1
|
Lohrberg M, Heber M, Ries L, Markus K, Ksionsko N, Schmidt N, Nothnick G, Thielking L, O'Neill M, Martínéz-González S, Blanco-Aparicio C, Pastor J, Cunningham D, Koch R. Dual Targeting of Pim and PI3 Kinases in Mature T-Cell Lymphoma. Eur J Haematol 2025. [PMID: 40165380 DOI: 10.1111/ejh.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Provirus Integration site for Moloney leukemia virus (Pim) family members are well-known oncogenes, with an expression that is restricted to few cell types including hematopoietic cells in adult organisms, making it a promising target for lymphoma treatment. Indeed, previous studies in mature T-cell lymphoma (mTCL) cells revealed frequent upregulation of Pim expression. Nevertheless, inhibition of Pim kinases showed only minor effects on the viability of mTCL cells so far. Thus, we here addressed cellular responses to therapeutic inhibition of Pim kinases and identified a PI3K/Akt-driven activation of mTOR as a significant escape mechanism mitigating the anti-lymphoma effects of Pim inhibition. Indeed, dual inhibition of Pim and PI3 kinases showed synergistic anti-lymphoma effects in vitro through downregulation of mTOR-induced protein translation and mitigation of BCL-xL-mediated anti-apoptotic mechanisms. Based on this finding, we next explored the therapeutic potential of the dual Pim/PI3K inhibitor IBL-202 in mTCL cell lines. Strikingly, IBL-202 strongly induced cell-cycle-dependent cell death in cell lines of different mTCL subtypes. Together, our study provides mechanistic evidence supporting a therapeutic strategy of dual Pim- and PI3-kinase inhibition in mature T-cell lymphoma.
Collapse
Affiliation(s)
- M Lohrberg
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - M Heber
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - L Ries
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - K Markus
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - N Ksionsko
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - N Schmidt
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - G Nothnick
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - L Thielking
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - M O'Neill
- Inflection Biosciences Ltd., Dublin, Ireland
| | | | | | - J Pastor
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | | | - R Koch
- Haematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Wu S, Jin J, Huang J, Chen G, Chen Y. Comprehensive analysis of the RSK gene family in acute myeloid leukemia determines a prognostic signature for the prediction of clinical prognosis and treatment responses. Hematology 2023; 28:2235833. [PMID: 37462338 DOI: 10.1080/16078454.2023.2235833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/08/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE The prognosis of acute myeloid leukemia (AML) remains poor although the basic and translational research has been highly productive in understanding the genetics and pathopoiesis of AML and a plethora of targeted therapies have been developed. Consequently, it is crucial to deepen the knowledge of molecular pathogenesis underlying AML for the advancement of new treatment options. METHOD A RSK gene family-related signature was constructed to investigate whether RSK gene family members were useful in predicting the prognosis of AML patients. The relationship between the RSK gene family-related signature and the infiltration of immune cells was further assessed using the CIBERSORT algorithm. The 'oncoPredict' package was used to analyze relationships between the RSK gene family-related signature and the sensitivity to drugs or small molecules. RESULTS Patients were classified into two groups using the RSK gene family-related signature following the median risk score. Overall survival (OS) was significantly longer in patients with low-risk scores than that in patients with high-risk scores as showed by both training and validation datasets. Moreover, the signature was helpful in predicting 1-year, 3-year, and 5-year OS in training and validation datasets. In addition, it was identified that low-risk patients exhibited greater sensitivity to 20 drugs or small molecules and that high-risk patients had higher sensitivity to 38 drugs or small molecules. CONCLUSION RSK gene family members, particularly RPS6KA1 and RPS6KA4, may help to predict prognosis for AML patients. Furthermore, RPS6KA1 may serve as a novel drug target for AML.
Collapse
Affiliation(s)
- Shasha Wu
- Guizhou Medical University, Guiyang, People's Republic of China
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Jiao Jin
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Jing Huang
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Guifang Chen
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Yan Chen
- Guizhou Medical University, Guiyang, People's Republic of China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
3
|
Ingle K, LaComb JF, Graves LM, Baines AT, Bialkowska AB. AUM302, a novel triple kinase PIM/PI3K/mTOR inhibitor, is a potent in vitro pancreatic cancer growth inhibitor. PLoS One 2023; 18:e0294065. [PMID: 37943821 PMCID: PMC10635512 DOI: 10.1371/journal.pone.0294065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Pancreatic cancer is one of the leading causes of cancer deaths, with pancreatic ductal adenocarcinoma (PDAC) being the most common subtype. Advanced stage diagnosis of PDAC is common, causing limited treatment opportunities. Gemcitabine is a frequently used chemotherapeutic agent which can be used as a monotherapy or in combination. However, tumors often develop resistance to gemcitabine. Previous studies show that the proto-oncogene PIM kinases (PIM1 and PIM3) are upregulated in PDAC compared to matched normal tissue and are related to chemoresistance and PDAC cell growth. The PIM kinases are also involved in the PI3K/AKT/mTOR pathway to promote cell survival. In this study, we evaluate the effect of the novel multikinase PIM/PI3K/mTOR inhibitor, AUM302, and commercially available PIM inhibitor, TP-3654. Using five human PDAC cell lines, we found AUM302 to be a potent inhibitor of cell proliferation, cell viability, cell cycle progression, and phosphoprotein expression, while TP-3654 was less effective. Significantly, AUM302 had a strong impact on the viability of gemcitabine-resistant PDAC cells. Taken together, these results demonstrate that AUM302 exhibits antitumor activity in human PDAC cells and thus has the potential to be an effective drug for PDAC therapy.
Collapse
Affiliation(s)
- Komala Ingle
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States of America
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States of America
| | - Lee M. Graves
- Department of Pharmacology, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Antonio T. Baines
- Department of Pharmacology, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biological & Biomedical Sciences, College of Health & Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
4
|
Takahashi S. Combination Therapies with Kinase Inhibitors for Acute Myeloid Leukemia Treatment. Hematol Rep 2023; 15:331-346. [PMID: 37367084 DOI: 10.3390/hematolrep15020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/10/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Targeting kinase activity is considered to be an attractive therapeutic strategy to overcome acute myeloid leukemia (AML) since aberrant activation of the kinase pathway plays a pivotal role in leukemogenesis through abnormal cell proliferation and differentiation block. Although clinical trials for kinase modulators as single agents remain scarce, combination therapies are an area of therapeutic interest. In this review, the author summarizes attractive kinase pathways for therapeutic targets and the combination strategies for these pathways. Specifically, the review focuses on combination therapies targeting the FLT3 pathways, as well as PI3K/AKT/mTOR, CDK and CHK1 pathways. From a literature review, combination therapies with the kinase inhibitors appear more promising than monotherapies with individual agents. Therefore, the development of efficient combination therapies with kinase inhibitors may result in effective therapeutic strategies for AML.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| |
Collapse
|
5
|
Targeting Pim kinases in hematological cancers: molecular and clinical review. Mol Cancer 2023; 22:18. [PMID: 36694243 PMCID: PMC9875428 DOI: 10.1186/s12943-023-01721-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Decades of research has recognized a solid role for Pim kinases in lymphoproliferative disorders. Often up-regulated following JAK/STAT and tyrosine kinase receptor signaling, Pim kinases regulate cell proliferation, survival, metabolism, cellular trafficking and signaling. Targeting Pim kinases represents an interesting approach since knock-down of Pim kinases leads to non-fatal phenotypes in vivo suggesting clinical inhibition of Pim may have less side effects. In addition, the ATP binding site offers unique characteristics that can be used for the development of small inhibitors targeting one or all Pim isoforms. This review takes a closer look at Pim kinase expression and involvement in hematopoietic cancers. Current and past clinical trials and in vitro characterization of Pim kinase inhibitors are examined and future directions are discussed. Current studies suggest that Pim kinase inhibition may be most valuable when accompanied by multi-drug targeting therapy.
Collapse
|
6
|
Liang YY, Niu FY, Xu AA, Jiang LL, Liu CS, Liang HP, Huang YF, Shao XF, Mo ZW, Yuan YW. Increased MCL-1 synthesis promotes irradiation-induced nasopharyngeal carcinoma radioresistance via regulation of the ROS/AKT loop. Cell Death Dis 2022; 13:131. [PMID: 35136016 PMCID: PMC8827103 DOI: 10.1038/s41419-022-04551-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
Worldwide, nasopharyngeal carcinoma (NPC) is a rare head and neck cancer; however, it is a common malignancy in southern China. Radiotherapy is the most important treatment strategy for NPC. However, although radiotherapy is a strong tool to kill cancer cells, paradoxically it also promotes aggressive phenotypes. Therefore, we mimicked the treatment process in NPC cells in vitro. Upon exposure to radiation, a subpopulation of NPC cells gradually developed resistance to radiation and displayed cancer stem-cell characteristics. Radiation-induced stemness largely depends on the accumulation of the antiapoptotic myeloid cell leukemia 1 (MCL-1) protein. Upregulated MCL-1 levels were caused by increased stability and more importantly, enhanced protein synthesis. We showed that repeated ionizing radiation resulted in persistently enhanced reactive oxygen species (ROS) production at a higher basal level, further promoting protein kinase B (AKT) signaling activation. Intracellular ROS and AKT activation form a positive feedback loop in the process of MCL-1 protein synthesis, which in turn induces stemness and radioresistance. AKT/MCL-1 axis inhibition attenuated radiation-induced resistance, providing a potential target to reverse radiation therapy-induced radioresistance.
Collapse
Affiliation(s)
- Ying-Ying Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Fei-Yu Niu
- Department of Internal Medicine, Section 3, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - An-An Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Li-Li Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Chun-Shan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Hui-Ping Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yu-Fan Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xun-Fan Shao
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Wen Mo
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Ya-Wei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Lai L, Chen X, Tian G, Liang R, Chen X, Qin Y, Chen K, Zhu X. Clinical Significance of Pim-1 in Human Cancers: A Meta-analysis of Association with Prognosis and Clinicopathological Characteristics. Cancer Control 2022; 29:10732748221106268. [PMID: 35844176 PMCID: PMC9290152 DOI: 10.1177/10732748221106268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Pim-1 is overexpressed in cancer tissues and plays a vital role in carcinogenesis. However, its clinical significance in cancers is not fully verified by meta-analysis, especially in relation to prognosis and clinicopathological features. Methods Four databases, PubMed, Embase, Cochrane Library, and Web of Science, were searched. Literature screening and data extraction according to the inclusion and exclusion criteria. The quality of the included literatures was evaluated using the Newcastle-Ottawa scale and the data analysis was performed using STATA and Review Manager software. Results 15 articles were finally included for meta-analysis, involving 1651 patients. Effect-size pooling analysis showed that high Pim-1 was related to poor overall survival (OS) (HR 1.68 [95% CI 1.17-2.40], P = .004) and disease-free survival (DFS) (HR 2.15 [95 %CI 1.15-4.01], P = .000). Subgroup analysis indicated that the detection techniques of Pim-1 were the main sources of heterogeneity, and 2 literatures using quantitative polymerase chain reaction (qPCR) for Pim-1mRNA had high homogeneity (I2 = .0%, P = .321) in OS. Another 13 studies that applied immunohistochemistry (IHC) for Pim-1 protein had significant heterogeneity (I2=82.2%, P = .000; I2=92%, P = .000) in OS and DFS, respectively, and further analysis demonstrated that ethnicity, sample size, and histopathological origin were considered to be the main factors affecting their heterogeneity. In addition, high Pim-1 was associated with lymph node metastasis (OR 1.40 [95% CI 1.02-1.92], P = .04), distant metastasis (OR 2.69 [95%CI 1.67-4.35], P < .0001), and clinical stage III-IV (OR .7 [95% CI .50-.96, P = .03). Sensitivity analysis suggested that the pooled results of each effect-size were stable and reliable, and there was no significant publication bias (P = .138) in all included articles. Conclusion High Pim-1 can not only predict poor OS and DFS of cancer, but also help to infer the malignant clinical characteristics of tumor metastasis. Pim-1 may be a potential and promising biomarker for early diagnosis, prognostic analysis and targeted therapy of tumors.
Collapse
Affiliation(s)
- Lin Lai
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.,Department of Medical Oncology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, People's Republic of China
| | - Xinyu Chen
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Ge Tian
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Renba Liang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xishan Chen
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Yuelan Qin
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Kaihua Chen
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xiaodong Zhu
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China.,Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
8
|
Martínez-González S, Alvarez RM, Martín JI, García AB, Riesco-Fagundo C, Varela C, Rodríguez Hergueta A, González Cantalapiedra E, Albarrán MI, Gómez-Casero E, Cebriá A, Aguirre E, Ajenjo N, Cebrián D, Di Geronimo B, Cunningham D, O’Neill M, Dave HPG, Blanco-Aparicio C, Pastor J. Macrocyclization as a Source of Desired Polypharmacology. Discovery of Triple PI3K/mTOR/PIM Inhibitors. ACS Med Chem Lett 2021; 12:1794-1801. [PMID: 34795869 PMCID: PMC8591745 DOI: 10.1021/acsmedchemlett.1c00412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
The PI3K/AKT/mTOR and PIM kinase pathways contribute to the development of several hallmarks of cancer. Cotargeting of these pathways has exhibited promising synergistic therapeutic effects in liquid and solid tumor types. To identify molecules with combined activities, we cross-screened our collection of PI3K/(±mTOR) macrocycles (MCXs) and identified the MCX thieno[3,2-d]pyrimidine derivative 2 as a moderate dual PI3K/PIM-1 inhibitor. We report the medicinal chemistry exploration and biological characterization of a series of thieno[3,2-d]pyrimidine MCXs, which led to the discovery of IBL-302 (31), a potent, selective, and orally bioavailable triple PI3K/mTOR/PIM inhibitor. IBL-302, currently in late preclinical development (AUM302), has recently demonstrated efficacy in neuroblastoma and breast cancer xenografts. Additionally, during the course of our experiments, we observed that macrocyclization was essential to obtain the desired multitarget profile. As a matter of example, the open precursors 35-37 were inactive against PIM whereas MCX 28 displayed low nanomolar activity.
Collapse
Affiliation(s)
- Sonia Martínez-González
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Rosa M. Alvarez
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - José I. Martín
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Ana Belén García
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Concepción Riesco-Fagundo
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Carmen Varela
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Antonio Rodríguez Hergueta
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Esther González Cantalapiedra
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - M. I. Albarrán
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Elena Gómez-Casero
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Antonio Cebriá
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Enara Aguirre
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Nuria Ajenjo
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - David Cebrián
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Bruno Di Geronimo
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Darren Cunningham
- Inflection
Biosciences Ltd., Suite
15, Anglesea 419 House, Carysfort Avenue Blackrock, Dublin A94 VC59, Ireland
| | - Michael O’Neill
- Inflection
Biosciences Ltd., Suite
15, Anglesea 419 House, Carysfort Avenue Blackrock, Dublin A94 VC59, Ireland
| | - Harish P. G. Dave
- AUM
Biosciences, 24-428 16A,
10 Anson Road, International Plaza, Singapore 429 079903
| | - Carmen Blanco-Aparicio
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | - Joaquín Pastor
- Experimental
Therapeutics Programme, Spanish National
Cancer Research Centre (CNIO), C/Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| |
Collapse
|
9
|
Rathi A, Kumar D, Hasan GM, Haque MM, Hassan MI. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim Biophys Acta Gen Subj 2021; 1865:129995. [PMID: 34455019 DOI: 10.1016/j.bbagen.2021.129995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
10
|
PIM Kinases in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13174304. [PMID: 34503111 PMCID: PMC8428354 DOI: 10.3390/cancers13174304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable disease and novel therapeutic agents/approaches are urgently needed. The PIM (Proviral insertion in murine malignancies) serine/threonine kinases have 3 isoforms: PIM1, PIM2, and PIM3. PIM kinases are engaged with an expansive scope of biological activities including cell growth, apoptosis, drug resistance, and immune response. An assortment of molecules and pathways that are critical to myeloma tumorigenesis has been recognized as the downstream targets of PIM kinases. The inhibition of PIM kinases has become an emerging scientific interest for the treatment of multiple myeloma and several PIM kinase inhibitors, such as SGI-1776, AZD1208, and PIM447 (formerly LGH447), have been developed and are under different phases of clinical trials. Current research has been focused on the development of a new generation of potent PIM kinase inhibitors with appropriate pharmacological profiles reasonable for human malignancy treatment. Combination therapy of PIM kinase inhibitors with chemotherapeutic appears to create an additive cytotoxic impact in cancer cells. Notwithstanding, the mechanisms by which PIM kinases modulate the immune microenvironment and synergize with the immunomodulatory agents such as lenalidomide have not been deliberately depicted. This review provides a comprehensive overview of the PIM kinase pathways and the current research status of the development of PIM kinase inhibitors for the treatment of MM. Additionally, the combinatorial effects of the PIM kinase inhibitors with other targeted agents and the promising strategies to exploit PIM as a therapeutic target in malignancy are highlighted.
Collapse
|
11
|
Mologni L, Marzaro G, Redaelli S, Zambon A. Dual Kinase Targeting in Leukemia. Cancers (Basel) 2021; 13:E119. [PMID: 33401428 PMCID: PMC7796318 DOI: 10.3390/cancers13010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Pharmacological cancer therapy is often based on the concurrent inhibition of different survival pathways to improve treatment outcomes and to reduce the risk of relapses. While this strategy is traditionally pursued only through the co-administration of several drugs, the recent development of multi-targeting drugs (i.e., compounds intrinsically able to simultaneously target several macromolecules involved in cancer onset) has had a dramatic impact on cancer treatment. This review focuses on the most recent developments in dual-kinase inhibitors used in acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), and lymphoid tumors, giving details on preclinical studies as well as ongoing clinical trials. A brief overview of dual-targeting inhibitors (kinase/histone deacetylase (HDAC) and kinase/tubulin polymerization inhibitors) applied to leukemia is also given. Finally, the very recently developed Proteolysis Targeting Chimeras (PROTAC)-based kinase inhibitors are presented.
Collapse
Affiliation(s)
- Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy;
| | - Sara Redaelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Alfonso Zambon
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
12
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
13
|
Kennedy SP, O'Neill M, Cunningham D, Morris PG, Toomey S, Blanco-Aparicio C, Martinez S, Pastor J, Eustace AJ, Hennessy BT. Preclinical evaluation of a novel triple-acting PIM/PI3K/mTOR inhibitor, IBL-302, in breast cancer. Oncogene 2020; 39:3028-3040. [PMID: 32042115 PMCID: PMC7118022 DOI: 10.1038/s41388-020-1202-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 11/09/2022]
Abstract
The proviral integration of Moloney virus (PIM) family of protein kinases are overexpressed in many haematological and solid tumours. PIM kinase expression is elevated in PI3K inhibitor-treated breast cancer samples, suggesting a major resistance pathway for PI3K inhibitors in breast cancer, potentially limiting their clinical utility. IBL-302 is a novel molecule that inhibits both PIM and PI3K/AKT/mTOR signalling. We thus evaluated the preclinical activity of IBL-302, in a range of breast cancer models. Our results demonstrate in vitro efficacy of IBL-302 in a range of breast cancer cell lines, including lines with acquired resistance to trastuzumab and lapatinib. IBL-302 demonstrated single-agent, anti-tumour efficacy in suppression of pAKT, pmTOR and pBAD in the SKBR-3, BT-474 and HCC-1954 HER2+/PIK3CA-mutated cell lines. We have also shown the in vivo single-agent efficacy of IBL-302 in the subcutaneous BT-474 and HCC-1954 xenograft model in BALB/c nude mice. The combination of trastuzumab and IBL-302 significantly increased the anti-proliferative effect in HER2+ breast cancer cell line, and matched trastuzumab-resistant line, relative to testing either drug alone. We thus believe that the novel PIM and PI3K/mTOR inhibitor, IBL-302, represents an exciting new potential treatment option for breast cancer, and that it should be considered for clinical investigation.
Collapse
Affiliation(s)
- Sean P Kennedy
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons Ireland, Smurfit Building Beaumont Hospital, Beaumont, Dublin, Ireland.
| | - Michael O'Neill
- Inflection Biosciences, Anglesea House, Blackrock, Dublin, Ireland
| | | | - Patrick G Morris
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons Ireland, Smurfit Building Beaumont Hospital, Beaumont, Dublin, Ireland.,Cancer Clinical Trials and Research Unit, Beaumont Hospital, Dublin, Ireland
| | - Sinead Toomey
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons Ireland, Smurfit Building Beaumont Hospital, Beaumont, Dublin, Ireland
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Martinez
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Joaquin Pastor
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alex J Eustace
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Bryan T Hennessy
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons Ireland, Smurfit Building Beaumont Hospital, Beaumont, Dublin, Ireland.,Cancer Clinical Trials and Research Unit, Beaumont Hospital, Dublin, Ireland.,Cancer Trials Ireland, Innovation House, Old Finglas Road, Botanic, Dublin, Ireland
| |
Collapse
|
14
|
Lampron MC, Vitry G, Nadeau V, Grobs Y, Paradis R, Samson N, Tremblay È, Boucherat O, Meloche J, Bonnet S, Provencher S, Potus F, Paulin R. PIM1 (Moloney Murine Leukemia Provirus Integration Site) Inhibition Decreases the Nonhomologous End-Joining DNA Damage Repair Signaling Pathway in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2020; 40:783-801. [PMID: 31969012 DOI: 10.1161/atvbaha.119.313763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Pulmonary arterial hypertension (PAH) is a fatal disease characterized by the narrowing of pulmonary arteries (PAs). It is now established that this phenotype is associated with enhanced PA smooth muscle cells (PASMCs) proliferation and suppressed apoptosis. This phenotype is sustained in part by the activation of several DNA repair pathways allowing PASMCs to survive despite the unfavorable environmental conditions. PIM1 (Moloney murine leukemia provirus integration site) is an oncoprotein upregulated in PAH and involved in many prosurvival pathways, including DNA repair. The objective of this study was to demonstrate the implication of PIM1 in the DNA damage response and the beneficial effect of its inhibition by pharmacological inhibitors in human PAH-PASMCs and in rat PAH models. Approach and Results: We found in vitro that PIM1 inhibition by either SGI-1776, TP-3654, siRNA (silencer RNA) decreased the phosphorylation of its newly identified direct target KU70 (lupus Ku autoantigen protein p70) resulting in the inhibition of double-strand break repair (Comet Assay) by the nonhomologous end-joining as well as reduction of PAH-PASMCs proliferation (Ki67-positive cells) and resistance to apoptosis (Annexin V positive cells) of PAH-PASMCs. In vivo, SGI-1776 and TP-3654 given 3× a week, improved significantly pulmonary hemodynamics (right heart catheterization) and vascular remodeling (Elastica van Gieson) in monocrotaline and Fawn-Hooded rat models of PAH. CONCLUSIONS We demonstrated that PIM1 phosphorylates KU70 and initiates DNA repair signaling in PAH-PASMCs and that PIM1 inhibitors represent a therapeutic option for patients with PAH.
Collapse
Affiliation(s)
- Marie-Claude Lampron
- From the Department of Medicine, Pulmonary Hypertension and Vascular Biology Research Group, Heart and Lung Institute of Quebec, Université Laval, Quebec City, Quebec, Canada (M.-C.L., G.V., V.N., Y.G., R.P., N.S., E.T., O.B., S.B., S.P., F.P., R.P.)
| | - Géraldine Vitry
- From the Department of Medicine, Pulmonary Hypertension and Vascular Biology Research Group, Heart and Lung Institute of Quebec, Université Laval, Quebec City, Quebec, Canada (M.-C.L., G.V., V.N., Y.G., R.P., N.S., E.T., O.B., S.B., S.P., F.P., R.P.)
| | - Valérie Nadeau
- From the Department of Medicine, Pulmonary Hypertension and Vascular Biology Research Group, Heart and Lung Institute of Quebec, Université Laval, Quebec City, Quebec, Canada (M.-C.L., G.V., V.N., Y.G., R.P., N.S., E.T., O.B., S.B., S.P., F.P., R.P.)
| | - Yann Grobs
- From the Department of Medicine, Pulmonary Hypertension and Vascular Biology Research Group, Heart and Lung Institute of Quebec, Université Laval, Quebec City, Quebec, Canada (M.-C.L., G.V., V.N., Y.G., R.P., N.S., E.T., O.B., S.B., S.P., F.P., R.P.)
| | - Renée Paradis
- From the Department of Medicine, Pulmonary Hypertension and Vascular Biology Research Group, Heart and Lung Institute of Quebec, Université Laval, Quebec City, Quebec, Canada (M.-C.L., G.V., V.N., Y.G., R.P., N.S., E.T., O.B., S.B., S.P., F.P., R.P.)
| | - Nolwenn Samson
- From the Department of Medicine, Pulmonary Hypertension and Vascular Biology Research Group, Heart and Lung Institute of Quebec, Université Laval, Quebec City, Quebec, Canada (M.-C.L., G.V., V.N., Y.G., R.P., N.S., E.T., O.B., S.B., S.P., F.P., R.P.)
| | - Ève Tremblay
- From the Department of Medicine, Pulmonary Hypertension and Vascular Biology Research Group, Heart and Lung Institute of Quebec, Université Laval, Quebec City, Quebec, Canada (M.-C.L., G.V., V.N., Y.G., R.P., N.S., E.T., O.B., S.B., S.P., F.P., R.P.)
| | - Olivier Boucherat
- From the Department of Medicine, Pulmonary Hypertension and Vascular Biology Research Group, Heart and Lung Institute of Quebec, Université Laval, Quebec City, Quebec, Canada (M.-C.L., G.V., V.N., Y.G., R.P., N.S., E.T., O.B., S.B., S.P., F.P., R.P.)
| | - Jolyane Meloche
- Department of Fundamental Sciences, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada (J.M.)
| | - Sébastien Bonnet
- From the Department of Medicine, Pulmonary Hypertension and Vascular Biology Research Group, Heart and Lung Institute of Quebec, Université Laval, Quebec City, Quebec, Canada (M.-C.L., G.V., V.N., Y.G., R.P., N.S., E.T., O.B., S.B., S.P., F.P., R.P.)
| | - Steeve Provencher
- From the Department of Medicine, Pulmonary Hypertension and Vascular Biology Research Group, Heart and Lung Institute of Quebec, Université Laval, Quebec City, Quebec, Canada (M.-C.L., G.V., V.N., Y.G., R.P., N.S., E.T., O.B., S.B., S.P., F.P., R.P.)
| | - François Potus
- From the Department of Medicine, Pulmonary Hypertension and Vascular Biology Research Group, Heart and Lung Institute of Quebec, Université Laval, Quebec City, Quebec, Canada (M.-C.L., G.V., V.N., Y.G., R.P., N.S., E.T., O.B., S.B., S.P., F.P., R.P.)
| | - Roxane Paulin
- From the Department of Medicine, Pulmonary Hypertension and Vascular Biology Research Group, Heart and Lung Institute of Quebec, Université Laval, Quebec City, Quebec, Canada (M.-C.L., G.V., V.N., Y.G., R.P., N.S., E.T., O.B., S.B., S.P., F.P., R.P.)
| |
Collapse
|
15
|
Long Z, Feng G, Zhao N, Wu L, Zhu H. Isoferulic acid inhibits human leukemia cell growth through induction of G2/M‑phase arrest and inhibition of Akt/mTOR signaling. Mol Med Rep 2020; 21:1035-1042. [PMID: 31922221 PMCID: PMC7002969 DOI: 10.3892/mmr.2020.10926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/15/2019] [Indexed: 01/06/2023] Open
Abstract
Hematologic malignancy is a serious disease that develops quickly and aggressively, severely threatening human health owing to its high mortality. The current study aimed to evaluate the antitumor effects of isoferulic acid (IFA) on leukemia cells and investigate the possible molecular mechanisms. Hematologic cancer cell lines (Raji, K562 and Jurkat) were treated with IFA in a dose‑dependent manner and proliferation was measured by a cell proliferation assay. Cell cycle arrest was detected via flow cytometry using propidium iodide (PI) staining. Cell apoptosis and apoptosis‑associated signal pathways were analyzed via Annexin V/PI staining and western blot assays, respectively. IFA inhibited cell viability, induced cell apoptosis and triggered cell cycle arrest in G2/M phase in Raji, K562, and Jurkat cells in a dose‑dependent manner. In response to IFA treatment, the levels of cleaved poly(ADP‑ribose) polymerase and cleaved caspase‑3 were increased in Jurkat and K562 cells, which was associated with increased phosphorylation of Cdc2 and reduction of Cyclin B1 levels. IFA remarkably attenuated the phosphorylation of mTOR and Akt in Jurkat cells. Collectively, the present data suggested that IFA had therapeutic effects on Jurkat, K562, and Raji cells, indicating it as a promising candidate for the treatment of hematologic malignancy.
Collapse
Affiliation(s)
- Zhiguo Long
- Department of Hematology, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, P.R. China
| | - Guangjia Feng
- Department of Hematology, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, P.R. China
| | - Na Zhao
- Department of Hematology, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, P.R. China
| | - Lei Wu
- Department of Hematology, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, P.R. China
| | - Hongbo Zhu
- Department of Pathology, Shanghai Pudong Hospital, Fudan University, Shanghai 201399, P.R. China
| |
Collapse
|
16
|
Phosphorylation of DEPDC5, a component of the GATOR1 complex, releases inhibition of mTORC1 and promotes tumor growth. Proc Natl Acad Sci U S A 2019; 116:20505-20510. [PMID: 31548394 DOI: 10.1073/pnas.1904774116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Pim and AKT serine/threonine protein kinases are implicated as drivers of cancer. Their regulation of tumor growth is closely tied to the ability of these enzymes to mainly stimulate protein synthesis by activating mTORC1 (mammalian target of rapamycin complex 1) signaling, although the exact mechanism is not completely understood. mTORC1 activity is normally suppressed by amino acid starvation through a cascade of multiple regulatory protein complexes, e.g., GATOR1, GATOR2, and KICSTOR, that reduce the activity of Rag GTPases. Bioinformatic analysis revealed that DEPDC5 (DEP domain containing protein 5), a component of GATOR1 complex, contains Pim and AKT protein kinase phosphorylation consensus sequences. DEPDC5 phosphorylation by Pim and AKT kinases was confirmed in cancer cells through the use of phospho-specific antibodies and transfection of phospho-inactive DEPDC5 mutants. Consistent with these findings, during amino acid starvation the elevated expression of Pim1 overcame the amino acid inhibitory protein cascade and activated mTORC1. In contrast, the knockout of DEPDC5 partially blocked the ability of small molecule inhibitors against Pim and AKT kinases both singly and in combination to suppress tumor growth and mTORC1 activity in vitro and in vivo. In animal experiments knocking in a glutamic acid (S1530E) in DEPDC5, a phospho mimic, in tumor cells induced a significant level of resistance to Pim and the combination of Pim and AKT inhibitors. Our results indicate a phosphorylation-dependent regulatory mechanism targeting DEPDC5 through which Pim1 and AKT act as upstream effectors of mTORC1 to facilitate proliferation and survival of cancer cells.
Collapse
|
17
|
The first-in-human study of the pan-PIM kinase inhibitor PIM447 in patients with relapsed and/or refractory multiple myeloma. Leukemia 2019; 33:2924-2933. [PMID: 31092894 DOI: 10.1038/s41375-019-0482-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/27/2022]
Abstract
PIM447, a novel pan-PIM inhibitor, has shown preclinical activity in multiple myeloma (MM). In the multicenter, open-label, first-in-human study, patients with relapsed and/or refractory MM were enrolled to determine the maximum-tolerated dose (MTD) or recommended dose (RD), safety, pharmacokinetics, and preliminary anti-myeloma activity of PIM447. PIM447 was administered in escalating oral doses of 70-700 mg once daily (q.d.) for 28-day continuous cycles. Seventy-nine patients with a median of four prior therapies were enrolled. Seventy-seven patients (97.5%) had an adverse event (AE) suspected as treatment related, with treatment-related grade 3/4 AEs being mostly hematologic. Eleven dose-limiting toxicities occurred, and an MTD of 500 mg q.d. and an RD of 300 mg q.d. were established. The main reason for discontinuation was disease progression in 54 patients (68.4%). In the entire study population, a disease control rate of 72.2%, a clinical benefit rate of 25.3%, and an overall response rate of 8.9% were observed per modified International Myeloma Working Group criteria. Median progression-free survival at the RD was 10.9 months. PIM447 was well tolerated and demonstrated single-agent antitumor activity in relapsed/refractory MM patients, providing proof of principle for Pim (Proviral Insertions of Moloney Murine leukemia virus) kinase inhibition as a novel therapeutic approach in MM.
Collapse
|
18
|
Cervantes-Gomez F, Stellrecht CM, Ayres ML, Keating MJ, Wierda WG, Gandhi V. PIM kinase inhibitor, AZD1208, inhibits protein translation and induces autophagy in primary chronic lymphocytic leukemia cells. Oncotarget 2019; 10:2793-2809. [PMID: 31073371 PMCID: PMC6497463 DOI: 10.18632/oncotarget.26876] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/23/2019] [Indexed: 11/25/2022] Open
Abstract
The PIM1, PIM2, and PIM3 serine/threonine kinases play a role in the proliferation and survival of cancer cells. Mice lacking these three kinases were viable. Further, in human hematological malignancies, these proteins are overexpressed making them suitable targets. Several small molecule inhibitors against this enzyme were synthesized and tested. AZD1208, an orally available small-molecule drug, inhibits all three PIM kinases at a low nanomolar range. AZD1208 has been tested in clinical trials for patients with solid tumors and hematological malignancies, especially acute myelogenous leukemia. The present study evaluated the efficacy and biological actions of AZD1208 in chronic lymphocytic leukemia (CLL) cells. CLL cells had higher levels of PIM2 protein and mRNAs than did normal lymphocytes from healthy donors. Treatment of CLL lymphocytes with AZD1208 resulted in modest cell death, whereas practically no cytotoxicity was observed in healthy lymphocytes. To determine the mechanism by which AZD1208 inhibits PIM kinase function, we evaluated PIM kinase pathway and downstream substrates. Because peripheral blood CLL cells are replicationally quiescent, we analyzed substrates involved in apoptosis, transcription, and translation but not cell cycle targets. AZD1208 inhibited protein translation by decreasing phosphorylation levels of 4E-binding protein 1 (4E-BP1). AZD1208 induced autophagy in replicationally-quiescent CLL cells, which is consistent with protein translation inhibition. These data suggest that AZD1208 may elicit cytotoxicity in CLL cells through inhibiting translation and autophagy induction.
Collapse
Affiliation(s)
- Fabiola Cervantes-Gomez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine M Stellrecht
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Mary L Ayres
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
19
|
Lee M, Lee KH, Min A, Kim J, Kim S, Jang H, Lim JM, Kim SH, Ha DH, Jeong WJ, Suh KJ, Yang YW, Kim TY, Oh DY, Bang YJ, Im SA. Pan-Pim Kinase Inhibitor AZD1208 Suppresses Tumor Growth and Synergistically Interacts with Akt Inhibition in Gastric Cancer Cells. Cancer Res Treat 2019; 51:451-463. [PMID: 29879757 PMCID: PMC6473293 DOI: 10.4143/crt.2017.341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Pim kinases are highly conserved serine/threonine kinases, and different expression patterns of each isoform (Pim-1, Pim-2, and Pim-3) have been observed in various types of human cancers, including gastric cancer. AZD1208 is a potent and selective inhibitor that affects all three isoforms of Pim. We investigated the effects of AZD1208 as a single agent and in combination with an Akt inhibitor in gastric cancer cells. MATERIALS AND METHODS The antitumor activity of AZD1208 with/without an Akt inhibitor was evaluated in a large panel of gastric cancer cell lines through growth inhibition assays. The underlying mechanism was also examined by western blotting, immunofluorescence assay, and cell cycle analysis. RESULTS AZD1208 treatment decreased gastric cancer cell proliferation rates and induced autophagy only in long-term culture systems. Light chain 3B (LC3B), a marker of autophagy, was increased in sensitive cells in a dose-dependent manner with AZD1208 treatment, which suggested that the growth inhibition effect of AZD1208 was achieved through autophagy, not apoptosis. Moreover, we found that cells damaged by Pim inhibition were repaired by activation of the DNA damage repair pathway, which promoted cell survival and led the cells to become resistant to AZD1208. We also confirmed that the combination of an Akt inhibitor with AZD1208 produced a highly synergistic effect in gastric cancer cell lines. CONCLUSION Treatment with AZD1208 alone induced considerable cell death through autophagy in gastric cancer cells. Moreover, the combination of AZD1208 with an Akt inhibitor showed synergistic antitumor effects through regulation of the DNA damage repair pathway.
Collapse
Affiliation(s)
- Miso Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ahrum Min
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jeongeun Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Seongyeong Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Hyemin Jang
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Jee Min Lim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - So Hyeon Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Dong-Hyeon Ha
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Won Jae Jeong
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Koung Jin Suh
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yae-Won Yang
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Yong Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Discovery of novel triazolo[4,3-b]pyridazin-3-yl-quinoline derivatives as PIM inhibitors. Eur J Med Chem 2019; 168:87-109. [PMID: 30802730 DOI: 10.1016/j.ejmech.2019.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
PIM kinase family (PIM-1, PIM-2 and PIM-3) is an appealing target for the discovery and development of selective inhibitors, useful in various disease conditions in which these proteins are highly expressed, such as cancer. The significant effort put, in the recent years, towards the development of small molecules exhibiting inhibitory activity against this protein family has ended up with several molecules entering clinical trials. As part of our ongoing exploration for potential drug candidates that exhibit affinity towards this protein family, we have generated a novel chemical series of triazolo[4,3-b]pyridazine based tricycles by applying a scaffold hopping strategy over our previously reported potent pan-PIM inhibitor ETP-47453 (compound 2). The structure-activity relationship studies presented herein demonstrate a rather selective PIM-1/PIM-3 biochemical profile for this novel series of tricycles, although pan-PIM and PIM-1 inhibitors have also been identified. Selected examples show significant inhibition of the phosphorylation of BAD protein in a cell-based assay. Moreover, optimized and highly selective compounds, such as 42, did not show significant hERG inhibition at 20 μM concentration, and proved its antiproliferative activity and utility in combination with particular antitumoral agents in several tumor cell lines.
Collapse
|
21
|
Kuang X, Xiong J, Wang W, Li X, Lu T, Fang Q, Wang J. PIM inhibitor SMI-4a induces cell apoptosis in B-cell acute lymphocytic leukemia cells via the HO-1-mediated JAK2/STAT3 pathway. Life Sci 2019; 219:248-256. [PMID: 30658101 DOI: 10.1016/j.lfs.2019.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The serine/threonine PIM protein kinases are critical regulators of tumorigenesis in multiple cancers. However, whether PIMs are potential therapeutic targets for treating B-cell acute lymphocytic leukemia (B-ALL) remains unclear. Therefore, here, PIM expression was detected in B-ALL patients and the effects of SMI-4a, a pan-PIM small molecule inhibitor, were investigated in B-ALL cells. METHODS PIM1 and PIM2 expression in 26 newly diagnosed B-ALL cases was detected by real-time PCR and Western blot. B-ALL cells were treated with varied SMI-4a doses and the viability of treated cells was investigated using a cell-counting kit-8 (CCK-8) assay. Apoptosis and cell cycles were analyzed by flow cytometry. Western blot analysis was then used to explore the expression of apoptosis-related proteins and the JAK2/STAT3 pathway. RESULTS PIM1 and 2 were overexpressed in B-ALL patients with high HO-1 level. SMI-4a induced decreases in PIMs and HO-1 expressions and inhibited B-ALL cell viability. Treatment with SMI-4a induced apoptosis by downregulating Bcl-2, upregulating Bax and other antiapoptotic proteins, and decreasing protein levels of p-JAK2 and p-STAT3. In addition, upregulation of HO-1 alleviated decrease in p-JAK2 and p-STAT3 expression, reduced SMI-4a-induced apoptosis of B-ALL cells, and influenced B-ALL cell survival. CONCLUSIONS PIMs were highly expressed in B-ALL patients. SMI-4a inhibited B-ALL proliferation and induced apoptosis via the HO-1-mediated JAK2/STAT3 pathway. SMI-4a might be applicable for treatment of B-ALL cells.
Collapse
Affiliation(s)
- Xingyi Kuang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, PR China
| | - Jie Xiong
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, PR China
| | - Weili Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, PR China
| | - Xinyao Li
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, PR China
| | - Tingting Lu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, PR China
| | - Qin Fang
- Department of Pharmacy, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Guizhou Province Hematopoietic Stem Cell Transplantation Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China; Key Laboratory of Hematological Disease Diagnostic Treat Centre of Guizhou Province, Guiyang, PR China.
| |
Collapse
|
22
|
Marques MB, de Oliveira PV, Fagan SB, Oliveira BR, da Silva Nornberg BF, Almeida DV, Marins LF, González-Durruthy M. Modeling drug-drug interactions of AZD1208 with Vincristine and Daunorubicin on ligand-extrusion binding TMD-domains of multidrug resistance P-glycoprotein (ABCB1). Toxicology 2018; 411:81-92. [PMID: 30339824 DOI: 10.1016/j.tox.2018.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/03/2018] [Accepted: 10/14/2018] [Indexed: 11/16/2022]
Abstract
In the present study, the molecular docking mechanism based on pharmacodynamic interactions between the ligands AZD1208 and recognized chemotherapy agents (Vincristine and Daunorubicin) with human ATP-binding cassette (ABC) transporters (ABCB1) was investigated. For the first time, were combined an in silico approaches like molecular docking and ab initio computational simulation based on Density Functional Theory (DFT) to explain the drug-drug interaction mechanism of aforementioned chemotherapy ligands with the transmembrane ligand extrusion binding domains (TMDs) of ABCB1. In this regard, the theoretical pharmacodynamic interactions were characterized by using the Gibbs free energy (FEB, kcal/mol) from the best ABCB1-ligand docking complexes. The molecular docking results pointing that for the three chemotherapy ABCB1-ligand complexes are mainly based in non-covalent hydrophobic and hydrogen-bond interactions showing a similar toxicodynamic behavior in terms of strength of interaction (FEB, kcal/mol) and very close free binding energies when compared with the FEB-values of the ABCB1 specific-inhibitor (Rhodamine B) = -6.0 kcal/mol used as theoretical docking control to compare with FEB (AZD1208-ABCB1) ∼ FEB (Vincristine-ABCB1) ∼ FEB (Daunorubicin-ABCB1) -6.2 kcal/mol as average. Ramachandran plot suggests that the 3D-crystallographic structure from ABCB1 transporter can be efficiently-modeled with conformationally-favored Psi versus Phi dihedral angles for all key TMDs-residues. Though, the results of DFT-simulation corroborate the existence of drug-drug interaction between (AZD1208/Vincristine) > (AZD1208/Daunorubicin). These theoretical pieces of evidence have preclinical relevance potential in the design of the new drugs to understand the polypharmacology influence in the molecular mechanism of multiple-drugs resistance, contributing with a higher success in chemotherapy and prognosis of cancer patients.
Collapse
Affiliation(s)
- Maiara Bernardes Marques
- Laboratory of Molecular Biology, Institute of Biological Sciences, Post-Graduation Program in Physiological Sciences, Federal University of Rio Grande -FURG, Rio Grande, RS, Brazil.
| | | | | | - Bruno Rodrigues Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Post-Graduation Program in Physiological Sciences, Federal University of Rio Grande -FURG, Rio Grande, RS, Brazil
| | - Bruna Félix da Silva Nornberg
- Laboratory of Molecular Biology, Institute of Biological Sciences, Post-Graduation Program in Physiological Sciences, Federal University of Rio Grande -FURG, Rio Grande, RS, Brazil
| | - Daniela Volcan Almeida
- Laboratory of Molecular Biology, Institute of Biological Sciences, Post-Graduation Program in Physiological Sciences, Federal University of Rio Grande -FURG, Rio Grande, RS, Brazil
| | - Luis Fernando Marins
- Laboratory of Molecular Biology, Institute of Biological Sciences, Post-Graduation Program in Physiological Sciences, Federal University of Rio Grande -FURG, Rio Grande, RS, Brazil
| | | |
Collapse
|
23
|
Koblish H, Li YL, Shin N, Hall L, Wang Q, Wang K, Covington M, Marando C, Bowman K, Boer J, Burke K, Wynn R, Margulis A, Reuther GW, Lambert QT, Dostalik Roman V, Zhang K, Feng H, Xue CB, Diamond S, Hollis G, Yeleswaram S, Yao W, Huber R, Vaddi K, Scherle P. Preclinical characterization of INCB053914, a novel pan-PIM kinase inhibitor, alone and in combination with anticancer agents, in models of hematologic malignancies. PLoS One 2018; 13:e0199108. [PMID: 29927999 PMCID: PMC6013247 DOI: 10.1371/journal.pone.0199108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The Proviral Integration site of Moloney murine leukemia virus (PIM) serine/threonine protein kinases are overexpressed in many hematologic and solid tumor malignancies and play central roles in intracellular signaling networks important in tumorigenesis, including the Janus kinase-signal transducer and activator of transcription (JAK/STAT) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. The three PIM kinase isozymes (PIM1, PIM2, and PIM3) share similar downstream substrates with other key oncogenic kinases and have differing but mutually compensatory functions across tumors. This supports the therapeutic potential of pan-PIM kinase inhibitors, especially in combination with other anticancer agents chosen based on their role in overlapping signaling networks. Reported here is a preclinical characterization of INCB053914, a novel, potent, and selective adenosine triphosphate-competitive pan-PIM kinase inhibitor. In vitro, INCB053914 inhibited proliferation and the phosphorylation of downstream substrates in cell lines from multiple hematologic malignancies. Effects were confirmed in primary bone marrow blasts from patients with acute myeloid leukemia treated ex vivo and in blood samples from patients receiving INCB053914 in an ongoing phase 1 dose-escalation study. In vivo, single-agent INCB053914 inhibited Bcl-2-associated death promoter protein phosphorylation and dose-dependently inhibited tumor growth in acute myeloid leukemia and multiple myeloma xenografts. Additive or synergistic inhibition of tumor growth was observed when INCB053914 was combined with selective PI3Kδ inhibition, selective JAK1 or JAK1/2 inhibition, or cytarabine. Based on these data, pan-PIM kinase inhibitors, including INCB053914, may have therapeutic utility in hematologic malignancies when combined with other inhibitors of oncogenic kinases or standard chemotherapeutics.
Collapse
Affiliation(s)
- Holly Koblish
- Incyte Corporation, Wilmington, Delaware, United States of America
- * E-mail:
| | - Yun-long Li
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Niu Shin
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Leslie Hall
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Qian Wang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kathy Wang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | | | - Cindy Marando
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kevin Bowman
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Jason Boer
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Krista Burke
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Richard Wynn
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Alex Margulis
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Gary W. Reuther
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Que T. Lambert
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | | | - Ke Zhang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Hao Feng
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Chu-Biao Xue
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Sharon Diamond
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Greg Hollis
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Swamy Yeleswaram
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Wenqing Yao
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Reid Huber
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kris Vaddi
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Peggy Scherle
- Incyte Corporation, Wilmington, Delaware, United States of America
| |
Collapse
|
24
|
Prabhu VV, Talekar MK, Lulla AR, Kline CLB, Zhou L, Hall J, Van den Heuvel APJ, Dicker DT, Babar J, Grupp SA, Garnett MJ, McDermott U, Benes CH, Pu JJ, Claxton DF, Khan N, Oster W, Allen JE, El-Deiry WS. Single agent and synergistic combinatorial efficacy of first-in-class small molecule imipridone ONC201 in hematological malignancies. Cell Cycle 2018; 17:468-478. [PMID: 29157092 DOI: 10.1080/15384101.2017.1403689] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ONC201, founding member of the imipridone class of small molecules, is currently being evaluated in advancer cancer clinical trials. We explored single agent and combinatorial efficacy of ONC201 in preclinical models of hematological malignancies. ONC201 demonstrated (GI50 1-8 µM) dose- and time-dependent efficacy in acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Burkitt's lymphoma, anaplastic large cell lymphoma (ALCL), cutaneous T-cell lymphoma (CTCL), Hodgkin's lymphoma (nodular sclerosis) and multiple myeloma (MM) cell lines including cells resistant to standard of care (dexamethasone in MM) and primary samples. ONC201 induced caspase-dependent apoptosis that involved activation of the integrated stress response (ATF4/CHOP) pathway, inhibition of Akt phosphorylation, Foxo3a activation, downregulation of cyclin D1, IAP and Bcl-2 family members. ONC201 synergistically reduced cell viability in combination with cytarabine and 5-azacytidine in AML cells. ONC201 combined with cytarabine in a Burkitt's lymphoma xenograft model induced tumor growth inhibition that was superior to either agent alone. ONC201 synergistically combined with bortezomib in MM, MCL and ALCL cells and with ixazomib or dexamethasone in MM cells. ONC201 combined with bortezomib in a Burkitt's lymphoma xenograft model reduced tumor cell density and improved CHOP induction compared to either agent alone. These results serve as a rationale for ONC201 single-agent trials in relapsed/refractory acute leukemia, non-Hodgkin's lymphoma, MM and combination trial with dexamethasone in MM, provide pharmacodynamic biomarkers and identify further synergistic combinatorial regimens that can be explored in the clinic.
Collapse
Affiliation(s)
| | - Mala K Talekar
- b The Children's Hospital of Philadelphia , Philadelphia , PA
| | | | | | - Lanlan Zhou
- c Fox Chase Cancer Center , Philadelphia , PA
| | - Junior Hall
- b The Children's Hospital of Philadelphia , Philadelphia , PA
| | | | | | - Jawad Babar
- c Fox Chase Cancer Center , Philadelphia , PA
| | - Stephan A Grupp
- b The Children's Hospital of Philadelphia , Philadelphia , PA
| | | | | | - Cyril H Benes
- f Massachusetts General Hospital, Harvard Medical School , Boston , MA
| | | | | | - Nadia Khan
- c Fox Chase Cancer Center , Philadelphia , PA
| | | | | | | |
Collapse
|
25
|
Brunen D, García-Barchino MJ, Malani D, Jagalur Basheer N, Lieftink C, Beijersbergen RL, Murumägi A, Porkka K, Wolf M, Zwaan CM, Fornerod M, Kallioniemi O, Martínez-Climent JÁ, Bernards R. Intrinsic resistance to PIM kinase inhibition in AML through p38α-mediated feedback activation of mTOR signaling. Oncotarget 2018; 7:37407-37419. [PMID: 27270648 PMCID: PMC5122321 DOI: 10.18632/oncotarget.9822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/23/2016] [Indexed: 01/07/2023] Open
Abstract
Although conventional therapies for acute myeloid leukemia (AML) and diffuse large B-cell lymphoma (DLBCL) are effective in inducing remission, many patients relapse upon treatment. Hence, there is an urgent need for novel therapies. PIM kinases are often overexpressed in AML and DLBCL and are therefore an attractive therapeutic target. However, in vitro experiments have demonstrated that intrinsic resistance to PIM inhibition is common. It is therefore likely that only a minority of patients will benefit from single agent PIM inhibitor treatment. In this study, we performed an shRNA-based genetic screen to identify kinases whose suppression is synergistic with PIM inhibition. Here, we report that suppression of p38α (MAPK14) is synthetic lethal with the PIM kinase inhibitor AZD1208. PIM inhibition elevates reactive oxygen species (ROS) levels, which subsequently activates p38α and downstream AKT/mTOR signaling. We found that p38α inhibitors sensitize hematological tumor cell lines to AZD1208 treatment in vitro and in vivo. These results were validated in ex vivo patient-derived AML cells. Our findings provide mechanistic and translational evidence supporting the rationale to test a combination of p38α and PIM inhibitors in clinical trials for AML and DLBCL.
Collapse
Affiliation(s)
- Diede Brunen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Disha Malani
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Noorjahan Jagalur Basheer
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Maija Wolf
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Maarten Fornerod
- Department of Pediatric Oncology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - René Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
26
|
FLT3-ITD induces expression of Pim kinases through STAT5 to confer resistance to the PI3K/Akt pathway inhibitors on leukemic cells by enhancing the mTORC1/Mcl-1 pathway. Oncotarget 2017; 9:8870-8886. [PMID: 29507660 PMCID: PMC5823622 DOI: 10.18632/oncotarget.22926] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022] Open
Abstract
FLT3-ITD is the most frequent tyrosine kinase mutation in acute myeloid leukemia (AML) associated with poor prognosis. We previously reported that activation of STAT5 confers resistance to PI3K/Akt inhibitors on the FLT3-ITD-positive AML cell line MV4-11 and 32D cells driven by FLT3-ITD (32D/ITD) but not by FLT3 mutated in the tyrosine kinase domain (32D/TKD). Here, we report the involvement of Pim kinases expressed through STAT5 activation in acquisition of this resistance. The specific pan-Pim kinase inhibitor AZD1208 as well as PIM447 in combination with the PI3K inhibitor GDC-0941 or the Akt inhibitor MK-2206 cooperatively downregulated the mTORC1/4EBP1 pathway, formation of the eIF4E/eIF4G complex, and Mcl-1 expression leading to activation of Bak and Bax to induce caspase-dependent apoptosis synergistically in these cells. These cooperative effects were enhanced or inhibited by knock down of mTOR or expression of its activated mutant, respectively. Overexpression of Mcl-1 conferred the resistance on 32D/ITD cells to combined inhibition of the PI3K/Akt pathway and Pim kinases, while the Mcl-1-specific BH3 mimetic A-1210477 conquered the resistance of MV4-11 cells to GDC-0941. Furthermore, overexpression of Pim-1 in 32D/TKD enhanced the mTORC1/Mcl-1 pathway and partially protected it from the PI3K/Akt inhibitors or the FLT3 inhibitor gilteritinib to confer the resistance to PI3K/Akt inhibitors. Finally, AZD1208 and GDC-0941 cooperatively inhibited the mTORC1/Mcl-1 pathway and reduced viable cell numbers of primary AML cells from some FLT3-ITD positive cases. Thus, Pim kinases may protect the mTORC1/4EBP1/Mcl-1 pathway to confer the resistance to the PI3K/Akt inhibitors on FLT3-ITD cells and represent promising therapeutic targets.
Collapse
|
27
|
Zhang H, Li P, Li J, Song T, Wang L, Li E, Wang J, Wang L, Wei N, Wang Z. Icariin induces apoptosis in acute promyelocytic leukemia by targeting PIM1. Pharmacol Rep 2017; 69:1270-1281. [DOI: 10.1016/j.pharep.2017.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/02/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022]
|
28
|
Ricciardi MR, Mirabilii S, Licchetta R, Piedimonte M, Tafuri A. Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia. Adv Biol Regul 2017; 65:36-58. [PMID: 28549531 DOI: 10.1016/j.jbior.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Over the last few decades, there has been significant progress in the understanding of the pathogenetic mechanisms of the Acute Myeloid Leukemia (AML). However, despite important advances in elucidating molecular mechanisms, the treatment of AML has not improved significantly, remaining anchored at the standard chemotherapy regimen "3 + 7", with the prognosis of patients remaining severe, especially for the elderly and for those not eligible for transplant procedures. The biological and clinical heterogeneity of AML represents the major obstacle that hinders the improvement of prognosis and the identification of new effective therapeutic approaches. To date, abundant information has been collected on the genetic and molecular alterations of AML carrying prognostic significance. However, not enough is known on how AML progenitors regulate proliferation and survival by redundant and cross-talking signal transduction pathways (STP). Furthermore, it remains unclear how such complicated network affects prognosis and therapeutic treatment options, although many of these molecular determinants are potentially attractive for their druggable characteristics. In this review, some of the key STP frequently deregulated in AML, such as PI3k/Akt/mTOR pathway, GSK3 and components of Bcl-2 family of proteins, are summarized, highlighting in addition their interplay. Based on this information, we reviewed new targeted therapeutic approaches, focusing on the aberrant networks that sustain the AML blast proliferation, survival and drug resistance, aiming to improve disease treatment. Finally, we reported the approaches aimed at disrupting key signaling cross-talk overcoming resistances based on the combination of different targeting therapeutic strategies.
Collapse
Affiliation(s)
- Maria Rosaria Ricciardi
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Simone Mirabilii
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy.
| | - Roberto Licchetta
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Monica Piedimonte
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Agostino Tafuri
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| |
Collapse
|
29
|
Nair JR, Caserta J, Belko K, Howell T, Fetterley G, Baldino C, Lee KP. Novel inhibition of PIM2 kinase has significant anti-tumor efficacy in multiple myeloma. Leukemia 2017; 31:1715-1726. [PMID: 28008178 PMCID: PMC5537056 DOI: 10.1038/leu.2016.379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022]
Abstract
The PIM kinase family (PIM1, 2 and 3) have a central role in integrating growth and survival signals, and are expressed in a wide range of solid and hematological malignancies. We now confirm that PIM2 is overexpressed in multiple myeloma (MM) patients, and within MM group it is overexpressed in the high-risk MF subset (activation of proto-oncogenes MAF/MAFB). This is consistent with our finding of PIM2's role in key signaling pathways (IL-6, CD28 activation) that confer chemotherapy resistance in MM cells. These studies have identified a novel PIM2-selective non-ATP competitive inhibitor (JP11646) that has a 4 to 760-fold greater suppression of MM proliferation and viability than ATP-competitive PIM inhibitors. This increased efficacy is due not only to the inhibition of PIM2 kinase activity, but also to a novel mechanism involving specific downregulation of PIM2 mRNA and protein expression not seen with the ATP competitive inhibitors. Treatment with JP11646 in xenogeneic myeloma murine models demonstrated significant reduction in tumor burden and increased median survival. Altogether our findings suggest the existence of previously unrecognized feedback loop(s) where PIM2 kinase activity regulates PIM2 gene expression in malignant cells, and that JP11646 represents a novel class of PIM2 inhibitors that interdicts this feedback.
Collapse
Affiliation(s)
- Jayakumar R. Nair
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Justin Caserta
- Jasco Pharmaceuticals, 10-N Roessler Road, Woburn, MA 01801
- Boston Biomedical, Inc., Cambridge, MA 02139
| | - Krista Belko
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Tyger Howell
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Gerald Fetterley
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Carmen Baldino
- Jasco Pharmaceuticals, 10-N Roessler Road, Woburn, MA 01801
| | - Kelvin P. Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
30
|
Tabe Y, Tafuri A, Sekihara K, Yang H, Konopleva M. Inhibition of mTOR kinase as a therapeutic target for acute myeloid leukemia. Expert Opin Ther Targets 2017; 21:705-714. [PMID: 28537457 DOI: 10.1080/14728222.2017.1333600] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML), the most common acute leukemia in adults, remains a therapeutic challenge. The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway is one of the key aberrant intracellular axes involved in AML. Areas covered: mTOR plays a critical role in sensing and responding to environmental determinants such as nutrient availability, stress, and growth factor concentrations; and in modulating key cellular functions such as proliferation, metabolism, and survival. Although abnormalities of mTOR signaling are strongly associated with neoplastic leukemic proliferation, the role of pharmacologic inhibitors of mTOR in the treatment of AML has not been established. Expert opinion: Inhibition of mTOR signaling has in general modest growth-inhibitory effects in preclinical AML models and clinical trials. Yet, combination of allosteric mTOR inhibitors with standard chemotherapy or targeted agents has a greater anti-leukemia efficacy. In turn, dual mTORC1/2 inhibitors, and dual PI3K/mTOR inhibitors show greater activity in pre-clinical AML models. Further, understanding the role of mTOR signaling in stemness of leukemias is important because AML stem cells may become chemoresistant by displaying aberrant signaling molecules, modifying epigenetic mechanisms, and altering the components of the bone marrow microenvironment.
Collapse
Affiliation(s)
- Yoko Tabe
- a Department of Next Generation Hematology Laboratory Medicine , Juntendo University School of Medicine , Tokyo , Japan.,b Section of Molecular Hematology and Therapy, Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Agostino Tafuri
- c Dipartimento di Medicina Clinica e Molecolare , "Sapienza" University of Rome , Rome , Italy
| | - Kazumasa Sekihara
- d Leading Center for the Development and Research of Cancer Medicine , Juntendo University School of Medicine , Tokyo , Japan
| | - Haeun Yang
- d Leading Center for the Development and Research of Cancer Medicine , Juntendo University School of Medicine , Tokyo , Japan
| | - Marina Konopleva
- b Section of Molecular Hematology and Therapy, Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
31
|
Zwang Y, Jonas O, Chen C, Rinne ML, Doench JG, Piccioni F, Tan L, Huang HT, Wang J, Ham YJ, O'Connell J, Bhola P, Doshi M, Whitman M, Cima M, Letai A, Root DE, Langer RS, Gray N, Hahn WC. Synergistic interactions with PI3K inhibition that induce apoptosis. eLife 2017; 6:e24523. [PMID: 28561737 PMCID: PMC5479695 DOI: 10.7554/elife.24523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/30/2017] [Indexed: 12/24/2022] Open
Abstract
Activating mutations involving the PI3K pathway occur frequently in human cancers. However, PI3K inhibitors primarily induce cell cycle arrest, leaving a significant reservoir of tumor cells that may acquire or exhibit resistance. We searched for genes that are required for the survival of PI3K mutant cancer cells in the presence of PI3K inhibition by conducting a genome scale shRNA-based apoptosis screen in a PIK3CA mutant human breast cancer cell. We identified 5 genes (PIM2, ZAK, TACC1, ZFR, ZNF565) whose suppression induced cell death upon PI3K inhibition. We showed that small molecule inhibitors of the PIM2 and ZAK kinases synergize with PI3K inhibition. In addition, using a microscale implementable device to deliver either siRNAs or small molecule inhibitors in vivo, we showed that suppressing these 5 genes with PI3K inhibition induced tumor regression. These observations identify targets whose inhibition synergizes with PI3K inhibitors and nominate potential combination therapies involving PI3K inhibition.
Collapse
Affiliation(s)
- Yaara Zwang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Oliver Jonas
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Casandra Chen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Mikael L Rinne
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - John G Doench
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
| | - Federica Piccioni
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
| | - Li Tan
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Hai-Tsang Huang
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Jinhua Wang
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Young Jin Ham
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Joyce O'Connell
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Patrick Bhola
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Mihir Doshi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Matthew Whitman
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Michael Cima
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
- Department of Materials Science, Massachusetts Institute of Technology, Cambridge, United States
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - David E Root
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
| | - Robert S Langer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Nathanael Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - William C Hahn
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
32
|
Wang Q, Jiang Y, Guo R, Lv R, Liu T, Wei H, Ming H, Tian X. Physcion 8-O-β-glucopyranoside suppresses tumor growth of Hepatocellular carcinoma by downregulating PIM1. Biomed Pharmacother 2017; 92:451-458. [PMID: 28570979 DOI: 10.1016/j.biopha.2017.05.110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) presents one of leading causes of cancer-related mortality worldwidely. This study is aimed to investigate the anti-tumor activity of physcion 8-O-β-glucopyranoside (PG) in HCC. Our results have showed that PG significantly suppresses cell growth and induces apoptosis in vitro and in vivo. At molecular level, PG represses the expression of Pim family kinases 1 (PIM1), which is responsible for the anti-tumor effect of PG in HCC. Ectopic over-expression of PIM1 significantly abrogates the suppressing effect of PG on cell growth and inducing effect of PG on apoptosis. In contrast, knockdown of PIM1 by siRNA enhances the anti-tumor effect of PG in HCC cells.
Collapse
Affiliation(s)
- Qinggang Wang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China; Department of Hepatobiliary Surgery, Tai'an city Central Hospital, Tai'an, 271000, China
| | - Yunyun Jiang
- Department of Rehabilitation, Tai'an city Central Hospital, Taian, 271000, China
| | - Renle Guo
- The Department of Vascular Surgery, Tai'an city Central Hospital, Taian, 271000, China
| | - Rongbin Lv
- Department of Nuclear Medicine Tai'an city Central Hospital, Taian, 271000, China
| | - Tingting Liu
- Department of Breast Surgery Tai'an city Central Hospital, Taian, 271000, China
| | - Hongji Wei
- Department of Hepatobiliary Surgery, Tai'an city Central Hospital, Tai'an, 271000, China
| | - Hanxin Ming
- Department of Hepatobiliary Surgery, Tai'an city Central Hospital, Tai'an, 271000, China
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| |
Collapse
|
33
|
Silverbush D, Grosskurth S, Wang D, Powell F, Gottgens B, Dry J, Fisher J. Cell-Specific Computational Modeling of the PIM Pathway in Acute Myeloid Leukemia. Cancer Res 2017; 77:827-838. [PMID: 27965317 DOI: 10.1158/0008-5472.can-16-1578] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/09/2016] [Accepted: 11/30/2016] [Indexed: 11/16/2022]
Abstract
Personalized therapy is a major goal of modern oncology, as patient responses vary greatly even within a histologically defined cancer subtype. This is especially true in acute myeloid leukemia (AML), which exhibits striking heterogeneity in molecular segmentation. When calibrated to cell-specific data, executable network models can reveal subtle differences in signaling that help explain differences in drug response. Furthermore, they can suggest drug combinations to increase efficacy and combat acquired resistance. Here, we experimentally tested dynamic proteomic changes and phenotypic responses in diverse AML cell lines treated with pan-PIM kinase inhibitor and fms-related tyrosine kinase 3 (FLT3) inhibitor as single agents and in combination. We constructed cell-specific executable models of the signaling axis, connecting genetic aberrations in FLT3, tyrosine kinase 2 (TYK2), platelet-derived growth factor receptor alpha (PDGFRA), and fibroblast growth factor receptor 1 (FGFR1) to cell proliferation and apoptosis via the PIM and PI3K kinases. The models capture key differences in signaling that later enabled them to accurately predict the unique proteomic changes and phenotypic responses of each cell line. Furthermore, using cell-specific models, we tailored combination therapies to individual cell lines and successfully validated their efficacy experimentally. Specifically, we showed that cells mildly responsive to PIM inhibition exhibited increased sensitivity in combination with PIK3CA inhibition. We also used the model to infer the origin of PIM resistance engineered through prolonged drug treatment of MOLM16 cell lines and successfully validated experimentally our prediction that this resistance can be overcome with AKT1/2 inhibition. Cancer Res; 77(4); 827-38. ©2016 AACR.
Collapse
Affiliation(s)
- Dana Silverbush
- Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
- Microsoft Research, Cambridge, UK
| | | | | | | | - Berthold Gottgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, UK
| | - Jonathan Dry
- AstraZeneca Oncology IMED, Waltham, Massachusetts.
| | - Jasmin Fisher
- Microsoft Research, Cambridge, UK.
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Ezell SA, Wang S, Bihani T, Lai Z, Grosskurth SE, Tepsuporn S, Davies BR, Huszar D, Byth KF. Differential regulation of mTOR signaling determines sensitivity to AKT inhibition in diffuse large B cell lymphoma. Oncotarget 2016; 7:9163-74. [PMID: 26824321 PMCID: PMC4891033 DOI: 10.18632/oncotarget.7036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/19/2016] [Indexed: 12/04/2022] Open
Abstract
Agents that target components of the PI3K/AKT/mTOR pathway are under investigation for the treatment of diffuse large B cell lymphoma (DLBCL). Given the highly heterogeneous nature of DLBCL, it is not clear whether all subtypes of DLBCL will be susceptible to PI3K pathway inhibition, or which kinase within this pathway is the most favorable target. Pharmacological profiling of a panel of DLBCL cell lines revealed a subset of DLBCL that was resistant to AKT inhibition. Strikingly, sensitivity to AKT inhibitors correlated with the ability of these inhibitors to block phosphorylation of S6K1 and ribosomal protein S6. Cell lines resistant to AKT inhibition activated S6K1 independent of AKT either through upregulation of PIM2 or through activation by B cell receptor (BCR) signaling components. Finally, combined inhibition of AKT and BTK, PIM2, or S6K1 proved to be an effective strategy to overcome resistance to AKT inhibition in DLBCL.
Collapse
Affiliation(s)
- Scott A Ezell
- AstraZeneca Oncology, Waltham, Massachusetts, MA, USA
| | - Suping Wang
- AstraZeneca Oncology, Waltham, Massachusetts, MA, USA
| | - Teeru Bihani
- AstraZeneca Oncology, Waltham, Massachusetts, MA, USA
| | - Zhongwu Lai
- AstraZeneca Oncology, Waltham, Massachusetts, MA, USA
| | | | | | | | - Dennis Huszar
- AstraZeneca Oncology, Waltham, Massachusetts, MA, USA
| | - Kate F Byth
- AstraZeneca Oncology, Waltham, Massachusetts, MA, USA
| |
Collapse
|
35
|
Chavez-Gonzalez A, Bakhshinejad B, Pakravan K, Guzman ML, Babashah S. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer. Cell Oncol (Dordr) 2016; 40:1-20. [PMID: 27678246 DOI: 10.1007/s13402-016-0297-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. CONCLUSIONS A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy.
Collapse
Affiliation(s)
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Monica L Guzman
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave, Box 113, New York, NY, 10065, USA.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| |
Collapse
|
36
|
Mazzacurati L, Lambert QT, Pradhan A, Griner LN, Huszar D, Reuther GW. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells. Oncotarget 2016; 6:40141-57. [PMID: 26472029 PMCID: PMC4741885 DOI: 10.18632/oncotarget.5653] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/30/2015] [Indexed: 01/22/2023] Open
Abstract
Classical myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders that exhibit excess mature myeloid cells, bone marrow fibrosis, and risk of leukemic transformation. Aberrant JAK2 signaling plays an etiological role in MPN formation. Because neoplastic cells in patients are largely insensitive to current anti-JAK2 therapies, effective therapies remain needed. Members of the PIM family of serine/threonine kinases are induced by JAK/STAT signaling, regulate hematopoietic stem cell growth, protect hematopoietic cells from apoptosis, and exhibit hematopoietic cell transforming properties. We hypothesized that PIM kinases may offer a therapeutic target for MPNs. We treated JAK2-V617F-dependent MPN model cells as well as primary MPN patient cells with the PIM kinase inhibitors SGI-1776 and AZD1208 and the JAK2 inhibitor ruxolitinib. While MPN model cells were rather insensitive to PIM inhibitors, combination of PIM inhibitors with ruxolitinib led to a synergistic effect on MPN cell growth due to enhanced apoptosis. Importantly, PIM inhibitor mono-therapy inhibited, and AZD1208/ruxolitinib combination therapy synergistically suppressed, colony formation of primary MPN cells. Enhanced apoptosis by combination therapy was associated with activation of BAD, inhibition of downstream components of the mTOR pathway, including p70S6K and S6 protein, and activation of 4EBP1. Importantly, PIM inhibitors re-sensitized ruxolitinib-resistant MPN cells to ruxolitinib by inducing apoptosis. Finally, exogenous expression of PIM1 induced ruxolitinib resistance in MPN model cells. These data indicate that PIMs may play a role in MPNs and that combining PIM and JAK2 kinase inhibitors may offer a more efficacious therapeutic approach for MPNs over JAK2 inhibitor mono-therapy.
Collapse
Affiliation(s)
- Lucia Mazzacurati
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Que T Lambert
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anuradha Pradhan
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Lori N Griner
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Dennis Huszar
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Oncology iMed, AstraZeneca, Waltham, MA, USA
| | - Gary W Reuther
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
37
|
Harada M, Benito J, Yamamoto S, Kaur S, Arslan D, Ramirez S, Jacamo R, Platanias L, Matsushita H, Fujimura T, Kazuno S, Kojima K, Tabe Y, Konopleva M. The novel combination of dual mTOR inhibitor AZD2014 and pan-PIM inhibitor AZD1208 inhibits growth in acute myeloid leukemia via HSF pathway suppression. Oncotarget 2016; 6:37930-47. [PMID: 26473447 PMCID: PMC4741975 DOI: 10.18632/oncotarget.6122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/26/2015] [Indexed: 11/25/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) signaling is a critical pathway in the biology of acute myeloid leukemia (AML). Proviral integration site for moloney murine leukemia virus (PIM) serine/threonine kinase signaling takes part in various pathways exerting tumorigenic properties. We hypothesized that the combination of a PIM kinase inhibitor with an mTOR inhibitor might have complementary growth-inhibitory effects against AML. The simultaneous inhibition of the PIM kinase by pan-PIM inhibitor AZD1208 and of mTOR by selective mTORC1/2 dual inhibitor AZD2014 exerted anticancer properties in AML cell lines and in cells derived from primary AML samples with or without supportive stromal cell co-culture, leading to suppressed proliferation and increased apoptosis. The combination of AZD1208 and AZD2014 rapidly activated AMPKα, a negative regulator of translation machinery through mTORC1/2 signaling in AML cells; profoundly inhibited AKT and 4EBP1 activation; and suppressed polysome formation. Inhibition of both mTOR and PIM counteracted induction of heat-shock family proteins, uncovering the master negative regulation of heat shock factor 1 (HSF1), the dominant transcription factor controlling cellular stress responses. The novel combination of the dual mTOR inhibitor and pan-PIM inhibitor synergistically inhibited AML growth by effectively reducing protein synthesis through heat shock factor pathway suppression.
Collapse
Affiliation(s)
- Masako Harada
- Research Institute for Environmental and Gender Specific Medicine, Juntendo University of Medicine, Tokyo, Japan.,Department of Laboratory Medicine, Juntendo University of Medicine, Tokyo, Japan
| | - Juliana Benito
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shinichi Yamamoto
- Department of Laboratory Medicine, Juntendo University of Medicine, Tokyo, Japan
| | - Surinder Kaur
- Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois, USA
| | - Dirim Arslan
- Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois, USA
| | - Santiago Ramirez
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rodrigo Jacamo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leonidas Platanias
- Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois, USA
| | - Hiromichi Matsushita
- Department of Laboratory Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Tsutomu Fujimura
- BioMedical Research Center, Juntendo University of Medicine, Tokyo, Japan.,Laboratory of Bioanalytical Chemistry, Tohoku Pharmaceutical University, Miyagi, Japan
| | - Saiko Kazuno
- BioMedical Research Center, Juntendo University of Medicine, Tokyo, Japan
| | - Kensuke Kojima
- Hematology, Respiratory Medicine and Oncology, Department of Medicine, Saga University, Saga, Japan
| | - Yoko Tabe
- Department of Laboratory Medicine, Juntendo University of Medicine, Tokyo, Japan.,Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
38
|
Le X, Antony R, Razavi P, Treacy DJ, Luo F, Ghandi M, Castel P, Scaltriti M, Baselga J, Garraway LA. Systematic Functional Characterization of Resistance to PI3K Inhibition in Breast Cancer. Cancer Discov 2016; 6:1134-1147. [PMID: 27604488 DOI: 10.1158/2159-8290.cd-16-0305] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022]
Abstract
PIK3CA (which encodes the PI3K alpha isoform) is the most frequently mutated oncogene in breast cancer. Small-molecule PI3K inhibitors have shown promise in clinical trials; however, intrinsic and acquired resistance limits their utility. We used a systematic gain-of-function approach to identify genes whose upregulation confers resistance to the PI3K inhibitor BYL719 in breast cancer cells. Among the validated resistance genes, Proviral Insertion site in Murine leukemia virus (PIM) kinases conferred resistance by maintaining downstream PI3K effector activation in an AKT-independent manner. Concurrent pharmacologic inhibition of PIM and PI3K overcame this resistance mechanism. We also observed increased PIM expression and activity in a subset of breast cancer biopsies with clinical resistance to PI3K inhibitors. PIM1 overexpression was mutually exclusive with PIK3CA mutation in treatment-naïve breast cancers, suggesting downstream functional redundancy. Together, these results offer new insights into resistance to PI3K inhibitors and support clinical studies of combined PIM/PI3K inhibition in a subset of PIK3CA-mutant cancers. SIGNIFICANCE PIM kinase overexpression confers resistance to small-molecule PI3K inhibitors. Combined inhibition of PIM and PI3K may therefore be warranted in a subset of breast cancers. Cancer Discov; 6(10); 1134-47. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1069.
Collapse
Affiliation(s)
- Xiuning Le
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA.,Division of Hematology Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA
| | - Rajee Antony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, NewYork, NY.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel J Treacy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Flora Luo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Mahmoud Ghandi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Pau Castel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, NewYork, NY
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, NewYork, NY.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jose Baselga
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, NewYork, NY.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA.,Department of Medicine, Brigham and Women's Hospital, Boston MA
| |
Collapse
|
39
|
Paíno T, Garcia-Gomez A, González-Méndez L, San-Segundo L, Hernández-García S, López-Iglesias AA, Algarín EM, Martín-Sánchez M, Corbacho D, Ortiz-de-Solorzano C, Corchete LA, Gutiérrez NC, Maetos MV, Garayoa M, Ocio EM. The Novel Pan-PIM Kinase Inhibitor, PIM447, Displays Dual Antimyeloma and Bone-Protective Effects, and Potently Synergizes with Current Standards of Care. Clin Cancer Res 2016; 23:225-238. [DOI: 10.1158/1078-0432.ccr-16-0230] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022]
|
40
|
Posch C, Sanlorenzo M, Vujic I, Oses-Prieto JA, Cholewa BD, Kim ST, Ma J, Lai K, Zekhtser M, Esteve-Puig R, Green G, Chand S, Burlingame AL, Panzer-Grümayer R, Rappersberger K, Ortiz-Urda S. Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2α Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 2016; 136:2041-2048. [PMID: 27251789 DOI: 10.1016/j.jid.2016.05.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/21/2016] [Accepted: 05/18/2016] [Indexed: 01/20/2023]
Abstract
In melanoma, mutant and thereby constantly active neuroblastoma rat sarcoma (NRAS) affects 15-20% of tumors, contributing to tumor initiation, growth, invasion, and metastasis. Recent therapeutic approaches aim to mimic RAS extinction by interfering with critical signaling pathways downstream of the mutant protein. This study investigates the phosphoproteome of primary human melanocytes bearing mutations in the two hot spots of NRAS, NRAS(G12) and NRAS(Q61). Stable isotope labeling by amino acids in cell culture followed by mass spectrometry identified 14,155 spectra of 3,371 unique phosphopeptides mapping to 1,159 proteins (false discovery rate < 2%). Data revealed pronounced PI3K/AKT signaling in NRAS(G12V) mutant cells and pronounced mitogen-activated protein kinase (MAPK) signaling in NRAS(Q61L) variants. Computer-based prediction models for kinases involved, revealed that CK2α is significantly overrepresented in primary human melanocytes bearing NRAS(Q61L) mutations. Similar differences were found in human NRAS(Q61) mutant melanoma cell lines that were also more sensitive to pharmacologic CK2α inhibition compared with NRAS(G12) mutant cells. Furthermore, CK2α levels were pronounced in patient samples of NRAS(Q61) mutant melanoma at the mRNA and protein level. The preclinical findings of this study reveal that codon 12 and 61 mutant NRAS cells have distinct signaling characteristics that could allow for the development of more effective, mutation-specific treatment modalities.
Collapse
Affiliation(s)
- Christian Posch
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA; Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria; Leukemia Biology Group, Children's Cancer Research Institute, Vienna, Austria; School of Medicine, Sigmund Freud University, Vienna, Austria.
| | - Martina Sanlorenzo
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA; Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Igor Vujic
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA; Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria; School of Medicine, Sigmund Freud University, Vienna, Austria
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Brian D Cholewa
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarasa T Kim
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Ma
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| | - Kevin Lai
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| | - Mitchell Zekhtser
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| | - Rosaura Esteve-Puig
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| | - Gary Green
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| | - Shreya Chand
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California, USA
| | | | - Klemens Rappersberger
- Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Susana Ortiz-Urda
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
41
|
Chen LS, Yang JY, Liang H, Cortes JE, Gandhi V. Protein profiling identifies mTOR pathway modulation and cytostatic effects of Pim kinase inhibitor, AZD1208, in acute myeloid leukemia. Leuk Lymphoma 2016; 57:2863-2873. [PMID: 27054578 DOI: 10.3109/10428194.2016.1166489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pim kinases phosphorylate and regulate a number of key acute myeloid leukemia (AML) cell survival proteins, and Pim inhibitors have recently entered clinical trial for hematological malignancies. AZD1208 is a small molecule pan-Pim kinase inhibitor and AZD1208 treatment resulted in growth inhibition and cell size reduction in AML cell lines including FLT3-WT (OCI-AML-3, KG-1a, and MOLM-16) and FLT3-ITD mutated (MOLM-13 and MV-4-11). There was limited apoptosis induction (<10% increase) in the AML cell lines evaluated with up to 3 μM AZD1208 for 24 h, suggesting that growth inhibition is not through apoptosis induction. Using reverse phase protein array (RPPA) and immunoblot analysis, we identified that AZD1208 resulted in suppression of mTOR signaling, including inhibition of protein phosphorylation of mTOR (Ser2448), p70S6K (Thr389), S6 (Ser235/236), and 4E-BP1 (Ser65). Consistent with mTOR inhibition, there was also a reduction in protein synthesis that correlated with cell size reduction and growth inhibition with AZD1208; our study provides insights into the mechanism of AZD1208.
Collapse
Affiliation(s)
- Lisa S Chen
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Ji-Yeon Yang
- b Department of Applied Mathematics , Kumoh National Institute of Technology , Gumi , Korea
| | - Han Liang
- c Department of Bioinformatics and Computational Biology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,d Department of Systems Biology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jorge E Cortes
- e Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Varsha Gandhi
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,e Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
42
|
Nogami A, Oshikawa G, Okada K, Fukutake S, Umezawa Y, Nagao T, Kurosu T, Miura O. FLT3-ITD confers resistance to the PI3K/Akt pathway inhibitors by protecting the mTOR/4EBP1/Mcl-1 pathway through STAT5 activation in acute myeloid leukemia. Oncotarget 2016; 6:9189-205. [PMID: 25826077 PMCID: PMC4496211 DOI: 10.18632/oncotarget.3279] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/07/2015] [Indexed: 01/10/2023] Open
Abstract
FLT3-ITD and FLT3-TKD are the most frequent tyrosine kinase mutations in acute myeloid leukemia (AML), with the former associated with poor prognosis. Here, we show that the PI3K inhibitor GDC-0941 or the Akt inhibitor MK-2206 induced apoptosis through the mitochondria-mediated intrinsic pathway more efficiently in hematopoietic 32D cells driven by FLT3-TKD (32D/TKD) than FLT3-ITD (32D/ITD), which robustly activated STAT5. The resistance to GDC-0941 and MK-2206 was gained by expression of the constitutively activated STAT5 mutant STAT5A1*6 in 32D/TKD cells, while it was abrogated by the STAT5 inhibitor pimozide in 32D/ITD cells or FLT3-ITD-expressing human leukemic MV4-11 cells. GDC-0941 or MK-2206 induced dephosphorylation of 4EBP1 more conspicuously in 32D/TKD than in 32D/ITD, which was prevented or augmented by STAT5A1*6 or pimozide, respectively, and correlated with downregulation of the eIF4E/eIF4G complex formation and Mcl-1 expression. Furthermore, exogenous expression of Mcl-1 endowed resistance to GDC-0941 and MK-2206 on 32D/TKD cells. Finally, it was confirmed in primary AML cells with FLT3-ITD that pimozide enhanced 4EBP1 dephosphorylation and Mcl-1 downregulation to augment cytotoxicity of GDC-0941. These data suggest that the robust STAT5 activation by FLT3-ITD protects cells treated with the PI3K/Akt pathway inhibitors from apoptosis by maintaining Mcl-1 expression through the mTORC1/4EBP1/eIF4E pathway.
Collapse
Affiliation(s)
- Ayako Nogami
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gaku Oshikawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keigo Okada
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shusaku Fukutake
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshikage Nagao
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Kurosu
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
43
|
Kapelko-Slowik K, Owczarek TB, Grzymajlo K, Urbaniak-Kujda D, Jazwiec B, Slowik M, Kuliczkowski K, Ugorski M. Elevated PIM2 gene expression is associated with poor survival of patients with acute myeloid leukemia. Leuk Lymphoma 2016; 57:2140-9. [PMID: 26764044 DOI: 10.3109/10428194.2015.1124991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The PIM2 gene encodes the serine/threonine kinase involved in cell survival and apoptosis. The aim of the study was to evaluate the expression of the PIM2 gene in acute myeloid leukemia (AML) and to examine its role in apoptosis of the blastic cells. We analyzed the PIM2 expression in 148 patients: 91 with AML, 57 with acute lymphoblastic leukemia and 24 healthy controls by Real-Time PCR and Western blot. Inhibition of the PIM2 gene in human leukemic HL60 cell line was performed with RNAi and apoptosis rate was analyzed. Our results indicate that overexpression of PIM2 in AML is associated with low complete remission rate, high-risk cytogenetics, shorter leukemia-free survival, and event-free survival. Cytometric analysis of HL60/PAC-GFP and HL60/PAC-GFP-shPIM2 cells revealed an increase in the number of apoptotic cells after inhibition of PIM2 gene. In summary, the elevated expression of PIM2 in blastic cells is associated with poor prognosis of AML patients and their resistance to induction therapy.
Collapse
Affiliation(s)
- Katarzyna Kapelko-Slowik
- a Department of Hematology, Neoplastic Blood Disorders and Bone Marrow Transplantation , Wroclaw Medical University , Wroclaw , Poland
| | - Tomasz B Owczarek
- b Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences , Wroclaw , Poland ;,c Department of Biochemistry, Pharmacology and Toxicology , Wroclaw University of Environmental and Life Sciences , Wroclaw , Poland
| | - Krzysztof Grzymajlo
- c Department of Biochemistry, Pharmacology and Toxicology , Wroclaw University of Environmental and Life Sciences , Wroclaw , Poland
| | - Donata Urbaniak-Kujda
- a Department of Hematology, Neoplastic Blood Disorders and Bone Marrow Transplantation , Wroclaw Medical University , Wroclaw , Poland
| | - Bozena Jazwiec
- a Department of Hematology, Neoplastic Blood Disorders and Bone Marrow Transplantation , Wroclaw Medical University , Wroclaw , Poland
| | - Miroslaw Slowik
- d Department of Ophthalmology , Wroclaw Medical University , Wroclaw , Poland
| | - Kazimierz Kuliczkowski
- a Department of Hematology, Neoplastic Blood Disorders and Bone Marrow Transplantation , Wroclaw Medical University , Wroclaw , Poland
| | - Maciej Ugorski
- b Ludwik Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences , Wroclaw , Poland ;,c Department of Biochemistry, Pharmacology and Toxicology , Wroclaw University of Environmental and Life Sciences , Wroclaw , Poland
| |
Collapse
|
44
|
Targeting the Pim kinases in multiple myeloma. Blood Cancer J 2015; 5:e325. [PMID: 26186558 PMCID: PMC4526774 DOI: 10.1038/bcj.2015.46] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that remains incurable. Novel treatment strategies to improve survival are urgently required. The Pims are a small family of serine/threonine kinases with increased expression across the hematological malignancies. Pim-2 shows highest expression in MM and constitutes a promising therapeutic target. It is upregulated by the bone marrow microenvironment to mediate proliferation and promote MM survival. Pim-2 also has a key role in the bone destruction typically seen in MM. Additional putative roles of the Pim kinases in MM include trafficking of malignant cells, promoting oncogenic signaling in the hypoxic bone marrow microenvironment and mediating resistance to therapy. A number of Pim inhibitors are now under development with lead compounds entering the clinic. The ATP-competitive Pim inhibitor LGH447 has recently been reported to have single agent activity in MM. It is anticipated that Pim inhibition will be of clinical benefit in combination with standard treatments and/or with novel drugs targeting other survival pathways in MM.
Collapse
|
45
|
Abstract
The initiation and progression of human cancer is frequently linked to the uncontrolled activation of survival kinases. Two such pro-survival kinases that are commonly amplified in cancer are PIM and Akt. These oncogenic proteins are serine/threonine kinases that regulate tumorigenesis by phosphorylating substrates that control the cell cycle, cellular metabolism, proliferation, and survival. Growing evidence suggests that cross-talk exists between the PIM and Akt kinases, indicating that they control partially overlapping survival signaling pathways that are critical to the initiation, progression, and metastatic spread of many types of cancer. The PI3K/Akt signaling pathway is activated in many human tumors, and it is well established as a promising anticancer target. Likewise, based on the role of PIM kinases in normal and tumor tissues, it is clear that this family of kinases represents an interesting target for anticancer therapy. Pharmacological inhibition of PIM has the potential to significantly influence the efficacy of standard and targeted therapies. This review focuses on the regulation of PIM kinases, their role in tumorigenesis, and the biological impact of their interaction with the Akt signaling pathway on the efficacy of cancer therapy.
Collapse
|
46
|
Tinsley S, Meja K, Shepherd C, Khwaja A. Synergistic induction of cell death in haematological malignancies by combined phosphoinositide-3-kinase and BET bromodomain inhibition. Br J Haematol 2015; 170:275-8. [PMID: 25640480 DOI: 10.1111/bjh.13283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Steven Tinsley
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Koremu Meja
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Clare Shepherd
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Asim Khwaja
- Department of Haematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
47
|
Carneiro BA, Kaplan JB, Altman JK, Giles FJ, Platanias LC. Targeting mTOR signaling pathways and related negative feedback loops for the treatment of acute myeloid leukemia. Cancer Biol Ther 2015; 16:648-56. [PMID: 25801978 PMCID: PMC4622839 DOI: 10.1080/15384047.2015.1026510] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/01/2015] [Indexed: 12/29/2022] Open
Abstract
An accumulating understanding of the complex pathogenesis of acute myeloid leukemia (AML) continues to lead to promising therapeutic approaches. Among the key aberrant intracellular signaling pathways involved in AML, the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) axis is of major interest. This axis modulates a wide array of critical cellular functions, including proliferation, metabolism, and survival. Pharmacologic inhibitors of components of this pathway have been developed over the past decade, but none has an established role in the treatment of AML. This review will discuss the preclinical data and clinical results driving ongoing attempts to exploit the PI3K/AKT/mTOR pathway in patients with AML and address issues related to negative feedback loops that account for leukemic cell survival. Targeting the PI3K/AKT/mTOR pathway is of high interest for the treatment of AML, but combination therapies with other targeted agents may be needed to block negative feedback loops in leukemia cells.
Collapse
Affiliation(s)
- Benedito A Carneiro
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Jason B Kaplan
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Jessica K Altman
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Francis J Giles
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
| | - Leonidas C Platanias
- Robert H Lurie Comprehensive Cancer Center of Northwestern University; Chicago, IL, USA
- Division of Hematology and Oncology and Northwestern Medicine Developmental Therapeutics Institute; Northwestern University; Feinberg School of Medicine; Chicago, IL, USA
- Division of Hematology-Oncology; Department of Medicine; Jesse Brown VA Medical Center; Chicago, IL, USA
| |
Collapse
|
48
|
Mondello P, Cuzzocrea S, Mian M. Pim kinases in hematological malignancies: where are we now and where are we going? J Hematol Oncol 2014; 7:95. [PMID: 25491234 PMCID: PMC4266197 DOI: 10.1186/s13045-014-0095-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
The proviral insertion in murine (PIM) lymphoma proteins are a serine/threonine kinase family composed of three isoformes: Pim-1, Pim-2 and Pim-3. They play a critical role in the control of cell proliferation, survival, homing and migration. Recently, overexpression of Pim kinases has been reported in human tumors, mainly in hematologic malignancies. In vitro and in vivo studies have confirmed their oncogenic potential. Indeed, PIM kinases have shown to be involved in tumorgenesis, to enhance tumor growth and to induce chemo-resistance, which is why they have become an attractive therapeutic target for cancer therapy. Novel molecules inhibiting Pim kinases have been evaluated in preclinical studies, demonstrating to be effective and with a favorable toxicity profile. Given the promising results, some of these compounds are currently under investigation in clinical trials. Herein, we provide an overview of the biological activity of PIM-kinases, their role in hematologic malignancies and future therapeutic opportunities.
Collapse
Affiliation(s)
- Patrizia Mondello
- Department of Human Pathology, University of Messina, Via Consolare Valeria, 98125, Messina, Italy. .,Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Michael Mian
- Department of Hematology, Hospital S. Maurizio, Bolzano/Bozen, Italy. .,Department of Internal Medicine V, Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|