1
|
He F, Wu CG, Gao Y, Rahman SN, Zaoralová M, Papasergi-Scott MM, Gu TJ, Robertson MJ, Seven AB, Li L, Mathiesen JM, Skiniotis G. Allosteric modulation and G-protein selectivity of the Ca 2+-sensing receptor. Nature 2024; 626:1141-1148. [PMID: 38326620 PMCID: PMC11929605 DOI: 10.1038/s41586-024-07055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
The calcium-sensing receptor (CaSR) is a family C G-protein-coupled receptor1 (GPCR) that has a central role in regulating systemic calcium homeostasis2,3. Here we use cryo-electron microscopy and functional assays to investigate the activation of human CaSR embedded in lipid nanodiscs and its coupling to functional Gi versus Gq proteins in the presence and absence of the calcimimetic drug cinacalcet. High-resolution structures show that both Gi and Gq drive additional conformational changes in the activated CaSR dimer to stabilize a more extensive asymmetric interface of the seven-transmembrane domain (7TM) that involves key protein-lipid interactions. Selective Gi and Gq coupling by the receptor is achieved through substantial rearrangements of intracellular loop 2 and the C terminus, which contribute differentially towards the binding of the two G-protein subtypes, resulting in distinct CaSR-G-protein interfaces. The structures also reveal that natural polyamines target multiple sites on CaSR to enhance receptor activation by zipping negatively charged regions between two protomers. Furthermore, we find that the amino acid L-tryptophan, a well-known ligand of CaSR extracellular domains, occupies the 7TM bundle of the G-protein-coupled protomer at the same location as cinacalcet and other allosteric modulators. Together, these results provide a framework for G-protein activation and selectivity by CaSR, as well as its allosteric modulation by endogenous and exogenous ligands.
Collapse
Affiliation(s)
- Feng He
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cheng-Guo Wu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Gao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Cardiology of Sir Run Run Shaw Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Sabrina N Rahman
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magda Zaoralová
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Makaía M Papasergi-Scott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alpay B Seven
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Palmelund LB, van Woerden GM, Bräuner-Osborne H, Wellendorph P. Development of a medium throughput whole-cell microtiter plate Thr286 autophosphorylation assay for CaMKIIα using ELISA. J Pharmacol Toxicol Methods 2022; 118:107226. [PMID: 36174932 DOI: 10.1016/j.vascn.2022.107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a multifunctional Ser/Thr kinase involved in several neuronal signaling pathways including synaptic plasticity. CaMKIIα autonomous activity is highly dependent on Thr286 autophosphorylation (pThr286), which is widely used as a readout for its enzymatic activity. To readily characterise compounds and potential drug candidates targeting CaMKIIα, a simple, generic cell-based assay for quantification of pThr286 levels is needed. In this study, we present a cell-based assay using an adapted ELISA as a suitable and higher throughput alternative to Western blotting. In this 96-well plate-based assay, we use whole HEK293T cells recombinantly expressing CaMKIIα and apply a phospho-specific antibody to detect pThr286 levels by chemiluminescence. In parallel, total CaMKIIα expression levels are detected by fluorescence using an Alexa488-conjugated anti-myc antibody targeting a C-terminal myc-tag. By multiplexing chemiluminescence and fluorescence, phosphorylation levels are normalised to CaMKIIα total expression within each well. The specificity of the assay was confirmed using a phosphodead mutant (T286A) of CaMKIIα. By applying Ca2+ or known CaMKIIα inhibitors (KN93, tatCN21 and AS100105) and obtaining concentration-response curves, we demonstrate high sensitivity and validity of the assay. Lastly, we demonstrate the versatility of the assay by determining autophosphorylation levels in CaMKIIα patient-related mutations, known to possess altered pThr286 responses (E109D, E183V and H282R). The established assay for CaMKIIα is a reproducible, easily implemented, and facile ELISA-based assay that allows for reliable quantification of pThr286 levels.
Collapse
Affiliation(s)
- Line B Palmelund
- University of Copenhagen, Department of Drug Design and Pharmacology, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Geeske M van Woerden
- Erasmus University Medical Center, Department of Neuroscience and Department of Clinical Genetics, 3015, CN, Rotterdam, the Netherlands
| | - Hans Bräuner-Osborne
- University of Copenhagen, Department of Drug Design and Pharmacology, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Petrine Wellendorph
- University of Copenhagen, Department of Drug Design and Pharmacology, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
3
|
Sikstus S, Benkherouf AY, Soini SL, Uusi-Oukari M. The Influence of AA29504 on GABA A Receptor Ligand Binding Properties and Its Implications on Subtype Selectivity. Neurochem Res 2022; 47:667-678. [PMID: 34727270 PMCID: PMC8847198 DOI: 10.1007/s11064-021-03475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/03/2021] [Accepted: 10/27/2021] [Indexed: 10/26/2022]
Abstract
The unique pharmacological properties of δ-containing γ-aminobutyric acid type A receptors (δ-GABAARs) make them an attractive target for selective and persistent modulation of neuronal excitability. However, the availability of selective modulators targeting δ-GABAARs remains limited. AA29504 ([2-amino-4-(2,4,6-trimethylbenzylamino)-phenyl]-carbamic acid ethyl ester), an analog of K+ channel opener retigabine, acts as an agonist and a positive allosteric modulator (Ago-PAM) of δ-GABAARs. Based on electrophysiological studies using recombinant receptors, AA29504 was found to be a more potent and effective agonist in δ-GABAARs than in γ2-GABAARs. In comparison, AA29504 positively modulated the activity of recombinant δ-GABAARs more effectively than γ2-GABAARs, with no significant differences in potency. The impact of AA29504's efficacy- and potency-associated GABAAR subtype selectivity on radioligand binding properties remain unexplored. Using [3H]4'-ethynyl-4-n-propylbicycloorthobenzoate ([3H]EBOB) binding assay, we found no difference in the modulatory potency of AA29504 on GABA- and THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol)-induced responses between native forebrain GABAARs of wild type and δ knock-out mice. In recombinant receptors expressed in HEK293 cells, AA29504 showed higher efficacy on δ- than γ2-GABAARs in the GABA-independent displacement of [3H]EBOB binding. Interestingly, AA29504 showed a concentration-dependent stimulation of [3H]muscimol binding to γ2-GABAARs, which was absent in δ-GABAARs. This was explained by AA29504 shifting the low-affinity γ2-GABAAR towards a higher affinity desensitized state, thereby rising new sites capable of binding GABAAR agonists with low nanomolar affinity. Hence, the potential of AA29504 to act as a desensitization-modifying allosteric modulator of γ2-GABAARs deserves further investigation for its promising influence on shaping efficacy, duration and plasticity of GABAAR synaptic responses.
Collapse
Affiliation(s)
- Sylvia Sikstus
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Ali Y Benkherouf
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Sanna L Soini
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland.
| |
Collapse
|
4
|
Bavo F, de-Jong H, Petersen J, Falk-Petersen CB, Löffler R, Sparrow E, Rostrup F, Eliasen JN, Wilhelmsen KS, Barslund K, Bundgaard C, Nielsen B, Kristiansen U, Wellendorph P, Bogdanov Y, Frølund B. Structure-Activity Studies of 3,9-Diazaspiro[5.5]undecane-Based γ-Aminobutyric Acid Type A Receptor Antagonists with Immunomodulatory Effect. J Med Chem 2021; 64:17795-17812. [PMID: 34908407 DOI: 10.1021/acs.jmedchem.1c00290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 3,9-diazaspiro[5.5]undecane-based compounds 2027 and 018 have previously been reported to be potent competitive γ-aminobutyric acid type A receptor (GABAAR) antagonists showing low cellular membrane permeability. Given the emerging peripheral application of GABAAR ligands, we hypothesize 2027 analogs as promising lead structures for peripheral GABAAR inhibition. We herein report a study on the structural determinants of 2027 in order to suggest a potential binding mode as a basis for rational design. The study identified the importance of the spirocyclic benzamide, compensating for the conventional acidic moiety, for GABAAR ligands. The structurally simplified m-methylphenyl analog 1e displayed binding affinity in the high-nanomolar range (Ki = 180 nM) and was superior to 2027 and 018 regarding selectivity for the extrasynaptic α4βδ subtype versus the α1- and α2- containing subtypes. Importantly, 1e was shown to efficiently rescue inhibition of T cell proliferation, providing a platform to explore the immunomodulatory potential for this class of compounds.
Collapse
Affiliation(s)
- Francesco Bavo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Heleen de-Jong
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jonas Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Christina Birkedahl Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Rebekka Löffler
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Emma Sparrow
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants SO16 6YD, United Kingdom
| | - Frederik Rostrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jannik Nicklas Eliasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kristine S Wilhelmsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kasper Barslund
- Translational DMPK, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | | | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Uffe Kristiansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Yury Bogdanov
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants SO16 6YD, United Kingdom
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Falk-Petersen CB, Rostrup F, Löffler R, Buchleithner S, Harpsøe K, Gloriam DE, Frølund B, Wellendorph P. Molecular Determinants Underlying Delta Selective Compound 2 Activity at δ-Containing GABA A Receptors. Mol Pharmacol 2021; 100:46-56. [PMID: 33990405 DOI: 10.1124/molpharm.121.000266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
Delta selective compound 2 (DS2; 4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]benzamide) is one of the most widely used tools to study selective actions mediated by δ-subunit-containing GABAA receptors. DS2 was discovered over 10 years ago, but despite great efforts, the precise molecular site of action has remained elusive. Using a combination of computational modeling, site-directed mutagenesis, and cell-based pharmacological assays, we probed three potential binding sites for DS2 and analogs at α 4 β 1 δ receptors: an α 4 (+) δ (-) interface site in the extracellular domain (ECD), equivalent to the diazepam binding site in αβγ 2 receptors, and two sites in the transmembrane domain (TMD) - one in the α 4 (+) β 1 (-) and one in the α 4 (-) β 1 (+) interface, with the α 4 (-) β 1 (+) site corresponding to the binding site for etomidate and a recently disclosed low-affinity binding site for diazepam. We show that mutations in the ECD site did not abrogate DS2 modulation. However, mutations in the TMD α 4 (+) β 1 (-) interface, either α 4(S303L) of the α 4 (+) side or β 1(I289Q) of the β 1 (-) side, convincingly disrupted the positive allosteric modulation by DS2. This was consistently demonstrated both in an assay measuring membrane potential changes and by whole-cell patch-clamp electrophysiology and rationalized by docking studies. Importantly, general sensitivity to modulators was not compromised in the mutated receptors. This study sheds important light on the long-sought molecular recognition site for DS2, refutes the misconception that the selectivity of DS2 for δ-containing receptors is caused by a direct interaction with the δ-subunit, and instead points toward a functional selectivity of DS2 and its analogs via a surprisingly well conserved binding pocket in the TMD. SIGNIFICANCE STATEMENT: δ-Containing GABAA receptors represent potential drug targets for the treatment of several neurological conditions with aberrant tonic inhibition, yet no drugs are currently in clinical use. With the identification of the molecular determinants responsible for positive modulation by the known compound delta selective compound 2, the ground is laid for design of ligands that selectively target δ-containing GABAA receptor subtypes, for better understanding of tonic inhibition, and ultimately, for rational development of novel drugs.
Collapse
Affiliation(s)
- Christina B Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Rostrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebekka Löffler
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Buchleithner
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Electrophysiology of ionotropic GABA receptors. Cell Mol Life Sci 2021; 78:5341-5370. [PMID: 34061215 PMCID: PMC8257536 DOI: 10.1007/s00018-021-03846-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 10/30/2022]
Abstract
GABAA receptors are ligand-gated chloride channels and ionotropic receptors of GABA, the main inhibitory neurotransmitter in vertebrates. In this review, we discuss the major and diverse roles GABAA receptors play in the regulation of neuronal communication and the functioning of the brain. GABAA receptors have complex electrophysiological properties that enable them to mediate different types of currents such as phasic and tonic inhibitory currents. Their activity is finely regulated by membrane voltage, phosphorylation and several ions. GABAA receptors are pentameric and are assembled from a diverse set of subunits. They are subdivided into numerous subtypes, which differ widely in expression patterns, distribution and electrical activity. Substantial variations in macroscopic neural behavior can emerge from minor differences in structure and molecular activity between subtypes. Therefore, the diversity of GABAA receptors widens the neuronal repertoire of responses to external signals and contributes to shaping the electrical activity of neurons and other cell types.
Collapse
|
7
|
Lie MEK, Falk-Petersen CB, Piilgaard L, Griem-Krey N, Wellendorph P, Kornum BR. GABA A receptor β 1 -subunit knock-out mice show increased delta power in NREM sleep and decreased theta power in REM sleep. Eur J Neurosci 2021; 54:4445-4455. [PMID: 33942407 DOI: 10.1111/ejn.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 11/28/2022]
Abstract
γ-Aminobutyric acid (GABA) acting through heteropentameric GABAA receptors plays a pivotal role in the sleep-promoting circuitry. Whereas the role of the different GABAA receptor α-subunits in sleep regulation and in mediating the effect of benzodiazepines for treatment of insomnia is well-described, the β-subunits are less studied. Here we report the first study characterizing sleep in mice lacking the GABAA receptor β1 -subunit (β1 -/- mice). We show that β1 -/- mice have a distinct and abnormal sleep phenotype characterized by increased delta power in non-rapid eye movement (NREM) sleep and decreased theta activity in rapid eye movement (REM) sleep compared to β1 +/+ mice, without any change in the overall sleep-wake architecture. From GABAA receptor-specific autoradiography, it is further demonstrated that functional β1 -subunit-containing GABAA receptors display the highest binding levels in the hippocampus and frontal cortex. In conclusion, this study suggests that the GABAA receptor β1 -subunit does not play an important role in sleep initiation or maintenance but instead regulates the power spectrum and especially the expression of theta rhythm. This provides new knowledge on the complex role of GABAA receptor subunits in sleep regulation. In addition, β1 -/- mice could provide a useful mouse model for future studies of the physiological role of delta and theta rhythms during sleep.
Collapse
Affiliation(s)
- Maria Elena Klibo Lie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Louise Piilgaard
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nane Griem-Krey
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Rostrup F, Falk-Petersen CB, Harpso E K, Buchleithner S, Conforti I, Jung S, Gloriam DE, Schirmeister T, Wellendorph P, Fro Lund B. Structural Determinants for the Mode of Action of Imidazopyridine DS2 at δ-Containing γ-Aminobutyric Acid Type A Receptors. J Med Chem 2021; 64:4730-4743. [PMID: 33847501 DOI: 10.1021/acs.jmedchem.0c02163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the therapeutic relevance of δ-containing γ-aminobutyric acid type A receptors (GABAARs) and the need for δ-selective compounds, the structural determinants for the mode and molecular site of action of δ-selective positive allosteric modulator imidazo[1,2-a]pyridine DS2 remain elusive. To guide the quest for insight, we synthesized a series of DS2 analogues guided by a structural receptor model. Using a fluorescence-based fluorometric imaging plate reader membrane potential assay, we found that the δ-selectivity and the pharmacological profile are severely affected by substituents in the 5-position of the imidazopyridine core scaffold. Interestingly, the 5-methyl, 5-bromo, and 5-chloro DS2 analogues, 30, 35, and 36, were shown to be superior to DS2 at α4β1δ as mid-high nanomolar potency δ-selective allosteric modulators, displaying 6-16 times higher potency than DS2. Of these, 30 also displayed at least 60-fold selectivity for α4β1δ over α4β1γ2 receptor subtypes representing a potential tool for the selective characterization of δ-containing GABAARs in general.
Collapse
Affiliation(s)
- Frederik Rostrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Christina B Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Kasper Harpso E
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Stine Buchleithner
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Irene Conforti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Sascha Jung
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz D-55128, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz D-55128, Germany
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Bente Fro Lund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| |
Collapse
|
9
|
Antrobus S, Pressly B, Nik AM, Wulff H, Pessah IN. Structure-Activity Relationship of Neuroactive Steroids, Midazolam, and Perampanel Toward Mitigating Tetramine-Triggered Activity in Murine Hippocampal Neuronal Networks. Toxicol Sci 2021; 180:325-341. [PMID: 33483729 PMCID: PMC8599726 DOI: 10.1093/toxsci/kfab007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tetramethylenedisulfotetramine (tetramine or TETS), a potent convulsant, triggers abnormal electrical spike activity (ESA) and synchronous Ca2+ oscillation (SCO) patterns in cultured neuronal networks by blocking gamma-aminobutyric acid (GABAA) receptors. Murine hippocampal neuronal/glial cocultures develop extensive dendritic connectivity between glutamatergic and GABAergic inputs and display two distinct SCO patterns when imaged with the Ca2+ indicator Fluo-4: Low amplitude SCO events (LASE) and High amplitude SCO events (HASE) that are dependent on TTX-sensitive network electrical spike activity (ESA). Acute TETS (3.0 µM) increased overall network SCO amplitude and decreased SCO frequency by stabilizing HASE and suppressing LASE while increasing ESA. In multielectrode arrays, TETS also increased burst frequency and synchronicity. In the presence of TETS (3.0 µM), the clinically used anticonvulsive perampanel (0.1-3.0 µM), a noncompetitive AMPAR antagonist, suppressed all SCO activity, whereas the GABAA receptor potentiator midazolam (1.0-30 µM), the current standard of care, reciprocally suppressed HASE and stabilized LASE. The neuroactive steroid (NAS) allopregnanolone (0.1-3.0 µM) normalized TETS-triggered patterns by selectively suppressing HASE and increasing LASE, a pharmacological pattern distinct from its epimeric form eltanolone, ganaxolone, alphaxolone, and XJ-42, which significantly potentiated TETS-triggered HASE in a biphasic manner. Cortisol failed to mitigate TETS-triggered patterns and at >1 µM augmented them. Combinations of allopregnanolone and midazolam were significantly more effective at normalizing TETS-triggered SCO patterns, ESA patterns, and more potently enhanced GABA-activated Cl- current, than either drug alone.
Collapse
Affiliation(s)
- Shane Antrobus
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Brandon Pressly
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, California 95616, USA
| | - Atefeh Mousavi Nik
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, California 95616, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
10
|
Zyrianova T, Lopez B, Liao A, Gu C, Wong L, Ottolia M, Olcese R, Schwingshackl A. BK Channels Regulate LPS-induced CCL-2 Release from Human Pulmonary Endothelial Cells. Am J Respir Cell Mol Biol 2021; 64:224-234. [PMID: 33217242 PMCID: PMC7874395 DOI: 10.1165/rcmb.2020-0228oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/05/2020] [Indexed: 11/24/2022] Open
Abstract
We recently established a role for the stretch-activated two-pore-domain K+ (K2P) channel TREK-1 (K2P2.1) in inflammatory cytokine secretion using models of hyperoxia-, mechanical stretch-, and TNF-α-induced acute lung injury. We have now discovered the expression of large conductance, Ca2+-activated K+ (BK) channels in human pulmonary microvascular endothelial cells and primary human alveolar epithelial cells using semiquantitative real-time PCR, IP and Western blot, and investigated their role in inflammatory cytokine secretion using an LPS-induced acute lung injury model. As expected, LPS induced IL-6 and CCL-2 secretion from pulmonary endothelial and epithelial cells. BK activation with NS1619 decreased LPS-induced CCL-2 but not IL-6 secretion from endothelial cells and had no effect on epithelial cells, although fluorometric assays revealed that BK activation hyperpolarized the plasma membrane potential (Em) of both cell types. Interestingly, BK inhibition (Paxilline) did not alter cytokine secretion or the Em in either cell type. Furthermore, LPS treatment by itself did not affect the Em or intracellular Ca2+ concentrations. Therefore, we propose BK channel activation as a novel targeted approach to counteract LPS-induced CCL-2 secretion from endothelial cells. This protective effect appears to occur via Em hyperpolarization but independent of intracellular Ca2+ concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | - Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, and
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, and
- Department of Physiology, University of California Los Angeles, Los Angeles, California
| | | |
Collapse
|
11
|
Dalby NO, Falk-Petersen CB, Leurs U, Scholze P, Krall J, Frølund B, Wellendorph P. Silencing of spontaneous activity at α4β1/3δ GABA A receptors in hippocampal granule cells reveals different ligand pharmacology. Br J Pharmacol 2020; 177:3975-3990. [PMID: 32484592 DOI: 10.1111/bph.15146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The δ-subunit-containing GABAA receptors, α4 β1 δ and α4 β3 δ, in dentate gyrus granule cells (DGGCs) are known to exhibit both spontaneous channel openings (i.e. constitutive activity) and agonist-induced current. The functional implications of spontaneous gating are unclear. In this study, we tested the hypothesis that constitutively active α4 β1/3 δ receptors limit agonist efficacy. EXPERIMENTAL APPROACH Whole-cell electrophysiological recordings of adult male rat and mouse hippocampal DGGCs were used to characterize known agonists and antagonists at δ-subunit-containing GABAA receptors. To separate constitutive and agonist-induced currents, different recording conditions were employed. KEY RESULTS Recordings at either 24°C or 34°C, including the PKC autoinhibitory peptide (19-36) intracellularly, removed spontaneous gating by GABAA receptors. In the absence of spontaneous gating, DGGCs responded to the α4 β1/3 δ orthosteric agonist Thio-THIP with a four-fold increased efficacy relative to recording conditions favouring constitutive activity. Surprisingly, the neutral antagonist gabazine was unable to antagonize the current by Thio-THIP. Furthermore, a current was elicited by gabazine alone only when the constitutive current was silenced (EC50 2.1 μM). The gabazine-induced current was inhibited by picrotoxin, potentiated by DS2, completely absent in δ-/- mice and reduced in β1 -/- mice, but could not be replicated in human α4 β1/3 δ receptors expressed heterologously in HEK cells. CONCLUSION AND IMPLICATIONS Kinase activity infers spontaneous gating in α4 β1/3 δ receptors in DGGCs. This significantly limits the efficacy of GABAA agonists and has implications in pathologies involving aberrant excitability caused by phosphorylation (e.g. addiction and epilepsy). In such cases, the efficacy of δ-preferring GABAA ligands may be reduced.
Collapse
Affiliation(s)
- Nils Ole Dalby
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ulrike Leurs
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jacob Krall
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Falk-Petersen CB, Tsonkov TM, Nielsen MS, Harpsøe K, Bundgaard C, Frølund B, Kristiansen U, Gloriam DE, Wellendorph P. Discovery of a new class of orthosteric antagonists with nanomolar potency at extrasynaptic GABA A receptors. Sci Rep 2020; 10:10078. [PMID: 32572053 PMCID: PMC7308271 DOI: 10.1038/s41598-020-66821-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Brain GABAΑ receptors are ionotropic receptors belonging to the class of Cys-loop receptors and are important drug targets for the treatment of anxiety and sleep disorders. By screening a compound library (2,112 compounds) at recombinant human α4β1δ GABAΑ receptors heterologously expressed in a HEK cell line, we identified a scaffold of spirocyclic compounds with nanomolar antagonist activity at GABAΑ receptors. The initial screening hit 2027 (IC50 of 1.03 μM) was used for analogue search resulting in 018 (IC50 of 0.088 μM). 018 was most potent at α3,4,5-subunit containing receptors, thus showing preference for forebrain-expressed extrasynaptic receptors. Schild analysis of 018 at recombinant human α4β1δ receptors and displacement of [3H]muscimol binding in rat cortical homogenate independently confirmed a competitive profile. The antagonist profile of 018 was further validated by whole-cell patch-clamp electrophysiology, where kinetic studies revealed a slow dissociation rate and a shallow hill slope was observed. Membrane permeability studies showed that 2027 and 018 do not cross membranes, thus making the compounds less attractive for studying central GABAΑ receptors effects, but conversely more attractive as tool compounds in relation to emerging peripheral GABAΑ receptor-mediated effects of GABA e.g. in the immune system.
Collapse
Affiliation(s)
- Christina Birkedahl Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Tsonko M Tsonkov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Malene Sofie Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | | | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Uffe Kristiansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
13
|
L’Estrade E, Hansen HD, Falk-Petersen C, Haugaard A, Griem-Krey N, Jung S, Lüddens H, Schirmeister T, Erlandsson M, Ohlsson T, Knudsen GM, Herth MM, Wellendorph P, Frølund B. Synthesis and Pharmacological Evaluation of [ 11C]4-Methoxy- N-[2-(thiophen-2-yl)imidazo[1,2- a]pyridin-3-yl]benzamide as a Brain Penetrant PET Ligand Selective for the δ-Subunit-Containing γ-Aminobutyric Acid Type A Receptors. ACS OMEGA 2019; 4:8846-8851. [PMID: 31459972 PMCID: PMC6648289 DOI: 10.1021/acsomega.9b00434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
The α4/6βδ-containing GABAA receptors are involved in a number of brain diseases. Despite the potential of a δ-selective imaging agent, no PET radioligand is currently available for in vivo imaging. Here, we report the characterization of DS2OMe (1) as a candidate radiotracer, 11C-labeling, and subsequent evaluation of [11C]DS2OMe in a domestic pig as a PET radioligand for visualization of the δ-containing GABAA receptors.
Collapse
Affiliation(s)
- Elina
T. L’Estrade
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Neurobiology
Research Unit and CIMBI, Copenhagen University
Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Radiation
Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Hanne D. Hansen
- Neurobiology
Research Unit and CIMBI, Copenhagen University
Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christina Falk-Petersen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anne Haugaard
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Nane Griem-Krey
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sascha Jung
- Institute
of Pharmacy & Biochemistry, Johannes
Gutenberg University, D-55128 Mainz, Germany
| | - Hartmut Lüddens
- Department
of Psychiatry and Psychotherapy, Faculty of Health and Medical Sciences, University of Medical Center, D-55131 Mainz, Germany
| | - Tanja Schirmeister
- Institute
of Pharmacy & Biochemistry, Johannes
Gutenberg University, D-55128 Mainz, Germany
| | - Maria Erlandsson
- Radiation
Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Tomas Ohlsson
- Radiation
Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Gitte M. Knudsen
- Neurobiology
Research Unit and CIMBI, Copenhagen University
Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Neurobiology
Research Unit and CIMBI, Copenhagen University
Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Petrine Wellendorph
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Bente Frølund
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
14
|
High-throughput Screening in Larval Zebrafish Identifies Novel Potent Sedative-hypnotics. Anesthesiology 2019; 129:459-476. [PMID: 29894316 DOI: 10.1097/aln.0000000000002281] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Many general anesthetics were discovered empirically, but primary screens to find new sedative-hypnotics in drug libraries have not used animals, limiting the types of drugs discovered. The authors hypothesized that a sedative-hypnotic screening approach using zebrafish larvae responses to sensory stimuli would perform comparably to standard assays, and efficiently identify new active compounds. METHODS The authors developed a binary outcome photomotor response assay for zebrafish larvae using a computerized system that tracked individual motions of up to 96 animals simultaneously. The assay was validated against tadpole loss of righting reflexes, using sedative-hypnotics of widely varying potencies that affect various molecular targets. A total of 374 representative compounds from a larger library were screened in zebrafish larvae for hypnotic activity at 10 µM. Molecular mechanisms of hits were explored in anesthetic-sensitive ion channels using electrophysiology, or in zebrafish using a specific reversal agent. RESULTS Zebrafish larvae assays required far less drug, time, and effort than tadpoles. In validation experiments, zebrafish and tadpole screening for hypnotic activity agreed 100% (n = 11; P = 0.002), and potencies were very similar (Pearson correlation, r > 0.999). Two reversible and potent sedative-hypnotics were discovered in the library subset. CMLD003237 (EC50, ~11 µM) weakly modulated γ-aminobutyric acid type A receptors and inhibited neuronal nicotinic receptors. CMLD006025 (EC50, ~13 µM) inhibited both N-methyl-D-aspartate and neuronal nicotinic receptors. CONCLUSIONS Photomotor response assays in zebrafish larvae are a mechanism-independent platform for high-throughput screening to identify novel sedative-hypnotics. The variety of chemotypes producing hypnosis is likely much larger than currently known.
Collapse
|
15
|
Delineation of the functional properties and the mechanism of action of AA29504, an allosteric agonist and positive allosteric modulator of GABA A receptors. Biochem Pharmacol 2018; 150:305-319. [DOI: 10.1016/j.bcp.2018.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/13/2018] [Indexed: 11/22/2022]
|