1
|
Levine BA, Booth W. ParthenoGenius: A user-friendly heuristic for inferring presence and mechanism of facultative parthenogenesis from genetic and genomic datasets. J Hered 2025; 116:34-42. [PMID: 39436791 DOI: 10.1093/jhered/esae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024] Open
Abstract
Facultative parthenogenesis (FP), or asexual reproduction by sexually reproducing female animals, has been reported across several clades of vertebrates and is increasingly being recognized as a reproductive mechanism with significant implications for the genetic variation of captive and wild populations. The definitive identification of parthenogens requires molecular confirmation, with large genomic datasets necessary to accurately parse the parthenogenetic mechanism (i.e. endoduplication, gametic duplication, terminal fusion automixis, or central fusion automixis). Current methods for inferring FP from large genomic datasets are statistically intensive, require competency in R scripting for their execution, and are not designed for detection of facultative parthenogenesis or screening of large numbers of mother/offspring pairs, whereas small datasets (i.e. microsatellites) that can be evaluated visually lack the power to discriminate among FP mechanisms. Here, we present the user-friendly software program, ParthenoGenius, that uses intuitive logic to infer the presence and mechanism of FP from even large genomic datasets comprising many mothers and offspring. ParthenoGenius runs relatively quickly and does not require the researcher to have knowledge of R scripting or statistics. ParthenoGenius was tested on eight empirical datasets and in each case identified parthenogens (and parthenogenic mechanism when present) consistent with results of previous studies or corroborating evidence. ParthenoGenius will facilitate the rapid screening of large genomic datasets comprising many mothers and offspring for the presence and mechanism of parthenogenesis, improving our understanding of the frequency and phylogenetic distribution of FP across the animal kingdom.
Collapse
Affiliation(s)
- Brenna A Levine
- Department of Biology, Kean University, Union, NJ, United States
- Chiricahua Desert Museum, Rodeo, NM, United States
| | - Warren Booth
- Chiricahua Desert Museum, Rodeo, NM, United States
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
2
|
Booth W, Levine BA, Berg CS, Schuett GW. Facultative Parthenogenesis in a Zoo-Held Northern Water Snake, Nerodia sipedon. Zoo Biol 2024; 43:570-574. [PMID: 39234643 DOI: 10.1002/zoo.21861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Over the past several decades, facultative parthenogenesis (FP)-the ability of a sexually reproducing species to reproduce asexually-in vertebrates has been removed from the realm of obscurity and placed firmly in a position where it warrants focused scientific attention. Likely fueled by increased recognition of the trait, the availability of molecular tools capable of disentangling FP from long-term sperm storage, and the availability of potential cases originating from both zoological and private collections, a wealth of papers has been published revealing the diversity of vertebrate systems in which FP occurs. Specifically, cases have been reported in squamate reptiles (lizards and snakes), crocodiles, birds, and elasmobranch fishes (sharks, rays, and skates). Nonetheless, gaps remain in species documentation, and it is important to analyze and report on new cases. In this paper, we provide a DNA-based analysis confirming FP in a zoo-maintained northern water snake, Nerodia sipedon, a viviparous natricine species that is common and widely distributed in North America. Additionally, we provide information on the sexual development and health of the male parthenogen. Encouragingly, zoological institutions, aquaria, university laboratories, and private collections continue to be rich sources for the further study and documentation of FP in vertebrate species, advancing our understanding of this reproductive trait.
Collapse
Affiliation(s)
- Warren Booth
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Chiricahua Desert Museum, Rodeo, New Mexico, USA
| | - Brenna A Levine
- Chiricahua Desert Museum, Rodeo, New Mexico, USA
- Department of Biology, Kean University, Union, New Jersey, USA
| | | | - Gordon W Schuett
- Chiricahua Desert Museum, Rodeo, New Mexico, USA
- Department of Biology, Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Bailey CA, Righton AL, Reeves A, Ray D, Krebs J, Louis EE. Facultative parthenogenesis discovered for the first time in Jamaican boa (Chilabothrus subflavus) using novel microsatellite markers. Zoo Biol 2024; 43:499-504. [PMID: 39172112 DOI: 10.1002/zoo.21852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 08/23/2024]
Abstract
The mode of reproduction most often seen in snakes is sexual, but studies have noted facultative parthenogenesis in at least six families. Here, we provide evidence for the first observed case of facultative parthenogenesis in a captive Jamaican boa (Chilabothrus subflavus). A 7-year-old female Jamaican boa, isolated since birth, was found to have produced a litter of 15 offspring. To provide molecular DNA evidence of parthenogenesis, 13 new microsatellite loci were isolated in the species. All offspring were found to be homozygous at each locus and only possess alleles found in the dam, implicating that they were born from asexual reproduction. Several developmental abnormalities, including stillbirths and spinal deformities, were noted in the litter which may be explained by their increased level of homozygosity. To preserve genetic diversity in the captive population, research should be conducted to understand the prevalence of this mode of reproduction and to guide future management decisions of this IUCN listed Vulnerable species.
Collapse
Affiliation(s)
- Carolyn A Bailey
- Department of Genetics, Bill and Berniece Grewcock Center for Conservation and Research, Omaha's Henry Doorly Zoo and Aquarium, Omaha, Nebraska, USA
| | | | - Andy Reeves
- Department of Reptiles, Omaha's Henry Doorly Zoo and Aquarium, Omaha, Nebraska, USA
| | - Dylan Ray
- Department of Reptiles, Omaha's Henry Doorly Zoo and Aquarium, Omaha, Nebraska, USA
| | - Jessi Krebs
- Department of Reptiles, Omaha's Henry Doorly Zoo and Aquarium, Omaha, Nebraska, USA
| | - Edward E Louis
- Department of Genetics, Bill and Berniece Grewcock Center for Conservation and Research, Omaha's Henry Doorly Zoo and Aquarium, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Dedukh D, Altmanová M, Petrosyan R, Arakelyan M, Galoyan E, Kratochvíl L. Premeiotic endoreplication is the mechanism of obligate parthenogenesis in rock lizards of the genus Darevskia. Biol Lett 2024; 20:20240182. [PMID: 39288813 PMCID: PMC11407861 DOI: 10.1098/rsbl.2024.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Among vertebrates, obligate parthenogenesis occurs exclusively in squamate reptiles. Premeiotic endoreplication in a small subset of developing oocytes has been documented as the mechanism of production of unreduced eggs in minutely explored obligate parthenogenetic lineages, namely in teiids and geckos. The situation in the lacertid genus Darevskia has been discussed for decades. Certain observations suggested that the ploidy level is restored during egg formation through a fusion of egg and polar body nuclei in Darevskia unisexualis and D. armeniaca. In this study, we re-evaluated the fusion hypothesis by studying diplotene chromosomes in adult females of sexual species D. raddei nairensis and obligate parthenogens D. armeniaca, D. dahli and D. unisexualis. We revealed 19 bivalents in the sexual species and 38 bivalents in the diploid obligate parthenogens, which uncovers premeiotic endoreplication as the mechanism of the production of non-reduced eggs in parthenogenetic females. The earlier contradicting reports can likely be attributed to the difficulty in identifying mispairing of chromosomes in pachytene, and the fact that in parthenogenetic reptiles relying on premeiotic endoreplication only a small subset of developing oocytes undergo genome doubling and overcome the pachytene checkpoint. This study highlights co-option of premeiotic endoreplication for escape from sexual reproduction in all independent hybrid origins of obligate parthenogenesis in vertebrates studied to date.
Collapse
Affiliation(s)
- Dmitry Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov277 21, Czech Republic
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov277 21, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Viničná 7128 44, Czech Republic
| | - Ruzanna Petrosyan
- Research Institute of Biology, Yerevan State University, Yerevan0025, Armenia
| | - Marine Arakelyan
- Research Institute of Biology, Yerevan State University, Yerevan0025, Armenia
| | - Eduard Galoyan
- Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, Russia
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Viničná 7128 44, Czech Republic
| |
Collapse
|
5
|
Ho DV, Tormey D, Odell A, Newton AA, Schnittker RR, Baumann DP, Neaves WB, Schroeder MR, Sigauke RF, Barley AJ, Baumann P. Post-meiotic mechanism of facultative parthenogenesis in gonochoristic whiptail lizard species. eLife 2024; 13:e97035. [PMID: 38847388 PMCID: PMC11161175 DOI: 10.7554/elife.97035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Facultative parthenogenesis (FP) has historically been regarded as rare in vertebrates, but in recent years incidences have been reported in a growing list of fish, reptile, and bird species. Despite the increasing interest in the phenomenon, the underlying mechanism and evolutionary implications have remained unclear. A common finding across many incidences of FP is either a high degree of homozygosity at microsatellite loci or low levels of heterozygosity detected in next-generation sequencing data. This has led to the proposal that second polar body fusion following the meiotic divisions restores diploidy and thereby mimics fertilization. Here, we show that FP occurring in the gonochoristic Aspidoscelis species A. marmoratus and A. arizonae results in genome-wide homozygosity, an observation inconsistent with polar body fusion as the underlying mechanism of restoration. Instead, a high-quality reference genome for A. marmoratus and analysis of whole-genome sequencing from multiple FP and control animals reveals that a post-meiotic mechanism gives rise to homozygous animals from haploid, unfertilized oocytes. Contrary to the widely held belief that females need to be isolated from males to undergo FP, females housed with conspecific and heterospecific males produced unfertilized eggs that underwent spontaneous development. In addition, offspring arising from both fertilized eggs and parthenogenetic development were observed to arise from a single clutch. Strikingly, our data support a mechanism for facultative parthenogenesis that removes all heterozygosity in a single generation. Complete homozygosity exposes the genetic load and explains the high rate of congenital malformations and embryonic mortality associated with FP in many species. Conversely, for animals that develop normally, FP could potentially exert strong purifying selection as all lethal recessive alleles are purged in a single generation.
Collapse
Affiliation(s)
- David V Ho
- Department of Biology, Johannes Gutenberg UniversityMainzGermany
- Institute of Quantitative and Computational Biosciences, Johannes Gutenberg UniversityMainzGermany
| | - Duncan Tormey
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Aaron Odell
- Department of Biology, Johannes Gutenberg UniversityMainzGermany
| | | | | | - Diana P Baumann
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | | | - Anthony J Barley
- School of Mathematical and Natural Sciences, Arizona State University–West Valley CampusGlendaleUnited States
| | - Peter Baumann
- Department of Biology, Johannes Gutenberg UniversityMainzGermany
- Institute of Quantitative and Computational Biosciences, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular BiologyMainzGermany
| |
Collapse
|
6
|
Levine BA, Moresco A, Trout T, Schuett GW, Booth W. Female long-term sperm storage results in viable offspring in the Himalayan Mountain Pitviper, Ovophis monticola. Zoo Biol 2024; 43:183-187. [PMID: 38234126 DOI: 10.1002/zoo.21820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
The ability of females to store sperm for extended periods in their reproductive tracts (termed long-term sperm storage, LTSS) has been reported across a diversity of vertebrate taxa. The evolutionary, ecological, and physiological significance of LTSS is wide-ranging and includes the ability to produce offspring when mates may be temporally scarce by way of decoupling copulation from ovulation, inbreeding avoidance, and the generation and maintenance of genetic diversity in progeny. Among vertebrate lineages, nonavian reptiles exhibit a remarkable capacity for LTSS, with the production of viable offspring reported after periods exceeding 6 years since prior contact with a potential mate. Given that female reptiles are able to store viable sperm for prolonged periods, it is important to disentangle LTSS from that of facultative parthenogenesis (FP), a reproductive trait which appears widespread among all reptile lineages. The implications of this distinction are particularly important in the context of the development and management of captive breeding programs. To accurately determine between the two reproductive strategies, genomic screening is highly recommended. Following a period of isolation for 13 months from a potential male mate, a female Himalayan Mountain Pitviper (Ovophis monticola) produced a clutch of three male offspring. Here, through genome-scale analyses of the female and her progeny, we document the first record of LTSS in this genus and exclude FP as the alternative hypothesis.
Collapse
Affiliation(s)
- Brenna A Levine
- Department of Biology, Kean University, Union, New Jersey, USA
- Chiricahua Desert Museum, Rodeo, New Mexico, USA
| | - Anneke Moresco
- Reproductive Health Surveillance Program, Morrison, Colorado, USA
- Denver Zoological Foundation, Denver, Colorado, USA
| | - Tim Trout
- Denver Zoological Foundation, Denver, Colorado, USA
| | - Gordon W Schuett
- Chiricahua Desert Museum, Rodeo, New Mexico, USA
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Warren Booth
- Chiricahua Desert Museum, Rodeo, New Mexico, USA
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
7
|
Zhu F, Lu J, Sun K, Deng C, Xu Y. Polyploidization of Indotyphlops braminus: evidence from isoform-sequencing. BMC Genom Data 2024; 25:23. [PMID: 38408920 PMCID: PMC10895795 DOI: 10.1186/s12863-024-01208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Indotyphlops braminus, the only known triploid parthenogenetic snake, is a compelling species for revealing the mechanism of polyploid emergence in vertebrates. METHODS In this study, we applied PacBio isoform sequencing technology to generate the first full-length transcriptome of I. braminus, aiming to improve the understanding of the molecular characteristics of this species. RESULTS A total of 51,849 nonredundant full-length transcript assemblies (with an N50 length of 2980 bp) from I. braminus were generated and fully annotated using various gene function databases. Our analysis provides preliminary evidence supporting a recent genome duplication event in I. braminus. Phylogenetic analysis indicated that the divergence of I. braminus subgenomes occurred approximately 11.5 ~ 15 million years ago (Mya). The full-length transcript resource generated as part of this research will facilitate transcriptome analysis and genomic evolution studies in the future.
Collapse
Affiliation(s)
- Fei Zhu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China.
| | - Jing Lu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China
| | - Ke Sun
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China
| | - Cao Deng
- Department of Bioinformatics, DNA Stories Bioinformatics Center, 610000, Chengdu, China
| | - Yu Xu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Di Ianni F, Albarella S, Vetere A, Torcello M, Ablondi M, Pugliano M, Di Mauro S, Parma P, Ciotola F. Demonstration of Parthenogenetic Reproduction in a Pet Ball Python ( Python regius) through Analysis of Early-Stage Embryos. Genes (Basel) 2023; 14:1744. [PMID: 37761884 PMCID: PMC10531270 DOI: 10.3390/genes14091744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Parthenogenesis is an asexual form of reproduction, normally present in various animal and plant species, in which an embryo is generated from a single gamete. Currently, there are some species for which parthenogenesis is supposed but not confirmed, and the mechanisms that activate it are not well understood. A 10-year-old, wild-caught female ball python (Python regius) laid four eggs without any prior contact with a male. The eggs were not incubated and, after 3 days, were submitted to the University of Parma for analysis due to the suspicion of potential embryo presence. Examination of the egg content revealed residual blood vessels and a small red spot, indicative of an early-stage embryo. DNA was extracted from the three deceased embryos and from the mother's blood, five microsatellites were analyzed to ascertain the origin of the embryos. The captive history data, together with the genetic microsatellite analysis approach, demonstrated the parthenogenetic origin of all three embryos. The embryos were homozygous for each of the maternal microsatellites, suggesting a terminal fusion automixis mode of development.
Collapse
Affiliation(s)
- Francesco Di Ianni
- Department of Veterinary Science, Strada del Taglio 10, 43121 Parma, Italy
| | - Sara Albarella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy
| | - Alessandro Vetere
- Department of Veterinary Science, Strada del Taglio 10, 43121 Parma, Italy
| | - Marco Torcello
- Ambulatorio Veterinario Dott. Di Mauro, Via Parini 8, 24043 Caravaggio, Italy
| | - Michela Ablondi
- Department of Veterinary Science, Strada del Taglio 10, 43121 Parma, Italy
| | - Mariagiulia Pugliano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy
| | - Susanna Di Mauro
- Ambulatorio Veterinario Dott. Di Mauro, Via Parini 8, 24043 Caravaggio, Italy
| | - Pietro Parma
- Department of Agricultural and Environmental Sciences, Via Celoria 2, 20133 Milano, Italy
| | - Francesca Ciotola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy
| |
Collapse
|
9
|
Tetzlaff SJ, Vizentin‐Bugoni J, Sperry JH, Davis MA, Clark RW, Repp RA, Schuett GW. Fission-fusion dynamics in the social networks of a North American pitviper. Ecol Evol 2023; 13:e10339. [PMID: 37554395 PMCID: PMC10405236 DOI: 10.1002/ece3.10339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Many animal species exist in fission-fusion societies, where the size and composition of conspecific groups change spatially and temporally. To help investigate such phenomena, social network analysis (SNA) has emerged as a powerful conceptual and analytical framework for assessing patterns of interconnectedness and quantifying group-level interactions. We leveraged behavioral observations via radiotelemetry and genotypic data from a long-term (>10 years) study on the pitviper Crotalus atrox (western diamondback rattlesnake) and used SNA to quantify the first robust demonstration of social network structures for any free-living snake. Group-level interactions among adults in this population resulted in structurally modular networks (i.e., distinct clusters of interacting individuals) for fidelis use of communal winter dens (denning network), mating behaviors (pairing network), and offspring production (parentage network). Although the structure of each network was similar, the size and composition of groups varied among them. Specifically, adults associated with moderately sized social groups at winter dens but often engaged in reproductive behaviors-both at and away from dens-with different and fewer partners. Additionally, modules formed by individuals in the pairing network were frequently different from those in the parentage network, likely due to multiple mating, long-term sperm storage by females, and resultant multiple paternity. Further evidence for fission-fusion dynamics exhibited by this population-interactions were rare when snakes were dispersing to and traversing their spring-summer home ranges (to which individuals show high fidelity), despite ample opportunities to associate with numerous conspecifics that had highly overlapping ranges. Taken together, we show that long-term datasets incorporating SNA with spatial and genetic information provide robust and unique insights to understanding the social structure of cryptic taxa that are understudied.
Collapse
Affiliation(s)
- Sasha J. Tetzlaff
- U.S. Army ERDC‐CERLChampaignIllinoisUSA
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Jeferson Vizentin‐Bugoni
- Programa de Pós‐Graduação em Biologia Animal, Instituto de BiologiaUniversidade Federal de PelotasPelotasBrazil
| | - Jinelle H. Sperry
- U.S. Army ERDC‐CERLChampaignIllinoisUSA
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Mark A. Davis
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Rulon W. Clark
- Chiricahua Desert MuseumRodeoNew MexicoUSA
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | | | - Gordon W. Schuett
- Chiricahua Desert MuseumRodeoNew MexicoUSA
- Department of Biology, Neuroscience InstituteGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
10
|
Gable SM, Mendez JM, Bushroe NA, Wilson A, Byars MI, Tollis M. The State of Squamate Genomics: Past, Present, and Future of Genome Research in the Most Speciose Terrestrial Vertebrate Order. Genes (Basel) 2023; 14:1387. [PMID: 37510292 PMCID: PMC10379679 DOI: 10.3390/genes14071387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Squamates include more than 11,000 extant species of lizards, snakes, and amphisbaenians, and display a dazzling diversity of phenotypes across their over 200-million-year evolutionary history on Earth. Here, we introduce and define squamates (Order Squamata) and review the history and promise of genomic investigations into the patterns and processes governing squamate evolution, given recent technological advances in DNA sequencing, genome assembly, and evolutionary analysis. We survey the most recently available whole genome assemblies for squamates, including the taxonomic distribution of available squamate genomes, and assess their quality metrics and usefulness for research. We then focus on disagreements in squamate phylogenetic inference, how methods of high-throughput phylogenomics affect these inferences, and demonstrate the promise of whole genomes to settle or sustain persistent phylogenetic arguments for squamates. We review the role transposable elements play in vertebrate evolution, methods of transposable element annotation and analysis, and further demonstrate that through the understanding of the diversity, abundance, and activity of transposable elements in squamate genomes, squamates can be an ideal model for the evolution of genome size and structure in vertebrates. We discuss how squamate genomes can contribute to other areas of biological research such as venom systems, studies of phenotypic evolution, and sex determination. Because they represent more than 30% of the living species of amniote, squamates deserve a genome consortium on par with recent efforts for other amniotes (i.e., mammals and birds) that aim to sequence most of the extant families in a clade.
Collapse
Affiliation(s)
- Simone M Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jasmine M Mendez
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nicholas A Bushroe
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Adam Wilson
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michael I Byars
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
11
|
Booth W, Levine BA, Corush JB, Davis MA, Dwyer Q, De Plecker R, Schuett GW. Discovery of facultative parthenogenesis in a new world crocodile. Biol Lett 2023; 19:20230129. [PMID: 37282490 PMCID: PMC10244963 DOI: 10.1098/rsbl.2023.0129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
Over the past two decades, there has been an astounding growth in the documentation of vertebrate facultative parthenogenesis (FP). This unusual reproductive mode has been documented in birds, non-avian reptiles-specifically lizards and snakes-and elasmobranch fishes. Part of this growth among vertebrate taxa is attributable to awareness of the phenomenon itself and advances in molecular genetics/genomics and bioinformatics, and as such our understanding has developed considerably. Nonetheless, questions remain as to its occurrence outside of these vertebrate lineages, most notably in Chelonia (turtles) and Crocodylia (crocodiles, alligators and gharials). The latter group is particularly interesting because unlike all previously documented cases of FP in vertebrates, crocodilians lack sex chromosomes and sex determination is controlled by temperature. Here, using whole-genome sequencing data, we provide, to our knowledge, the first evidence of FP in a crocodilian, the American crocodile, Crocodylus acutus. The data support terminal fusion automixis as the reproductive mechanism; a finding which suggests a common evolutionary origin of FP across reptiles, crocodilians and birds. With FP now documented in the two main branches of extant archosaurs, this discovery offers tantalizing insights into the possible reproductive capabilities of the extinct archosaurian relatives of crocodilians and birds, notably members of Pterosauria and Dinosauria.
Collapse
Affiliation(s)
- Warren Booth
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Chiricahua Desert Museum, Rodeo, NM 88056, USA
| | - Brenna A. Levine
- Chiricahua Desert Museum, Rodeo, NM 88056, USA
- Department of Biology, Kean University, Union, NJ 07083, USA
| | - Joel B. Corush
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Illinois, IL 61820, USA
| | - Mark A. Davis
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Illinois, IL 61820, USA
| | - Quetzal Dwyer
- Reptilandia Reptile Lagoon, Johnson City, TX 78636, USA
| | - Roel De Plecker
- Parque Reptilandia, Dominical 5000, Puntarenas Province, 11902, Costa Rica
| | - Gordon W. Schuett
- Chiricahua Desert Museum, Rodeo, NM 88056, USA
- Department of Biology, Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
12
|
Sidharthan C, Roy P, Narayanan S, Karanth KP. A widespread commensal loses its identity: suggested taxonomic revision for Indotyphlops braminus (Scolecophidia: Typhlopidae) based on molecular data. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Folwell M, Sanders K, Crowe-Riddell J. The Squamate Clitoris: A Review and Directions for Future Research. Integr Comp Biol 2022; 62:icac056. [PMID: 35662336 DOI: 10.1093/icb/icac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The clitoris is a part of the genitalia of female amniotes that typically functions to stimulate sensory arousal. It usually consists of a small organ that is dimorphic and homologous to the penis. The developing amniote embryo forms a genital tubule, then sex hormones initiate a developmental cascade to form either a penis or clitoris. In squamates (lizards and snakes) the genital tubule develops into a paired hemiphallus structure called the "hemiclitores" in the female and the "hemipenes" in the male. The complex evolution of squamate hemipenes has been extensively researched since early discoveries in the 1800's, and this has uncovered huge diversity in hemipenis size, shape, and ornamentation (e.g., protrusions of spines, hooks, chalices, cups). In contrast, the squamate hemiclitoris has been conspicuously under investigated, and the studies that describe this anatomy are fraught with inconsistences. This paper aims to clarify the current state of knowledge of the squamate hemiclitoris, providing a foundation for further research on its morphology and functional role. We show that while several studies have described the gross anatomy of hemiclitores in lizards, comparative information is entirely lacking for snakes. Several papers cite earlier authors as having reported discoveries of the snake hemiclitores in vipers and colubrid snakes. However, our examination of this reveals only erroneous reports of hemiclitores in snakes and shows that these stem from misinterpretations of the true anatomy or species involved. An especially problematic source of confusion is the presence of intersex individuals in some snake populations; these form reproductively functional ovaries and a single hemipenis, with the latter sometimes mistaken for a hemiclitoris (the intersex hemipenis is usually smaller and less spinous than the male hemipenis). Further research is recommended to identify the defining anatomical features of the squamate hemiclitores. Such studies will form a vital basis of future comparative analyses of variation in female genitalia in squamates and other amniotes.
Collapse
Affiliation(s)
- Megan Folwell
- The University of Adelaide, Faculty of Biological Science
| | - Kate Sanders
- University of Adelaide, Faculty of Biological Science
| | | |
Collapse
|
14
|
Dedukh D, Altmanová M, Klíma J, Kratochvíl L. Premeiotic endoreplication is essential for obligate parthenogenesis in geckos. Development 2022; 149:274975. [PMID: 35388415 DOI: 10.1242/dev.200345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Obligate parthenogenesis evolved in reptiles convergently several times, mainly through interspecific hybridization. The obligate parthenogenetic complexes typically include both diploid and triploid lineages. Offspring of parthenogenetic hybrids are genetic copies of their mother; however, the cellular mechanism enabling the production of unreduced cells is largely unknown. Here, we show that oocytes go through meiosis in three widespread, or even strongly invasive, obligate parthenogenetic complexes of geckos, namely in diploid and triploid Lepidodactylus lugubris, and triploid Hemiphyllodactylus typus and Heteronotia binoei. In all four lineages, the majority of oocytes enter the pachytene at the original ploidy level, but their chromosomes cannot pair properly and instead form univalents, bivalents and multivalents. Unreduced eggs with clonally inherited genomes are formed from germ cells that had undergone premeiotic endoreplication, in which appropriate segregation is ensured by the formation of bivalents made from copies of identical chromosomes. We conclude that the induction of premeiotic endoreplication in reptiles was independently co-opted at least four times as an essential component of parthenogenetic reproduction and that this mechanism enables the emergence of fertile polyploid lineages within parthenogenetic complexes.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Jiří Klíma
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| |
Collapse
|
15
|
Multi-scale Chimerism: An experimental window on the algorithms of anatomical control. Cells Dev 2022; 169:203764. [PMID: 34974205 DOI: 10.1016/j.cdev.2021.203764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/12/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022]
Abstract
Despite the immense progress in genetics and cell biology, major knowledge gaps remain with respect to prediction and control of the global morphologies that will result from the cooperation of cells with known genomes. The understanding of cooperativity, competition, and synergy across diverse biological scales has been obscured by a focus on standard model systems that exhibit invariant species-specific anatomies. Morphogenesis of chimeric biological material is an especially instructive window on the control of biological growth and form because it emphasizes the need for prediction without reliance on familiar, standard outcomes. Here, we review an important and fascinating body of data from experiments utilizing DNA transfer, cell transplantation, organ grafting, and parabiosis. We suggest that these are all instances (at different levels of organization) of one general phenomenon: chimerism. Multi-scale chimeras are a powerful conceptual and experimental tool with which to probe the mapping between properties of components and large-scale anatomy: the laws of morphogenesis. The existing data and future advances in this field will impact not only the understanding of cooperation and the evolution of body forms, but also the design of strategies for system-level outcomes in regenerative medicine and swarm robotics.
Collapse
|
16
|
Sex Chromosomes and Master Sex-Determining Genes in Turtles and Other Reptiles. Genes (Basel) 2021; 12:genes12111822. [PMID: 34828428 PMCID: PMC8622242 DOI: 10.3390/genes12111822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022] Open
Abstract
Among tetrapods, the well differentiated heteromorphic sex chromosomes of birds and mammals have been highly investigated and their master sex-determining (MSD) gene, Dmrt1 and SRY, respectively, have been identified. The homomorphic sex chromosomes of reptiles have been the least studied, but the gap with birds and mammals has begun to fill. This review describes our current knowledge of reptilian sex chromosomes at the cytogenetic and molecular level. Most of it arose recently from various studies comparing male to female gene content. This includes restriction site-associated DNA sequencing (RAD-Seq) experiments in several male and female samples, RNA sequencing and identification of Z- or X-linked genes by male/female comparative transcriptome coverage, and male/female transcriptomic or transcriptome/genome substraction approaches allowing the identification of Y- or W-linked transcripts. A few putative master sex-determining (MSD) genes have been proposed, but none has been demonstrated yet. Lastly, future directions in the field of reptilian sex chromosomes and their MSD gene studies are considered.
Collapse
|
17
|
Riley JL, Stow A, Bolton PE, Dennison S, Byrne RW, Whiting MJ. Sperm Storage in a Family-Living Lizard, the Tree Skink (Egernia striolata). J Hered 2021; 112:526-534. [PMID: 34409996 DOI: 10.1093/jhered/esab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/16/2021] [Indexed: 11/14/2022] Open
Abstract
The ability to produce viable offspring without recently mating, either through sperm storage or parthenogenesis, can provide fitness advantages under a suite of challenging ecological scenarios. Using genetic analysis, we demonstrate that 3 wild-caught female Tree Skinks (Egernia striolata) reproduced in captivity with no access to males for over a year, and that this is best explained by sperm storage. To the best of our knowledge, this is the first time female sperm storage has been documented in any monogamous family-living reptile, including social Australian egerniine skinks (from the subfamily Egerniinae). Furthermore, by using paternal reconstruction of genotypes we show that captive-born offspring produced by the same females in the preceding year, presumably without sperm storage, were sired by different males. We qualitatively compared aspects of these females' mates and offspring between years. The parents of each litter were unrelated, but paternal and offspring genotypes from litters resulting from stored sperm were more heterozygous than those inferred to be from recent matings. Family-living egerniine skinks generally have low rates of multiple paternity, yet our study suggests that female sperm storage, potentially from outside social partners, offers the real possibility of benefits. Possible benefits include increasing genetic compatibility of mates and avoiding inbreeding depression via cryptic female choice. Sperm storage in Tree Skinks, a family-living lizard with a monogamous mating system, suggests that females may bet-hedge through extra-pair copulation with more heterozygous males, reinforcing the idea that females could have more control on reproductive outcomes than previously thought.
Collapse
Affiliation(s)
- Julia L Riley
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.,Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Adam Stow
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peri E Bolton
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.,Department of Biology, East Carolina University, Greenville, NC
| | - Siobhan Dennison
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Richard W Byrne
- School of Psychology and Neuroscience, University of St. Andrews, St. Andrews, Fife, UK
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Ryder OA, Thomas S, Judson JM, Romanov MN, Dandekar S, Papp JC, Sidak-Loftis LC, Walker K, Stalis IH, Mace M, Steiner CC, Chemnick LG. Facultative Parthenogenesis in California Condors. J Hered 2021; 112:569-574. [PMID: 34718632 PMCID: PMC8683835 DOI: 10.1093/jhered/esab052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Abstract
Parthenogenesis is a relatively rare event in birds, documented in unfertilized eggs from columbid, galliform, and passerine females with no access to males. In the critically endangered California condor, parentage analysis conducted utilizing polymorphic microsatellite loci has identified two instances of parthenogenetic development from the eggs of two females in the captive breeding program, each continuously housed with a reproductively capable male with whom they had produced offspring. Paternal genetic contribution to the two chicks was excluded. Both parthenotes possessed the expected male ZZ sex chromosomes and were homozygous for all evaluated markers inherited from their dams. These findings represent the first molecular marker-based identification of facultative parthenogenesis in an avian species, notably of females in regular contact with fertile males, and add to the phylogenetic breadth of vertebrate taxa documented to have reproduced via asexual reproduction.
Collapse
Affiliation(s)
- Oliver A Ryder
- Conservation Genetics, Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Steven Thomas
- Conservation Genetics, Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA.,SGI-DNA, La Jolla, CA 92037, USA
| | - Jessica Martin Judson
- Conservation Genetics, Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA.,W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA
| | - Michael N Romanov
- Conservation Genetics, Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA.,School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Sugandha Dandekar
- Human Genetics Department, GenoSeq Core, University of California, Los Angeles, CA 90095, USA
| | - Jeanette C Papp
- Human Genetics Department, GenoSeq Core, University of California, Los Angeles, CA 90095, USA
| | - Lindsay C Sidak-Loftis
- Conservation Genetics, Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA.,Department of Veterinary Microbiology and Pathology, Program in Vector-borne Diseases, Washington State University, Pullman, WA, USA
| | | | - Ilse H Stalis
- Disease Investigations, San Diego Zoo Wildlife Alliance, San Diego, CA 92101, USA
| | - Michael Mace
- San Diego Zoo Wildlife Alliance, San Diego, CA 92101, USA
| | - Cynthia C Steiner
- Conservation Genetics, Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Leona G Chemnick
- Conservation Genetics, Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| |
Collapse
|
19
|
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200103. [PMID: 34304588 PMCID: PMC8310718 DOI: 10.1098/rstb.2020.0103] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Dunja K. Lamatsch
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
20
|
Stöck M, Kratochvíl L, Kuhl H, Rovatsos M, Evans BJ, Suh A, Valenzuela N, Veyrunes F, Zhou Q, Gamble T, Capel B, Schartl M, Guiguen Y. A brief review of vertebrate sex evolution with a pledge for integrative research: towards ' sexomics'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200426. [PMID: 34247497 PMCID: PMC8293304 DOI: 10.1098/rstb.2020.0426] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czech Republic
| | - Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries—IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
| | - Michail Rovatsos
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ben J. Evans
- Department of Biology, McMaster University, Life Sciences Building Room 328, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université de Montpellier/IRD/EPHE), Montpellier, France
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Neuroscience and Developmental Biology, University of Vienna, A-1090 Vienna, Austria
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | | |
Collapse
|
21
|
Garcia VC, de Almeida-Santos SM. Reproductive cycles of neotropical boid snakes evaluated by ultrasound. Zoo Biol 2021; 41:74-83. [PMID: 34411319 DOI: 10.1002/zoo.21646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 11/06/2022]
Abstract
Snakes have increasingly been bred as pets around the world. Few studies have addressed the reproduction of boid snakes, and no study has addressed their reproductive cycles in captivity. Thus, this paper describes the reproductive aspects of Brazilian boids in captivity. We used ultrasonography to characterize the reproductive cycle of four boid species in captivity in the Southern Hemisphere: the anaconda (Eunectes murinus), the red-tailed boa (Boa constrictor constrictor), the Amazon tree boa (Corallus hortulanus), and the rainbow boa (Epicrates cenchria). Nonvitellogenic follicles occurred from January to December in anaconda and red-tailed boa and for a shorter period from September to February in Amazon tree boa and from January to May in rainbow boa. Vitellogenesis occurred from late June to late March in E. murinus in year-round (12 months), from March to March in Amazon tree boa, from late September to late March in red-tailed boa, and from late March to late September in rainbow boa. Mating occurred from late March to late September in red-tailed boa and rainbow boa and from late September to late March in Amazon tree boa. No mating was observed in anacondas, but a female probably underwent parthenogenesis. Births occurred in July in anaconda and in March to July in Amazon tree boa and from December to March in red-tailed boa and rainbow boa. In males, increases in testicular size were associated with the mating season. Ultrasonography proved to be a safe and noninvasive technique to study the reproductive cycle of giant snakes in captivity.
Collapse
Affiliation(s)
- Viviane C Garcia
- Departamento de Cirurgia, Programa de Pós-graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Centro de Desenvolvimento Científico, Laboratório de Ecologia e Evolução, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Selma Maria de Almeida-Santos
- Departamento de Cirurgia, Programa de Pós-graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Centro de Desenvolvimento Científico, Laboratório de Ecologia e Evolução, Instituto Butantan, São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Exceptional long-term sperm storage by a female vertebrate. PLoS One 2021; 16:e0252049. [PMID: 34086677 PMCID: PMC8177532 DOI: 10.1371/journal.pone.0252049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
Females of many vertebrate species have the capacity to store sperm within their reproductive tracts for prolonged periods of time. Termed long-term sperm storage, this phenomenon has many important physiological, ecological, and evolutionary implications, particularly to the study of mating systems, including male reproductive success and post-copulatory sexual selection. Reptiles appear particularly predisposed to long-term sperm storage, with records in most major lineages, with a strong emphasis on turtles and squamates (lizards, snakes, but not the amphisbaenians). Because facultative parthenogenesis is a competing hypothesis to explain the production of offspring after prolonged separation from males, the identification of paternal alleles through genetic analysis is essential. However, few studies in snakes have undertaken this. Here, we report on a wild-collected female Western Diamond-backed Rattlesnake, Crotalus atrox, maintained in isolation from the time of capture in September 1999, that produced two healthy litters approximately one and six years post capture. Genetic analysis of the 2005 litter, identified paternal contribution in all offspring, thus rejecting facultative parthenogenesis. We conclude that the duration of long-term sperm storage was approximately 6 years (71 months), making this the longest period over which a female vertebrate has been shown to store sperm that resulted in the production of healthy offspring.
Collapse
|
23
|
Thornton AM, Schuett GW, Swift JA. Urates of colubroid snakes are different from those of boids and pythonids. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Uricotelic species, such as squamate reptiles, birds and insects, effectively eliminate nitrogen as uric acid in a solid form commonly called urates. Observations made over a decade suggested that the voided urates produced by colubroids (modern snake species) exhibit remarkable differences from those of boids and pythons (ancient snake species). Here, we compare the urates generated by eight captive snake species fed the same diet. Although all fresh urates were wet at the time of excretion, those produced by modern snakes dried to a powdery solid, whereas those of ancient species dried to a rock-hard mass that was tightly adherent to surfaces. Powder X-ray diffraction and infrared spectroscopy analyses performed on voided urates produced by five modern and three ancient snakes confirmed their underlying chemical and structural differences. Urates excreted by ancient snakes were amorphous uric acid, whereas urates from modern snakes consisted primarily of ammonium acid urate, with some uric acid dihydrate. These compositional differences indicate that snakes have more than one mechanism to manage nitrogenous waste. Why different species use different nitrogen-handling pathways is not yet known, but the answer might be related to key differences in metabolism, physiology or, in the case of ancient snakes, the potential use of urates in social communication.
Collapse
Affiliation(s)
| | - Gordon W Schuett
- Chiricahua Desert Museum, Rodeo, NM, USA
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jennifer A Swift
- Department of Chemistry, Georgetown University, Washington, DC, USA
| |
Collapse
|
24
|
Card DC, Vonk FJ, Smalbrugge S, Casewell NR, Wüster W, Castoe TA, Schuett GW, Booth W. Genome-wide data implicate terminal fusion automixis in king cobra facultative parthenogenesis. Sci Rep 2021; 11:7271. [PMID: 33790309 PMCID: PMC8012631 DOI: 10.1038/s41598-021-86373-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Facultative parthenogenesis (FP) is widespread in the animal kingdom. In vertebrates it was first described in poultry nearly 70 years ago, and since then reports involving other taxa have increased considerably. In the last two decades, numerous reports of FP have emerged in elasmobranch fishes and squamate reptiles (lizards and snakes), including documentation in wild populations of both clades. When considered in concert with recent evidence of reproductive competence, the accumulating data suggest that the significance of FP in vertebrate evolution has been largely underestimated. Several fundamental questions regarding developmental mechanisms, nonetheless, remain unanswered. Specifically, what is the type of automixis that underlies the production of progeny and how does this impact the genomic diversity of the resulting parthenogens? Here, we addressed these questions through the application of next-generation sequencing to investigate a suspected case of parthenogenesis in a king cobra (Ophiophagus hannah). Our results provide the first evidence of FP in this species, and provide novel evidence that rejects gametic duplication and supports terminal fusion as a mechanism underlying parthenogenesis in snakes. Moreover, we precisely estimated heterozygosity in parthenogenetic offspring and found appreciable retained genetic diversity that suggests that FP in vertebrates has underappreciated evolutionary significance.
Collapse
Affiliation(s)
- Daren C Card
- Department of Biology, The University of Texas Arlington, Arlington, TX, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Freek J Vonk
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Sterrin Smalbrugge
- Wildlife Ecology and Conservation Groups, Wageningen University, Wageningen, The Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Wolfgang Wüster
- Molecular Ecology and Evolution Group, School of Biological Sciences, Bangor University, Bangor, UK.,Chiricahua Desert Museum, Rodeo, NM, USA
| | - Todd A Castoe
- Department of Biology, The University of Texas Arlington, Arlington, TX, USA
| | - Gordon W Schuett
- Chiricahua Desert Museum, Rodeo, NM, USA.,Department of Biology, Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Warren Booth
- Chiricahua Desert Museum, Rodeo, NM, USA. .,Department of Biological Science, The University of Tulsa, Tulsa, OK, USA.
| |
Collapse
|
25
|
Cubides-Cubillos SD, Patané JSL, Pereira da Silva KM, Almeida-Santos SM, Polydoro DS, Galassi GG, Travaglia Cardoso SR, Silva MJDJ. Evidence of facultative parthenogenesis in three Neotropical pitviper species of the Bothrops atrox group. PeerJ 2020; 8:e10097. [PMID: 33240594 PMCID: PMC7680053 DOI: 10.7717/peerj.10097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 09/14/2020] [Indexed: 11/20/2022] Open
Abstract
We examined four suspected cases of facultative parthenogenesis in three species of a neotropical lineage of pitvipers of the Bothrops atrox group. Reproduction without mating was observed in captive females of B. atrox, B. moojeni and B. leucurus housed alone for seven years (the two former species) and nine years (the latter one). In addition to the observation of captivity data, we investigated molecularly this phenomenon using heterologous microsatellites. DNA was extracted from the mothers’ scales or liver, from embryo and newborn fragments, and yolked ova. Four of the microsatellites showed good amplification using Polymerase Chain Reaction and informative band segregation patterns among each mother and respective offspring. Captivity information, litter characteristics (comparison of the number of newborns, embryos and yolked ova) and molecular data altogether agreed with facultative parthenogenesis predictions in at least three out of the four mothers studied: B. atrox (ID#933) was heterozygous for three out of the four markers, and the sons S1 and S2 were homozygous; B. moojeni (BUT86) was heterozygous for two out of four markers, offspring S1, S3, E2, and E4, and O1 to O6 were homozygous; and B. leucurus (MJJS503) was heterozygous for three out of four markers, and son E1 and O1 were homozygous. B. moojeni (BUT44) was homozygous for all loci analyzed in the mother and offspring, which although not informative is also consistent with parthenogenesis. This study represents the first molecular confirmation of different pitviper species undergoing facultative parthenogenesis among Neotropical endemic snakes.
Collapse
Affiliation(s)
| | - José S L Patané
- Laboratório de Ecologia e Evolução, Instituto Butantan, São Paulo, Brazil.,Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Fujita MK, Singhal S, Brunes TO, Maldonado JA. Evolutionary Dynamics and Consequences of Parthenogenesis in Vertebrates. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-114900] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parthenogenesis is asexual reproduction without any required participation from males and, as such, is a null model for sexual reproduction. In a comparative context, we can expand our understanding of the evolution and ecology of sex by investigating the consequences of parthenogenesis. In this review, we examine the theoretical predictions of and empirical results on the evolution of asexual reproduction in vertebrates, focusing on recent studies addressing the origins and geographic spread of parthenogenetic lineages and the genomic consequences of an asexual life history. With advances in computational methods and genome technologies, researchers are poised to make rapid and significant progress in studying the origin and evolution of parthenogenesis in vertebrates, thus providing an important perspective on understanding biodiversity patterns of both asexual and sexual populations.
Collapse
Affiliation(s)
- Matthew K. Fujita
- Amphibian and Reptile Diversity Research Center and Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Sonal Singhal
- Department of Biology, California State University, Dominguez Hills, Carson, California 90747, USA
| | - Tuliana O. Brunes
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Jose A. Maldonado
- Amphibian and Reptile Diversity Research Center and Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA
| |
Collapse
|
27
|
Kratochvíl L, Vukić J, Červenka J, Kubička L, Johnson Pokorná M, Kukačková D, Rovatsos M, Piálek L. Mixed-sex offspring produced via cryptic parthenogenesis in a lizard. Mol Ecol 2020; 29:4118-4127. [PMID: 32881125 DOI: 10.1111/mec.15617] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
Facultative parthenogenesis in vertebrates is believed to be exceptional, and wherever documented, it always led to single-sex progeny with genome-wide homozygosity. We report the first challenge to this paradigm: frequent facultative parthenogenesis in the previously assumed sexually reproducing tropical night lizard Lepidophyma smithii results in offspring of both sexes and preserves heterozygosity in many loci polymorphic in their mothers. Moreover, we documented a mixture of sexually and parthenogenetically produced progeny in a single clutch, which documents how cryptic a facultative parthenogenesis can be. Next, we show that in the studied species, 1) parthenogenetically produced females can further reproduce parthenogenetically, 2) a sexually produced female can reproduce parthenogenetically, 3) a parthenogenetically produced female can reproduce sexually, and 4) a parthenogenetically produced male is fully fertile. We suggest that facultative parthenogenesis should be considered even in vertebrates with frequent males and genetically variable, heterozygous offspring.
Collapse
Affiliation(s)
- Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jasna Vukić
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Červenka
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lukáš Kubička
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martina Johnson Pokorná
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Liběchov, Czech Republic
| | - Dominika Kukačková
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lubomír Piálek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
28
|
Lafond J, Hénault P, Leung C, Angers B. Unexpected Oogenic Pathways for the Triploid Fish Chrosomus eos-neogaeus. J Hered 2020; 110:370-377. [PMID: 30597080 DOI: 10.1093/jhered/esy072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/30/2018] [Indexed: 11/14/2022] Open
Abstract
Triploid vertebrates from unisexual complexes often perpetuate themselves asexually. In the fish Chrosomus eos×eos-neogaeus, triploids are continuously produced by diploid hybrids. However, they are not expected to perpetuate since C. eos are their only known progeny. This study aims to investigate the oogenesis of these triploid hybrids through experimental crosses. A total of 337 larvae from 12 female triploids and 3 2n/3n mosaics fertilized with C. eos sperm were genetically characterized. The detection of C. eos as progeny of triploid hybrids confirmed the occurrence of a pathway similar to meiotic hybridogenesis but only for half of the tripoids. The presence of tetraploid offspring for all these females revealed the formation of unreduced triploid eggs as a probable failure of meiotic hybridogenesis. The remaining female triploids and all mosaics produced diploid and triploid hybrids. Triploids excluded the haplome from paternal leakage and produced eggs with the diploid hybrid genome through an ameiotic hybridogenesis. Both types of hybridogenesis occurred in a mutually exclusive manner. This leads us to consider 2 hypothetical scenarios: First, any female triploids can perform either type of hybridogenesis, allowing the long-term persistence of triploid hybrids by a fraction of the population. Alternatively, ameiotic hybridogenesis occurs in triploids of the first generation (from diploid mothers), while meiotic hybridogenesis occurs in triploids of the second generation (from triploid mothers); triploid hybrids then are not perpetuating lineages. The population dynamics of the C. eos-neogaeus complex appears a step more complicated than previously expected.
Collapse
Affiliation(s)
- Joëlle Lafond
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe Hénault
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Christelle Leung
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Vergun AA, Girnyk AE, Korchagin VI, Semyenova SK, Arakelyan MS, Danielyan FD, Murphy RW, Ryskov AP. Origin, clonal diversity, and evolution of the parthenogenetic lizard Darevskia unisexualis. BMC Genomics 2020; 21:351. [PMID: 32393253 PMCID: PMC7216553 DOI: 10.1186/s12864-020-6759-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hybridization of female D. raddei and male D. valentini gave rise to the parthenogenetic Caucasian rock lizard Darevskia unisexualis. A previously identified genetic polymorphism in the species consisted of one common and two allozyme clones. Analysis of microsatellites and single nucleotide polymorphisms (SNPs) from the three species yields estimates of clonal diversity and tests the hypothesis of a single origin for D. unisexualis. RESULTS Genotyping and sequencing of four microsatellite-containing loci for 109 specimens of D. unisexualis, 17 D. valentini, and 45 D. raddei nairensis identified 12 presumptive clones, including one widespread and 11 rare clones. Most individuals in some localities had a rare clone. Clone-specific alleles in D. unisexualis were compared with those of the parental species. The results inferred a single hybridization event. Post-formation mutations best explain the less common clones. CONCLUSIONS Interspecific analyses identify alleles inherited by D. unisexualis from its bisexual ancestors. SNP analyses fail to reject the hypothesis of a single interspecific origin of D. unisexualis, followed by microsatellite mutations in this initial clone. Microsatellites detect higher clonal diversity in D. unisexualis compared to allozymes and identify the likely origins of clones. Our approach may be applicable to other unisexual species whose origins involve interspecific hybridization.
Collapse
Affiliation(s)
- Andrey A Vergun
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334, Russia
- Department of Biochemistry, Molecular Biology and Genetics, Moscow State Pedagogical University, M. Pirogovskaya Str., 1/1, Moscow, 119991, Russia
| | - Anastasiya E Girnyk
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334, Russia
| | - Vitaly I Korchagin
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334, Russia
| | - Seraphima K Semyenova
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334, Russia
| | - Marine S Arakelyan
- Faculty of Biology, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia
| | - Felix D Danielyan
- Faculty of Biology, Yerevan State University, 1 Alex Manoogian, 0025, Yerevan, Armenia
| | - Robert W Murphy
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, ON, M5S 2C6, Canada
| | - Alexey P Ryskov
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334, Russia.
| |
Collapse
|
30
|
Guerra V, Haynes G, Byrne M, Yasuda N, Adachi S, Nakamura M, Nakachi S, Hart MW. Nonspecific expression of fertilization genes in the crown-of-thorns Acanthaster cf. solaris: Unexpected evidence of hermaphroditism in a coral reef predator. Mol Ecol 2019; 29:363-379. [PMID: 31837059 DOI: 10.1111/mec.15332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023]
Abstract
The characterization of gene expression in gametes has advanced our understanding of the molecular basis for ecological variation in reproductive success and the evolution of reproductive isolation. These advances are especially significant for ecologically important keystone predators such as the coral-eating crown-of-thorns sea stars (COTS, Acanthaster) which are the most influential predator species in Indo-Pacific coral reef ecosystems and the focus of intensive management efforts. We used RNA-seq and transcriptome assemblies to characterize the expression of genes in mature COTS gonads. We described the sequence and domain organization of eight genes with sex-specific expression and well known functions in fertilization in other echinoderms. We found unexpected expression of genes in one ovary transcriptome that are characteristic of males and sperm, including genes that encode the sperm-specific guanylate cyclase receptor for an egg pheromone, and the sperm acrosomal protein bindin. In a reassembly of previously published RNA-seq data from COTS testes, we found a complementary pattern: strong expression of four genes that are otherwise well known to encode egg-specific fertilization proteins, including the egg receptor for bindin (EBR1) and the acrosome reaction-inducing substance in the egg coat (ARIS1, ARIS2, ARIS3). We also found histological evidence of both eggs and sperm developing in the same gonad in several COTS individuals from a parallel study. These results suggest the occurrence of hermaphrodites, and the potential for reproductive assurance via self-fertilization. Our findings have implications for management of COTS populations, especially in consideration of the large size and massive fecundity of these sea stars.
Collapse
Affiliation(s)
- Vanessa Guerra
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Gwilym Haynes
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Department of Biology, Langara College, Vancouver, British Columbia, Canada
| | - Maria Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, Australia
| | - Nina Yasuda
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Souta Adachi
- School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka, Japan
| | - Masako Nakamura
- School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka, Japan
| | | | - Michael W Hart
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
31
|
Miller KL, Castañeda Rico S, Muletz-Wolz CR, Campana MG, McInerney N, Augustine L, Frere C, Peters AM, Fleischer RC. Parthenogenesis in a captive Asian water dragon (Physignathus cocincinus) identified with novel microsatellites. PLoS One 2019; 14:e0217489. [PMID: 31166974 PMCID: PMC6550409 DOI: 10.1371/journal.pone.0217489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/12/2019] [Indexed: 11/19/2022] Open
Abstract
Reptiles show varying degrees of facultative parthenogenesis. Here we use genetic methods to determine that an isolated, captive female Asian water dragon produced at least nine offspring via parthenogenesis. We identified microsatellites for the species from shotgun genomic sequences, selected and optimized primer sets, and tested all of the offspring for a set of seven microsatellites that were heterozygous in the mother. We verified that the seven loci showed high levels of polymorphism in four wild Asian water dragons from Vietnam. In all cases, the offspring (unhatched, but developed eggs, or hatched young) had only a single allele at each locus, and contained only alleles present in the mother’s genotype (i.e., were homozygous or hemizygous). The probability that our findings resulted from the female mating with one or more males is extremely small, indicating that the offspring were derived from a single female gamete (either alone or via duplication and/or fusion) and implicating parthenogenesis. This is the first documented case of parthenogenesis in the Squamate family Agamidae.
Collapse
Affiliation(s)
- Kyle L. Miller
- Department of Animal Care Sciences, Smithsonian’s National Zoological Park Washington, District of Columbia, United States of America
- * E-mail:
| | - Susette Castañeda Rico
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, United States of America
- George Mason University, Fairfax, Virginia, United States of America
| | - Carly R. Muletz-Wolz
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, United States of America
| | - Michael G. Campana
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, United States of America
| | - Nancy McInerney
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, United States of America
| | - Lauren Augustine
- Department of Animal Care Sciences, Smithsonian’s National Zoological Park Washington, District of Columbia, United States of America
- Saint Louis Zoo, One Government Drive, Saint Louis, Missouri, United States of America
| | - Celine Frere
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Alan M. Peters
- Department of Animal Care Sciences, Smithsonian’s National Zoological Park Washington, District of Columbia, United States of America
| | - Robert C. Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, United States of America
| |
Collapse
|
32
|
Carpentier F, Rodríguez de la Vega RC, Branco S, Snirc A, Coelho MA, Hood ME, Giraud T. Convergent recombination cessation between mating-type genes and centromeres in selfing anther-smut fungi. Genome Res 2019; 29:944-953. [PMID: 31043437 PMCID: PMC6581054 DOI: 10.1101/gr.242578.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
Abstract
The degree of selfing has major impacts on adaptability and is often controlled by molecular mechanisms determining mating compatibility. Changes in compatibility systems are therefore important evolutionary events, but their underlying genomic mechanisms are often poorly understood. Fungi display frequent shifts in compatibility systems, and their small genomes facilitate elucidation of the mechanisms involved. In particular, linkage between the pre- and postmating compatibility loci has evolved repeatedly, increasing the odds of gamete compatibility under selfing. Here, we studied the mating-type chromosomes of two anther-smut fungi with unlinked mating-type loci despite a self-fertilization mating system. Segregation analyses and comparisons of high-quality genome assemblies revealed that these two species displayed linkage between mating-type loci and their respective centromeres. This arrangement renders the same improved odds of gamete compatibility as direct linkage of the two mating-type loci under the automictic mating (intratetrad selfing) of anther-smut fungi. Recombination cessation was found associated with a large inversion in only one of the four linkage events. The lack of trans-specific polymorphism at genes located in nonrecombining regions and linkage date estimates indicated that the events of recombination cessation occurred independently in the two sister species. Our study shows that natural selection can repeatedly lead to similar genomic patterns and phenotypes, and that different evolutionary paths can lead to distinct yet equally beneficial responses to selection. Our study further highlights that automixis and gene linkage to centromeres have important genetic and evolutionary consequences, while being poorly recognized despite being present in a broad range of taxa.
Collapse
Affiliation(s)
- Fantin Carpentier
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Sara Branco
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
33
|
Multiple interspecific hybridization and microsatellite mutations provide clonal diversity in the parthenogenetic rock lizard Darevskia armeniaca. BMC Genomics 2018; 19:979. [PMID: 30594123 PMCID: PMC6311022 DOI: 10.1186/s12864-018-5359-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/09/2018] [Indexed: 11/16/2022] Open
Abstract
Background The parthenogenetic Caucasian rock lizard Darevskia armeniaca, like most other parthenogenetic vertebrate species, originated through interspecific hybridization between the closely related sexual Darevskia mixta and Darevskia valentini. Darevskia armeniaca was shown to consist of one widespread allozyme clone and a few rare ones, but notwithstanding the origin of clonal diversity remains unclear. We conduct genomic analysis of D. armeniaca and its parental sexual species using microsatellite and SNP markers to identify the origin of parthenogenetic clonal lineages. Results Four microsatellite-containing loci were genotyped for 111 specimens of D. armeniaca, 17 D. valentini, and four D. mixta. For these species, a total of 47 alleles were isolated and sequenced. Analysis of the data revealed 13 genotypes or presumptive clones in parthenogenetic D. armeniaca, including one widespread clone, two apparently geographically restricted clones, and ten rare clones. Comparisons of genotype-specific markers in D. armeniaca with those of its parental species revealed three founder-events including a common and two rare clones. All other clones appeared to have originated via post-formation microsatellite mutations in the course of evolutionary history of D. armeniaca. Conclusion Our new approach to microsatellite genotyping reveals allele-specific microsatellite and SNP markers for each locus studied. Interspecies comparison of these markers identifies alleles inherited by parthenospecies from parental species, and provides new information on origin and evolution of clonal diversity in D. armeniaca. SNP analyses reveal at least three interspecific origins of D. armeniaca, and microsatellite mutations in these initial clones give rise to new clones. Thus, we first establish multiple origins of D. armeniaca. Our study identifies the most effective molecular markers for elucidating the origins of clonal diversity in other unisexual species that arose via interspecific hybridization. Electronic supplementary material The online version of this article (10.1186/s12864-018-5359-5) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Calvete JJ, Casewell NR, Hernández-Guzmán U, Quesada-Bernat S, Sanz L, Rokyta DR, Storey D, Albulescu LO, Wüster W, Smith CF, Schuett GW, Booth W. Venom Complexity in a Pitviper Produced by Facultative Parthenogenesis. Sci Rep 2018; 8:11539. [PMID: 30068934 PMCID: PMC6070573 DOI: 10.1038/s41598-018-29791-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/12/2018] [Indexed: 11/25/2022] Open
Abstract
Facultative parthenogenesis (FP) is asexual reproduction in plant and animal species that would otherwise reproduce sexually. This process in vertebrates typically results from automictic development (likely terminal fusion) and is phylogenetically widespread. In squamate reptiles and chondrichthyan fishes, FP has been reported to occur in nature and can result in the production of reproductively viable offspring; suggesting that it is of ecological and evolutionary significance. However, terminal fusion automixis is believed to result in near genome-wide reductions in heterozygosity; thus, FP seems likely to affect key phenotypic characters, yet this remains almost completely unstudied. Snake venom is a complex phenotypic character primarily used to subjugate prey and is thus tightly linked to individual fitness. Surprisingly, the composition and function of venom produced by a parthenogenetic pitviper exhibits a high degree of similarity to that of its mother and conspecifics from the same population. Therefore, the apparent loss of allelic diversity caused by FP appears unlikely to have a significant impact on the prey-capturing ability of this snake. Accordingly, the pitviper offspring produced by FP retained complex phenotypic characteristics associated with fitness. This result reinforces the potential ecological and evolutionary importance of FP and questions our understanding of the inheritance of venom-associated genes.
Collapse
Affiliation(s)
- J J Calvete
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain.
| | - N R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - U Hernández-Guzmán
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
- Laboratorio de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán C.P, 04510, Ciudad de México, Mexico
| | - S Quesada-Bernat
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
| | - L Sanz
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
| | - D R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - D Storey
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales, Bangor University, Bangor, LL57 2UW, UK
| | - L-O Albulescu
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - W Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Environment Centre Wales, Bangor University, Bangor, LL57 2UW, UK
- Chiricahua Desert Museum, P.O. Box 376, Rodeo, NM, USA
| | - C F Smith
- Chiricahua Desert Museum, P.O. Box 376, Rodeo, NM, USA
- The Copperhead Institute, P.O. Box 6755, Spartanburg, SC, USA
- Department of Biology, Wofford College, 429 North Church Street, Spartanburg, SC, USA
| | - G W Schuett
- Chiricahua Desert Museum, P.O. Box 376, Rodeo, NM, USA
- The Copperhead Institute, P.O. Box 6755, Spartanburg, SC, USA
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - W Booth
- Chiricahua Desert Museum, P.O. Box 376, Rodeo, NM, USA
- The Copperhead Institute, P.O. Box 6755, Spartanburg, SC, USA
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
35
|
Augstenová B, Johnson Pokorná M, Altmanová M, Frynta D, Rovatsos M, Kratochvíl L. ZW, XY, and yet ZW: Sex chromosome evolution in snakes even more complicated. Evolution 2018; 72:1701-1707. [PMID: 29972583 DOI: 10.1111/evo.13543] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/26/2018] [Indexed: 01/07/2023]
Abstract
Snakes are historically important in the formulation of several central concepts on the evolution of sex chromosomes. For over 50 years, it was believed that all snakes shared the same ZZ/ZW sex chromosomes, which are homomorphic and poorly differentiated in "basal" snakes such as pythons and boas, while heteromorphic and well differentiated in "advanced" (caenophidian) snakes. Recent molecular studies revealed that differentiated sex chromosomes are indeed shared among all families of caenophidian snakes, but that boas and pythons evolved likely independently male heterogamety (XX/XY sex chromosomes). The historical report of heteromorphic ZZ/ZW sex chromosomes in a boid snake was previously regarded as ambiguous. In the current study, we document heteromorphic ZZ/ZW sex chromosomes in a boid snake. A comparative approach suggests that these heteromorphic sex chromosomes evolved very recently and that they are poorly differentiated at the sequence level. Interestingly, two snake lineages with confirmed male heterogamety possess homomorphic sex chromosomes, but heteromorphic sex chromosomes are present in both snake lineages with female heterogamety. We point out that this phenomenon is more common across squamates. The presence of female heterogamety in non-caenophidian snakes indicates that the evolution of sex chromosomes in this lineage is much more complex than previously thought, making snakes an even better model system for the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| | - Martina Johnson Pokorná
- Department of Ecology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Liběchov, 277 21, Czech Republic
| | - Marie Altmanová
- Department of Ecology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Liběchov, 277 21, Czech Republic
| | - Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| |
Collapse
|
36
|
Ramachandran R, McDaniel CD. Parthenogenesis in birds: a review. Reproduction 2018; 155:R245-R257. [PMID: 29559496 DOI: 10.1530/rep-17-0728] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/19/2018] [Indexed: 01/20/2023]
Abstract
Parthenogenesis or 'virgin birth' is embryonic development in unfertilized eggs. It is a routine means of reproduction in many invertebrates. However, even though parthenogenesis occurs naturally in even more advanced vertebrates, like birds, it is mostly abortive in nature. In fact, multiple limiting factors, such as delayed and unorganized development as well as unfavorable conditions developing within the unfertilized egg upon incubation, are associated with termination of progressive development of parthenogenetic embryos. In birds, diploid parthenogenesis is automictic and facultative producing only males. However, the mechanisms controlling parthenogenesis in birds are not clearly elucidated. Additionally, it appears from even very recent research that these mechanisms may hinder the normal fertilization process and subsequent embryonic development. For instance, virgin quail and turkey hens exhibiting parthenogenesis have reduced reproductive performance following mating. Also, genetic selection and environmental factors, such as live virus vaccinations, are known to trigger the process of parthenogenesis in birds. Therefore, parthenogenesis has a plausible negative impact on the poultry industry. Hence, a better understanding of parthenogenesis and the mechanisms that control it could benefit commercial poultry production. In this context, the aim of this review is to provide a complete overview of the process of parthenogenesis in birds.
Collapse
Affiliation(s)
- R Ramachandran
- Department of Poultry Science, Mississippi State UniversityMississippi State, Mississippi, USA
| | - C D McDaniel
- Department of Poultry Science, Mississippi State UniversityMississippi State, Mississippi, USA
| |
Collapse
|
37
|
Allen L, Sanders KL, Thomson VA. Molecular evidence for the first records of facultative parthenogenesis in elapid snakes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171901. [PMID: 29515892 PMCID: PMC5830781 DOI: 10.1098/rsos.171901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/18/2018] [Indexed: 09/29/2023]
Abstract
Parthenogenesis is a form of asexual reproduction by which embryos develop from unfertilized eggs. Parthenogenesis occurs in reptiles; however, it is not yet known to occur in the widespread elapid snakes (Elapidae), which include well-known taxa such as cobras, mambas, taipans and sea snakes. Here, we describe the production of viable parthenogens in two species of Australo-Papuan elapids with divergent reproductive modes: the oviparous coastal/Papuan taipan (Oxyuranus scutellatus) and the viviparous southern death adder (Acanthophis antarcticus). Analyses of nuclear SNP data excluded paternity for putative fathers and convincingly demonstrated asexual reproduction, thus representing the first evidence of facultative parthenogenesis in Elapidae. Our finding has broad implications for understanding the evolution of reproductive diversity in snakes, as well as managing the conservation of genetic diversity in wild and captive populations.
Collapse
Affiliation(s)
- L. Allen
- Venom Supplies, PO Box 547, Tanunda, South Australia 5352, Australia
- School of Biological Sciences, and the Environment Institute, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - K. L. Sanders
- School of Biological Sciences, and the Environment Institute, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - V. A. Thomson
- School of Biological Sciences, and the Environment Institute, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
38
|
Ryskov AP, Osipov FA, Omelchenko AV, Semyenova SK, Girnyk AE, Korchagin VI, Vergun AA, Murphy RW. The origin of multiple clones in the parthenogenetic lizard species Darevskia rostombekowi. PLoS One 2017; 12:e0185161. [PMID: 28931071 PMCID: PMC5607197 DOI: 10.1371/journal.pone.0185161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/07/2017] [Indexed: 11/19/2022] Open
Abstract
The all-female Caucasian rock lizard Darevskia rostombekowi and other unisexual species of this genus reproduce normally via true parthenogenesis. Typically, diploid parthenogenetic reptiles exhibit some amount of clonal diversity. However, allozyme data from D. rostombekowi have suggested that this species consists of a single clone. Herein, we test this hypothesis by evaluating variation at three variable microsatellite loci for 42 specimens of D. rostombekowi from four populations in Armenia. Analyses based on single nucleotide polymorphisms of each locus reveal five genotypes or presumptive clones in this species. All individuals are heterozygous at the loci. The major clone occurs in 24 individuals and involves three populations. Four rare clones involve one or several individuals from one or two populations. Most variation owes to parent-specific single nucleotide polymorphisms, which occur as heterozygotes. This result fails to reject the hypothesis of a single hybridization founder event that resulted in the initial formation of one major clone. The other clones appear to have originated via post-formation microsatellite mutations of the major clone.
Collapse
Affiliation(s)
- Alexey P. Ryskov
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Fedor A. Osipov
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
- Department of Biochemistry, Molecular biology and Genetics, Moscow State Pedagogical University, Moscow, Russia
| | - Andrey V. Omelchenko
- Group of Bioinformatics and Modeling Biological Process, Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Seraphima K. Semyenova
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya E. Girnyk
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vitaly I. Korchagin
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey A. Vergun
- Laboratory of Genome Organization, Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
- Department of Biochemistry, Molecular biology and Genetics, Moscow State Pedagogical University, Moscow, Russia
| | - Robert W. Murphy
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| |
Collapse
|
39
|
|
40
|
Gamble T, Castoe TA, Nielsen SV, Banks JL, Card DC, Schield DR, Schuett GW, Booth W. The Discovery of XY Sex Chromosomes in a Boa and Python. Curr Biol 2017; 27:2148-2153.e4. [DOI: 10.1016/j.cub.2017.06.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/21/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
|
41
|
Feldheim KA, Clews A, Henningsen A, Todorov L, McDermott C, Meyers M, Bradley J, Pulver A, Anderson E, Marshall A. Multiple births by a captive swellshark Cephaloscyllium ventriosum via facultative parthenogenesis. JOURNAL OF FISH BIOLOGY 2017; 90:1047-1053. [PMID: 27861877 DOI: 10.1111/jfb.13202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Using a novel set of 12 microsatellites, a captive, adult female swellshark Cephaloscyllium ventriosum that produced five pups via parthenogenesis is described; naturally occurring parthenogenesis has been observed in every vertebrate class with the exception of mammals. As demonstrated in this study, a captive environment is ideal for long-term monitoring of animals under controlled conditions, and easily allows the detection of particular facets of their biology.
Collapse
Affiliation(s)
- K A Feldheim
- Field Museum of Natural History, Pritzker Laboratory for Molecular Systematics and Evolution, 1400 S. Lake Shore Drive, Chicago, IL, 60605, U.S.A
| | - A Clews
- National Aquarium, Animal Science and Welfare, Pier 3, 501 E. Pratt Street, Baltimore, MD, 21202, U.S.A
| | - A Henningsen
- National Aquarium, Animal Science and Welfare, Pier 3, 501 E. Pratt Street, Baltimore, MD, 21202, U.S.A
| | - L Todorov
- Field Museum of Natural History, Pritzker Laboratory for Molecular Systematics and Evolution, 1400 S. Lake Shore Drive, Chicago, IL, 60605, U.S.A
| | - C McDermott
- National Aquarium, Animal Science and Welfare, Pier 3, 501 E. Pratt Street, Baltimore, MD, 21202, U.S.A
| | - M Meyers
- National Aquarium, Animal Science and Welfare, Pier 3, 501 E. Pratt Street, Baltimore, MD, 21202, U.S.A
| | - J Bradley
- National Aquarium, Animal Science and Welfare, Pier 3, 501 E. Pratt Street, Baltimore, MD, 21202, U.S.A
| | - A Pulver
- National Aquarium, Animal Science and Welfare, Pier 3, 501 E. Pratt Street, Baltimore, MD, 21202, U.S.A
| | - E Anderson
- National Aquarium, Animal Science and Welfare, Pier 3, 501 E. Pratt Street, Baltimore, MD, 21202, U.S.A
| | - A Marshall
- America's Wildlife Museum & Aquarium, 500 West Sunshine Street, Springfield, MO, 65807, U.S.A
| |
Collapse
|
42
|
Switch from sexual to parthenogenetic reproduction in a zebra shark. Sci Rep 2017; 7:40537. [PMID: 28091617 PMCID: PMC5238396 DOI: 10.1038/srep40537] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/28/2016] [Indexed: 11/08/2022] Open
Abstract
Parthenogenesis is a natural form of asexual reproduction in which embryos develop in the absence of fertilisation. Most commonly found in plants and invertebrate organisms, an increasing number of vertebrate species have recently been reported employing this reproductive strategy. Here we use DNA genotyping to report the first demonstration of an intra-individual switch from sexual to parthenogenetic reproduction in a shark species, the zebra shark Stegostoma fasciatum. A co-housed, sexually produced daughter zebra shark also commenced parthenogenetic reproduction at the onset of maturity without any prior mating. The demonstration of parthenogenesis in these two conspecific individuals with different sexual histories provides further support that elasmobranch fishes may flexibly adapt their reproductive strategy to environmental circumstances.
Collapse
|