase (LDH) with acute liver injury. It exhibited strong anti-inflammatory effect by reducing inflammation associated protein, such as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), nod-like receptor protein 3 (NLRP3), associated speck-like protein containing a CARD (ASC), interleukin-18 (IL-18) and interleukin-1β(IL-1β) proteins and the mRNA expression levels of COX-2, Tumor Necrosis Factor α (TNF α), interleukin-6 (IL-6) and iNOS were decreased in liver tissue. And Rd inhibited LPS-induced inflammation by reducing the expression of COX-2 and NLRP3 in HSC-T6 cells. Moreover, not only in vivo but also in vitro, Rd downregulated the expression of LC3II, Beclin1, phosphorylation-AMP-activated protein kinase (p-AMPK), phosphorylation-ULK1 (p-ULK1) and upregulated the expression of p62 and phosphorylation-mechanistic target of rapamycin (p-mTOR) to suppress autophagy via the AMPK/mTOR/ULK1 pathway. Finally, the inhibitory effects of Rd on autophagy and inflammation in HSC-T6 cells were partially blocked by rapamycin and GSK621. Rd is a promising therapeutic agent to protect liver against TAA-induced acute liver injury by regulating the autophagy-NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xiaomei Zhong
- The Affiliated People's Hospital, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Yibin Sun
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, 475000, China
| | - Yanxiang Lin
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Shan Deng
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Huan Wang
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2006, Australia
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, China
| | - Yanfang Zheng
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
| | - Ruoyin Luo
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Belfast, UK.
| | - Mingqing Huang
- The Affiliated People's Hospital, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
| | - Jianyuan Song
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
2
|
Mi X, Ni C, Zhao J, Amin N, Jiao D, Fang M, Ye X. P2Y12 receptor mediates apoptosis and demyelination to affect functional recovery in mice with spinal cord injury. Neurochem Int 2023; 171:105641. [PMID: 37952830 DOI: 10.1016/j.neuint.2023.105641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Among diseases of the central nervous system (CNS), spinal cord injury (SCI) has a high fatality rate. It has been proven that P2Y G protein-coupled purinergic receptors have a neuroprotective role in apoptosis and regeneration inside the damaged spinal cord. The P2Y12 receptor (P2Y12R) has recently been linked to peripheral neuropathy and stroke. However, the role of P2Y12R after SCI remains unclear. Our study randomly divided C57BL/6J female mice into 3 groups: Sham+DMSO, SCI+DMSO, and SCI+MRS2395. MRS2395 as a P2Y12R inhibitor was intraperitoneally injected at a dose of 1.5 mg/kg once daily for 7 days. We showed that the P2Y12R was markedly activated after injury, and it was double labeled with the microglial and neuron. Behavioral tests were employed to assess motor function recovery. By using immunofluorescence staining, the NeuN expression level was detected. The morphology of neurons was observed by hematoxylin-eosin and Nissl staining. P2Y12R, Bax, GFAP, PCNA and calbindin expression levels were detected using Western blot. Meanwhile, mitochondria and myelin sheath were observed by transmission electron microscopy (TEM). Our findings demonstrated that MRS2395 significantly enhanced motor function induced by SCI and that was used to alleviate apoptosis and astrocyte scarring. NeuN positive cells in the SCI group were lower than in the therapy group, although Bax, GFAP, PCNA and calbindin expression levels were considerably higher. Moreover, following MRS2395 therapy, the histological damage was reversed. A notable improvement in myelin sheath and mitochondrial morphology was seen in the therapy group. Together, our findings indicate that activation of P2Y12R in damaged spinal cord may be a critical event and suggest that inhibition of P2Y12R might be a feasible therapeutic strategy for treating SCI.
Collapse
Affiliation(s)
- Xiaodan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Chengtao Ni
- Graduate School, Bengbu Medical College, Bengbu, Anhui, China
| | - Jingting Zhao
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Nashwa Amin
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Zoology, Faculty of Science, Aswan University, Egypt
| | - Dian Jiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Marong Fang
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
3
|
Xu L, Yang Y, Zhong W, Li W, Liu C, Guo Z, Yu X. Comparative efficacy of five most common traditional Chinese medicine monomers for promoting recovery of motor function in rats with blunt spinal cord injury: a network meta-analysis. Front Neurol 2023; 14:1165076. [PMID: 37465765 PMCID: PMC10351986 DOI: 10.3389/fneur.2023.1165076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Objective This research employed a network meta-analysis (NMA) to examine the effectiveness of five traditional Chinese medicine (TCM) monomers for promoting motor function recovery in rats with blunt spinal cord injury (SCI). Methods Wangfang, China National Knowledge Infrastructure, Web of Science, Embase, Chinese Scientific Journal Database, PubMed, and the Chinese Biomedical Literature Databases were searched for retrieving relevant articles published from their inception to December 2022. Two reviewers performed screening of search results, data extraction, and literature quality assessment independently. Results For this meta-analysis, 59 publications were included. Based on the recovery of motor function at weeks 1, 2, 3, and 4 in NMA, almost all TCM groups had significantly increased positive effects than the negative control animals. In terms of cumulative probability, the tanshinone IIA (TIIA) group ranked first in restoring motor function in the first week after blunt SCI, and the resveratrol (RSV) group ranked first during the last 3 weeks. Conclusion The NMA revealed that TCM monomers could effectively restore motor function in the rat model of blunt SCI. In rats with blunt SCI, TIIA may be the most effective TCM monomer during the first week, whereas RSV may be the most effective TCM monomer during the last 3 weeks in promoting motor function recovery. For better evidence reliability in preclinical investigations and safer extrapolation of those findings into clinical settings, further research standardizing the implementation and reporting of animal experiments is required. Systematic Review Registration https://inplasy.com/, identifier INPLASY202310070.
Collapse
|
4
|
Qi L, Zhang J, Wang J, An J, Xue W, Liu Q, Zhang Y. Mechanisms of ginsenosides exert neuroprotective effects on spinal cord injury: A promising traditional Chinese medicine. Front Neurosci 2022; 16:969056. [PMID: 36081662 PMCID: PMC9445311 DOI: 10.3389/fnins.2022.969056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disorder of the central nervous system (CNS). It is mainly caused by trauma and reduces the quality of life of the affected individual. Ginsenosides are safe and effective traditional Chinese medicines (TCMs), and their efficacy against SCI is being increasingly researched in many countries, especially in China and Korea. This systematic review evaluated the neuroprotective effects of ginsenosides in SCI and elucidated their properties.
Collapse
|
5
|
Li J, Huang Q, Yao Y, Ji P, Mingyao E, Chen J, Zhang Z, Qi H, Liu J, Chen Z, Zhao D, Zhou L, Li X. Biotransformation, Pharmacokinetics, and Pharmacological Activities of Ginsenoside Rd Against Multiple Diseases. Front Pharmacol 2022; 13:909363. [PMID: 35928281 PMCID: PMC9343777 DOI: 10.3389/fphar.2022.909363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022] Open
Abstract
Panax ginseng C.A. Mey. has a history of more than 4000 years and is widely used in Asian countries. Modern pharmacological studies have proved that ginsenosides and their compounds have a variety of significant biological activities on specific diseases, including neurodegenerative diseases, certain types of cancer, gastrointestinal disease, and metabolic diseases, in which most of the interest has focused on ginsenoside Rd. The evidentiary basis showed that ginsenoside Rd ameliorates ischemic stroke, nerve injury, cancer, and other diseases involved in apoptosis, inflammation, oxidative stress, mitochondrial damage, and autophagy. In this review, we summarized available reports on the molecular biological mechanisms of ginsenoside Rd in neurological diseases, cancer, metabolic diseases, and other diseases. We also discussed the main biotransformation pathways of ginsenoside Rd obtained by fermentation.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Ji
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - E. Mingyao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Lei Zhou, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Lei Zhou, ; Xiangyan Li,
| |
Collapse
|
6
|
Kim J, Phung HM, Lee S, Kim KT, Son TK, Kang KS, Lee S. Anti-skin-aging effects of tissue-cultured mountain-grown ginseng and quantitative HPLC/ELSD analysis of major ginsenosides. J Nat Med 2022; 76:811-820. [PMID: 35748997 DOI: 10.1007/s11418-022-01633-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
Abstract
Mountain-grown ginseng has free radical scavenging activity and suppresses inflammation. We evaluated the anti-skin-aging effects of tissue-cultured mountain-grown ginseng (TG) and its major ginsenosides. The effect of three extracts of TG and ginsenosides Rg1 (1), Rf (2), Rb1 (3), Re (4), and Rd (5) on the secretion of matrix metalloproteinase-1 (MMP-1) and collagen type I alpha 1 (COLIA1) was compared with that of tumor necrosis factor-alpha (TNF-α) stimulation of human dermal fibroblasts (HDFs), as determined via enzyme-linked immunosorbent assay. An analytical high-performance liquid chromatographic method with evaporative light-scattering detection (HPLC/ELSD) was developed for the simultaneous determination of the major ginsenosides in TG obtained via supercritical fluid CO2 or ethanol extraction. TG residues obtained via supercritical fluid CO2 extraction (TG1) and TG not subject to extraction (TG3) suppressed MMP-1 secretion in TNF-α-stimulated HDFs. Major ginsenoside content was higher in the TG1 than in residues extracted with ethanol (TG2) and TG3; ginsenoside Rg1 (1) content was the highest among all TG residues. Among them, ginsenosides Rg1 (1) and Re (4) suppressed MMP-1 in TNF-α-stimulated HDFs, whereas ginsenosides Rb1 (3) and Rd (5) increased COLIA1. In conclusion, TG and its active ginsenosides may have anti-skin-aging effects. Ginsenoside Rg1 (1) may also be beneficial in ameliorating skin damage. HPLC/ELSD can identify major ginsenosides and supercritical fluid CO2 extraction can be applied during health supplement or drug development.
Collapse
Affiliation(s)
- Juree Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Korea
| | - Hung Manh Phung
- Department of Preventive Medicine, Gachon University, Seongnam, 13120, Korea
| | - Sullim Lee
- Department of Life Science, Gachon University, Seongnam, 13120, Korea
| | | | - Tae Kwon Son
- Department of Farm Management, Kyungpook National University, Daegu, 41566, Korea.,Apple Bio Co. Ltd, Daegu, 41566, Korea
| | - Ki Sung Kang
- Department of Preventive Medicine, Gachon University, Seongnam, 13120, Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Korea. .,BET Research Institute, Chung-Ang University, Anseong, 17546, Korea. .,Natural Product Institute of Science and Technology, Anseong, 17546, Korea.
| |
Collapse
|
7
|
Dai J, Wu Z. Mitochondrial Potassium Channel-Dependent Anti-Inflammatory Effects of Ginsenoside Mc1 in Rat Spinal Cord Injury. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1189.1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Oxidative Stress and Ginsenosides: An Update on the Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9299574. [PMID: 35498130 PMCID: PMC9045968 DOI: 10.1155/2022/9299574] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022]
Abstract
Ginsenosides are a class of active components extracted from ginseng plants (such as Panax ginseng, Panax quinquefolium, and Panax notoginseng). Ginsenosides have significant protective effects on the nervous system, cardiovascular system, and immune system, so they have been widely used in the treatment of related diseases. Entry of a variety of endogenous or exogenous harmful substances into the body can lead to an imbalance between the antioxidant defense system and reactive oxygen species, thus producing toxic effects on a variety of tissues and cells. In addition, oxidative stress can alter multiple signaling pathways, including the Keap1/Nrf2/ARE, PI3K/AKT, Wnt/β-catenin, and NF-κB pathways. With the deepening of research in this field, various ginsenoside monomers have been reported to exert antioxidant effects through multiple signaling pathways and thus have good application prospects. This article summarized the research advancements regarding the antioxidative effects and related mechanisms of ginsenosides, providing a theoretical basis for experimental research on and clinical treatment with ginsenosides.
Collapse
|
9
|
Insights into Recent Studies on Biotransformation and Pharmacological Activities of Ginsenoside Rd. Biomolecules 2022; 12:biom12040512. [PMID: 35454101 PMCID: PMC9031344 DOI: 10.3390/biom12040512] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
It is well known that ginsenosides—major bioactive constituents of Panax ginseng—are attracting more attention due to their beneficial pharmacological activities. Ginsenoside Rd, belonging to protopanaxadiol (PPD)-type ginsenosides, exhibits diverse and powerful pharmacological activities. In recent decades, nearly 300 studies on the pharmacological activities of Rd—as a potential treatment for a variety of diseases—have been published. However, no specific, comprehensive reviews have been documented to date. The present review not only summarizes the in vitro and in vivo studies on the health benefits of Rd, including anti-cancer, anti-diabetic, anti-inflammatory, neuroprotective, cardioprotective, ischemic stroke, immunoregulation, and other pharmacological effects, it also delves into the inclusion of potential molecular mechanisms, providing an overview of future prospects for the use of Rd in the treatment of chronic metabolic diseases and neurodegenerative disorders. Although biotransformation, pharmacokinetics, and clinical studies of Rd have also been reviewed, clinical trial data of Rd are limited; the only data available are for its treatment of acute ischemic stroke. Therefore, clinical evidence of Rd should be considered in future studies.
Collapse
|
10
|
Sng KS, Li G, Zhou LY, Song YJ, Chen XQ, Wang YJ, Yao M, Cui XJ. Ginseng extract and ginsenosides improve neurological function and promote antioxidant effects in rats with spinal cord injury: A meta-analysis and systematic review. J Ginseng Res 2022; 46:11-22. [PMID: 35058723 PMCID: PMC8753526 DOI: 10.1016/j.jgr.2021.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) is defined as damage to the spinal cord that temporarily or permanently changes its function. There is no definite treatment established for neurological complete injury patients. This study investigated the effect of ginseng extract and ginsenosides on neurological recovery and antioxidant efficacies in rat models following SCI and explore the appropriate dosage. Searches were done on PubMed, Embase, and Chinese databases, and animal studies matches the inclusion criteria were selected. Pair-wise meta-analysis and subgroup analysis were performed. Ten studies were included, and the overall methodological qualities were low quality. The result showed ginseng extract and ginsenosides significantly improve neurological function, through the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale (pooled MD = 4.40; 95% CI = 3.92 to 4.88; p < 0.00001), significantly decrease malondialdehyde (MDA) (n = 290; pooled MD = −2.19; 95% CI = −3.16 to −1.22; p < 0.0001) and increase superoxide dismutase (SOD) levels (n = 290; pooled MD = 2.14; 95% CI = 1.45 to 2.83; p < 0.00001). Both low (<25 mg/kg) and high dosage (≥25 mg/kg) showed significant improvement in the motor function recovery in SCI rats. Collectively, this review suggests ginseng extract and ginsenosides has a protective effect on SCI, with good safety and a clear mechanism of action and may be suitable for future clinical trials and applications.
Collapse
|
11
|
Therapeutic Effect of Ginsenoside Rd on Experimental Autoimmune Encephalomyelitis Model Mice: Regulation of Inflammation and Treg/Th17 Cell Balance. Mediators Inflamm 2021; 2020:8827527. [PMID: 33380901 PMCID: PMC7762661 DOI: 10.1155/2020/8827527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease. Inflammatory infiltrates and demyelination of the CNS are the major characteristics of MS and its related animal model-experimental autoimmune encephalomyelitis (EAE). Immoderate autoimmune responses of Th17 cells and dysfunction of Treg cells critically contribute to the pathogenesis of MS and EAE. Our previous study showed that Ginsenoside Rd effectively ameliorated the clinical severity in EAE mice, but the mechanism remains unclear. In this study, we investigated the therapeutic effect of Ginsenoside Rd on EAE in vivo and in vitro and also explored the potential mechanisms for alleviating the injury of EAE. The results indicated that Ginsenoside Rd was effective for the treatment of EAE in mice and splenocytes. Ginsenoside Rd treatment on EAE mice ameliorated the severity of EAE and attenuated the characteristic signs of disease. Ginsenoside Rd displayed the therapeutic function to EAE by modulating inflammation and autoimmunity, via the downregulation of related proinflammatory cytokines IL-6 and IL-17, upregulation of inhibitory cytokines TGF-β and IL-10, and modulation of Treg/Th17 imbalance. And the Foxp3/RORγt/JAK2/STAT3 signaling was found to be associated with this protective function. In addition, analysis of gut microbiota showed that Ginsenoside Rd also had modulation potential on gut microbiota in EAE mice. Based on this study, we hypothesize that Ginsenoside Rd could be a potential and promising agent for the treatment of MS.
Collapse
|
12
|
Yang CC, Chang KC, Wang MH, Tseng HC, Soung HS, Fang CH, Lin YW, Li KY, Tsai CC. l-Theanine improves functional recovery after traumatic spinal cord injury in rats. J Formos Med Assoc 2020; 119:1405-1414. [DOI: 10.1016/j.jfma.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/21/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
|
13
|
Chen XM, Ji SF, Liu YH, Xue XM, Xu J, Gu ZH, Deng SL, Liu CD, Wang H, Chang YM, Wang XC. Ginsenoside Rd Ameliorates Auditory Cortex Injury Associated With Military Aviation Noise-Induced Hearing Loss by Activating SIRT1/PGC-1α Signaling Pathway. Front Physiol 2020; 11:788. [PMID: 32792971 PMCID: PMC7385399 DOI: 10.3389/fphys.2020.00788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Free radicals and oxidative stress play an important role in the pathogenesis of noise-induced hearing loss (NIHL). Some ginseng monomers showed certain therapeutic effects in NIHL by scavenging free radicals. Therefore, we hypothesized that ginsenoside Rd (GSRd) may exert neuroprotective effects after noise-induced auditory system damage through a mechanism involving the SIRT1/PGC-1α signaling pathway. Forty-eight guinea pigs were randomly divided into four equal groups (normal control group, noise group, experimental group that received GSRd dissolved in glycerin through an intraperitoneal injection at a dose of 30 mg/kg body weight from 5 days before noise exposure until the end of the noise exposure period, and experimental control group). Hearing levels were examined by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE). Hematoxylin-eosin and Nissl staining were used to examine neuron morphology. RT-qPCR and western blotting analysis were used to examine SIRT1/PGC-1α signaling and apoptosis-related genes, including Bax and Bcl-2, in the auditory cortex. Bax and Bcl-2 expression was assessed via immunohistochemistry analysis. Superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) levels were determined using a commercial testing kit. Noise exposure was found to up-regulate ABR threshold and down-regulate DPOAE amplitudes, with prominent morphologic changes and apoptosis of the auditory cortex neurons (p < 0.01). GSRd treatment restored hearing loss and remarkably alleviated morphological changes or apoptosis (p < 0.01), concomitantly increasing Bcl-2 expression and decreasing Bax expression (p < 0.05). Moreover, GSRd increased SOD and GSH-Px levels and decreased MDA levels, which alleviated oxidative stress damage and activated SIRT1/PGC-1α signaling pathway. Taken together, our findings suggest that GSRd ameliorates auditory cortex injury associated with military aviation NIHL by activating the SIRT1/PGC-1α signaling pathway, which can be an attractive pharmacological target for the development of novel drugs for NIHL treatment.
Collapse
Affiliation(s)
- Xue-Min Chen
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Shuai-Fei Ji
- Medical School of Chinese PLA, Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital, Beijing, China
| | - Yu-Hui Liu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, China
| | - Xin-Miao Xue
- School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Jin Xu
- School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Zheng-Hui Gu
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Sen-Lin Deng
- School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Cheng-Dong Liu
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Han Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, China
| | - Yao-Ming Chang
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Xiao-Cheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, China
| |
Collapse
|
14
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
15
|
Geraldi A. Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract Minor ginsenodes are of great interest due to their diverse pharmacological activities such as their anti-cancer, anti-diabetic, neuroprotective, immunomodulator, and anti-inflammatory effects. The miniscule amount of minor ginsenosides in ginseng plants has driven
the development of their mass production methods. Among the various production methods for minor ginsenosides, the utilization of microorganisms and their enzymes are considered as highly specific, safe, and environmentally friendly. In this review, various minor ginsenosides production strategies,
namely utilizing microorganisms and recombinant microbial enzymes, for biotransforming major ginsenosides into minor ginsenoside, as well as constructing synthetic minor ginsenosides production pathways in yeast cell factories, are described and discussed. Furthermore, the present challenges
and future research direction for producing minor ginsenosides using those approaches are discussed.
Collapse
Affiliation(s)
- Almando Geraldi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| |
Collapse
|
16
|
Xu L, Tang YY, Ben XL, Cheng MH, Guo WX, Liu Y, Lu ZF, Deng JL. Ginsenoside Rg1-induced activation of astrocytes promotes functional recovery via the PI3K/Akt signaling pathway following spinal cord injury. Life Sci 2020; 252:117642. [PMID: 32259600 DOI: 10.1016/j.lfs.2020.117642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
AIMS To determine whether ginsenoside Rg1 is involved in scratch wound healing through altered expression of related molecules in astrocytes and improved functional recovery after spinal cord injury (SCI). MATERIALS AND METHODS Astrocytes were isolated from rats, followed by Rg1 treatment. The wound healing test was performed to observe the scratch wound healing in different groups. The expression of nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), basic fibroblast growth factor (bFGF), and components of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway were detected by western blot. Reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the altered expression of laminin (LN) and fibronectin (FN). A revised Allen's method for the SCI model was performed, followed by Rg1 treatment. Then, functional scoring was conducted to evaluate the functional recovery. Hematoxylin-eosin (HE) staining showed changes in the void area. Finally, western blot assessed the expression of glial fibrillary acidic protein (GFAP) and chondroitin sulfate proteoglycans (CSPGs). KEY FINDINGS Rg1 mediated scratch wound healing through inducing an increased release of LN, FN, NGF, GDNF, and bFGF in vitro. Additionally, Rg1 activated the PI3K/Akt signaling pathway and promoted the functional recovery of hindlimb movement in rats. Furthermore, Rg1 significantly reduced the void area and downregulated the expression of GFAP and CSPGs. SIGNIFICANCE Rg1 not only enhanced the scratch wound repair in vitro through the release of astroglial neurotrophic factors, adhesion factors, and inhibitory factors, but it also improved the functional recovery in vivo following SCI.
Collapse
Affiliation(s)
- Long Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Yin-Yao Tang
- Department of Orthopedics, Yixing Second People's Hospital, Yixing 214221, China
| | - Xing-Lei Ben
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Mao-Hua Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Wei-Xiao Guo
- Department of Orthopedics, Suzhou Kowloon Hospital, Suzhou 215021, China
| | - Yun Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Zheng-Feng Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China.
| | - Jie-Lin Deng
- Department of Orthopaedics, Suqian First Hospital, Suqian, Jiangsu 223800, China.
| |
Collapse
|
17
|
Zheng H, Hu S, Cao J, Yao L, Zhang N. Long non-coding RNA TUG1 alleviates LPS-induced injury of PC-12 cells by down-regulating microRNA-127. Exp Mol Pathol 2019; 110:104287. [DOI: 10.1016/j.yexmp.2019.104287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023]
|
18
|
Jia G, Zhang Y, Li W, Dai H. Neuroprotective role of icariin in experimental spinal cord injury via its antioxidant, anti‑neuroinflammatory and anti‑apoptotic properties. Mol Med Rep 2019; 20:3433-3439. [PMID: 31432160 DOI: 10.3892/mmr.2019.10537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/12/2019] [Indexed: 11/05/2022] Open
Abstract
Icariin is a type of flavonoid derived from the Chinese herbal plant Epimedium sagittatum Maxim. Mounting evidence has confirmed the beneficial effects of icariin in neurological diseases, including spinal cord injury (SCI). The aim of the present study was to investigate the neuroprotective effects of icariin in SCI and the precise underlying mechanism. The weight‑drop injury technique was applied to construct an SCI model in Sprague‑Dawley rats. Icariin (35 µmol/kg) was administered orally once daily for 7 consecutive days to examine its neuroprotective effects. The Basso, Beattie and Bresnahan scoring system was used for neurobehavioral evaluation. The water content of the injured spinal cord was measured via the dry‑wet weight method. Biochemical indices were examined by colorimetric assay using commercially available kits. Western blot analysis was used to detect protein expression. Icariin significantly accelerated the recovery of the locomotor function of SCI rats and decreased spinal cord water content. Icariin also attenuated SCI‑induced pro‑apoptotic protein expression and activity, while it increased anti‑apoptotic protein levels. In addition, icariin alleviated oxidative stress in SCI rats and decreased the levels of inflammatory molecules, including interleukin (IL)‑1β, IL‑6, tumor necrosis factor‑α, nitric oxide, nuclear factor‑κB and inducible nitric oxide synthase, and increased the expression of anti‑inflammatory proteins, including NADPH‑quinone oxidoreductase‑1, heme oxygenase‑1 and nuclear factor erythroid 2‑related factor 2 in the injured spinal cord. Therefore, icariin treatment accelerated locomotor function recovery in SCI, and its protective effects may be mediated via its antioxidant, anti‑inflammatory and anti‑apoptotic bioactivity.
Collapse
Affiliation(s)
- Guizhi Jia
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yuqiang Zhang
- Department of Orthopedics, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Weihong Li
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongliang Dai
- School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
19
|
Ma N, Deng TT, Wang Q, Luo ZL, Zhu CF, Qiu JF, Tang XJ, Huang M, Bai J, He ZY, Zhong XN, Li MH. Erythromycin Regulates Cigarette Smoke-Induced Proinflammatory Mediator Release Through Sirtuin 1-Nuclear Factor κB Axis in Macrophages and Mice Lungs. Pathobiology 2019; 86:237-247. [DOI: 10.1159/000500628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/24/2019] [Indexed: 11/19/2022] Open
|
20
|
Jakaria M, Kim J, Karthivashan G, Park SY, Ganesan P, Choi DK. Emerging signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases. J Ginseng Res 2018; 43:163-171. [PMID: 30976157 PMCID: PMC6437449 DOI: 10.1016/j.jgr.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 02/08/2023] Open
Abstract
Common features of neurodegenerative diseases (NDDs) include progressive dysfunctions and neuronal injuries leading to deterioration in normal brain functions. At present, ginseng is one of the most frequently used natural products. Its use has a long history as a cure for various diseases because its extracts and active compounds exhibit several pharmacological properties against several disorders. However, the pathophysiology of NDDs is not fully clear, but researchers have found that various ion channels and specific signaling pathways might have contributed to the disease pathogenesis. Apart from the different pharmacological potentials, ginseng and its active compounds modulate various ion channels and specific molecular signaling pathways related to the nervous system. Here, we discuss the signal modulating potential of ginseng and its active compounds mainly focusing on those relevant to NDDs.
Collapse
Affiliation(s)
- Md Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Joonsoo Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Govindarajan Karthivashan
- Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea
| | - Shin-Young Park
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Palanivel Ganesan
- Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.,Nanotechnology Research Center, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea.,Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.,Nanotechnology Research Center, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
21
|
Kim DK, Kweon KJ, Kim P, Kim HJ, Kim SS, Sohn NW, Maeng S, Shin JW. Ginsenoside Rg3 Improves Recovery from Spinal Cord Injury in Rats via Suppression of Neuronal Apoptosis, Pro-Inflammatory Mediators, and Microglial Activation. Molecules 2017; 22:molecules22010122. [PMID: 28085110 PMCID: PMC6155773 DOI: 10.3390/molecules22010122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/04/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most devastating medical conditions; however, currently, there are no effective pharmacological interventions for SCI. Ginsenoside Rg3 (GRg3) is one of the protopanaxadiols that show anti-inflammatory, anti-oxidant, and neuroprotective effects. The present study investigated the neuroprotective effect of GRg3 following SCI in rats. SCI was induced using a static compression model at vertebral thoracic level 10 for 5 min. GRg3 was administrated orally at a dose of 10 or 30 mg/kg/day for 14 days after the SCI. GRg3 (30 mg/kg) treatment markedly improved behavioral motor functions, restored lesion size, preserved motor neurons in the spinal tissue, reduced Bax expression and number of TUNEL-positive cells, and suppressed mRNA expression of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. GRg3 also attenuated the over-production of cyclooxygenase-2 and inducible nitric oxide synthase after SCI. Moreover, GRg3 markedly suppressed microglial activation in the spinal tissue. In conclusion, GRg3 treatment led to a remarkable recovery of motor function and a reduction in spinal tissue damage by suppressing neuronal apoptosis and inflammatory responses after SCI. These results suggest that GRg3 may be a potential therapeutic agent for the treatment of SCI.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Ki-Jung Kweon
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Pyungsoo Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Hee-Jung Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Sung-Soo Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Nak-Won Sohn
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Sungho Maeng
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| | - Jung-Won Shin
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Korea.
| |
Collapse
|
22
|
Lee D, Lee DS, Jung K, Hwang GS, Lee HL, Yamabe N, Lee HJ, Eom DW, Kim KH, Kang KS. Protective effect of ginsenoside Rb1 against tacrolimus-induced apoptosis in renal proximal tubular LLC-PK1 cells. J Ginseng Res 2017; 42:75-80. [PMID: 29348725 PMCID: PMC5766699 DOI: 10.1016/j.jgr.2016.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/05/2016] [Accepted: 12/26/2016] [Indexed: 02/04/2023] Open
Abstract
Background The aim of the present study was to evaluate the potential protective effects of six ginsenosides (Rb1, Rb2, Rc, Rd, Rg1, and Rg3) isolated from Panax ginseng against tacrolimus (FK506)-induced apoptosis in renal proximal tubular LLC-PK1 cells. Methods LLC-PK1 cells were treated with FK506 and ginsenosides, and cell viability was measured. Protein expressions of mitogen-activated protein kinases, caspase-3, and kidney injury molecule-1 (KIM-1) were evaluated by Western blotting analyses. The number of apoptotic cells was measured using an image-based cytometric assay. Results Reduction in cell viability by 60μM FK506 was ameliorated significantly by cotreatment with ginsenosides Rg1 and Rb1. The phosphorylation of p38, extracellular signal-regulated kinases, and KIM-1, and cleavage of caspase-3, increased markedly in LLC-PK1 cells treated with FK506 and significantly decreased after cotreatment with ginsenoside Rb1. The number of apoptotic cells decreased by 6.0% after cotreatment with ginsenoside Rb1 (10μM and 50μM). Conclusion The antiapoptotic effects of ginsenoside Rb1 on FK506-induced apoptosis were mediated by the inhibition of mitogen-activated protein kinases and caspase activation.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong-Soo Lee
- Institute of Human-Environment Interface Biology, Biomedical Research Institute, Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kiwon Jung
- College of Pharmacy, CHA University, Pocheon, Republic of Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Hye Lim Lee
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Hae-Jeong Lee
- Department of Food and Nutrition, Gachon University, Seongnam, Republic of Korea
| | - Dae-Woon Eom
- Department of Pathology, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|