1
|
Fortelny N, Farlik M, Fife V, Gorki AD, Lassnig C, Maurer B, Meissl K, Dolezal M, Boccuni L, Ravi Sundar Jose Geetha A, Akagha MJ, Karjalainen A, Shoebridge S, Farhat A, Mann U, Jain R, Tikoo S, Zila N, Esser-Skala W, Krausgruber T, Sitnik K, Penz T, Hladik A, Suske T, Zahalka S, Senekowitsch M, Barreca D, Halbritter F, Macho-Maschler S, Weninger W, Neubauer HA, Moriggl R, Knapp S, Sexl V, Strobl B, Decker T, Müller M, Bock C. JAK-STAT signaling maintains homeostasis in T cells and macrophages. Nat Immunol 2024; 25:847-859. [PMID: 38658806 PMCID: PMC11065702 DOI: 10.1038/s41590-024-01804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.
Collapse
Affiliation(s)
- Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Victoria Fife
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna-Dorothea Gorki
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Caroline Lassnig
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Maurer
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Meissl
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Laura Boccuni
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Mojoyinola Joanna Akagha
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Anzhelika Karjalainen
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Stephen Shoebridge
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Asma Farhat
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrike Mann
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Rohit Jain
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Shweta Tikoo
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Esser-Skala
- Center for Tumor Biology and Immunology, Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Sitnik
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anastasiya Hladik
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tobias Suske
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Sophie Zahalka
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Martin Senekowitsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniele Barreca
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sabine Macho-Maschler
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heidi A Neubauer
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Richard Moriggl
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Sylvia Knapp
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Veronika Sexl
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Birgit Strobl
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Mathias Müller
- Animal Breeding and Genetics and VetBiomodels, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Martínez-Balsalobre E, García-Castillo J, García-Moreno D, Naranjo-Sánchez E, Fernández-Lajarín M, Blasco MA, Alcaraz-Pérez F, Mulero V, Cayuela ML. Telomerase RNA-based aptamers restore defective myelopoiesis in congenital neutropenic syndromes. Nat Commun 2023; 14:5912. [PMID: 37737237 PMCID: PMC10516865 DOI: 10.1038/s41467-023-41472-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Telomerase RNA (TERC) has a noncanonical function in myelopoiesis binding to a consensus DNA binding sequence and attracting RNA polymerase II (RNA Pol II), thus facilitating myeloid gene expression. The CR4/CR5 domain of TERC is known to play this role, since a mutation of this domain found in dyskeratosis congenita (DC) patients decreases its affinity for RNA Pol II, impairing its myelopoietic activity as a result. In this study, we report that two aptamers, short single-stranded oligonucleotides, based on the CR4/CR5 domain were able to increase myelopoiesis without affecting erythropoiesis in zebrafish. Mechanistically, the aptamers functioned as full terc; that is, they increased the expression of master myeloid genes, independently of endogenous terc, by interacting with RNA Pol II and with the terc-binding sequences of the regulatory regions of such genes, enforcing their transcription. Importantly, aptamers harboring the CR4/CR5 mutation that was found in DC patients failed to perform all these functions. The therapeutic potential of the aptamers for treating neutropenia was demonstrated in several preclinical models. The findings of this study have identified two potential therapeutic agents for DC and other neutropenic patients.
Collapse
Affiliation(s)
- Elena Martínez-Balsalobre
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain
| | - Jesús García-Castillo
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
| | - Diana García-Moreno
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain
| | - Elena Naranjo-Sánchez
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain
| | - Miriam Fernández-Lajarín
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain
| | - María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Francisca Alcaraz-Pérez
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain.
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain.
| | - Victoriano Mulero
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain.
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain.
| | - María L Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Connelly JA. Diagnosis and therapeutic decision-making for the neutropenic patient. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:492-503. [PMID: 34889413 PMCID: PMC8791128 DOI: 10.1182/hematology.2021000284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Determining the cause of a low neutrophil count in a pediatric or adult patient is essential for the hematologist's clinical decision-making. Fundamental to this diagnostic process is establishing the presence or lack of a mature neutrophil storage pool, as absence places the patient at higher risk for infection and the need for supportive care measures. Many diagnostic tests, eg, a peripheral blood smear and bone marrow biopsy, remain important tools, but greater understanding of the diversity of neutropenic disorders has added new emphasis on evaluating for immune disorders and genetic testing. In this article, a structure is provided to assess patients based on the mechanism of neutropenia and to prioritize testing based on patient age and hypothesized pathophysiology. Common medical quandaries including fever management, need for growth factor support, risk of malignant transformation, and curative options in congenital neutropenia are reviewed to guide medical decision-making in neutropenic patients.
Collapse
Affiliation(s)
- James A. Connelly
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
4
|
Hematological Malignancies Associated With Primary Immunodeficiency Disorders. Clin Immunol 2018; 194:46-59. [DOI: 10.1016/j.clim.2018.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
|
5
|
Hebeda KM, Tzankov A, Boudova L, Saft L, Hasserjian RP, de Boer M, Fend F, Orazi A, Leguit R. Challenges in Diagnosing Myelodysplastic Syndromes in the Era of Genetic Testing: Proceedings of the 13th Workshop of the European Bone Marrow Working Group. Pathobiology 2018; 86:62-75. [PMID: 29982244 PMCID: PMC6482987 DOI: 10.1159/000489678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/30/2018] [Indexed: 11/19/2022] Open
Abstract
The 13th workshop of the European Bone Marrow Working Group in Utrecht, The Netherlands, was devoted to studying myelodysplastic syndromes (MDS) and their boundaries. The panel received 44 cases submitted to the 3 invited categories, which included: reactive cytopenias with dysplasia, idiopathic cytopenia of undetermined significance, clonal haematopoiesis of indeterminate potential, idiopathic dysplasia of uncertain significance and overt MDS. For this summary, we have selected 17 cases that highlight difficulties in separating true MDS from other causes of cytopenia and the intricate relationship between clonal haematopoiesis and true MDS. In addition, cases of overt MDS with challenging features were also selected. All cases were stained for p53 expression. Using instructive submitted cases we discuss the following: (1) cytopenia with clonal haematopoiesis not fulfilling MDS criteria, (2) cytopenia and/or dysplasia with germline mutations and/or familial history suggesting an underlying gene defect, (3) MDS based on a recurrent chromosomal abnormality and (4) overt MDS with diagnostic difficulties due to concurrent treatment or disease. The lively discussion in the open forum of the workshop illustrated the need for better integrative understanding of the evolution of acquired genetic abnormalities in haematopoiesis, and the challenge of diagnosing true MDS in cytopenic patients with genetic abnormalities, either germline or acquired.
Collapse
Affiliation(s)
- Konnie M Hebeda
- Department of Pathology, Radboud University Medical Center, Nijmegen, The
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Ludmila Boudova
- Department of Pathology, Charles University Hospital, Pilsen, Czech Republic
| | - Leonie Saft
- Department of Pathology and Cytology, Karolinska University Hospital and Institute, Stockholm, Sweden
| | - Rob P Hasserjian
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mirthe de Boer
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Falko Fend
- Department of Pathology, University of Tuebingen, Tuebingen, Germany
| | - Attilio Orazi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Roos Leguit
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Abstract
Much evidence is now accumulating that, in addition to their general role in splicing, the components of the core splicing machinery have extensive regulatory potential. In particular, recent evidence has demonstrated that de-regulation of these factors cause the highest extent of alternative splicing changes compared to de-regulation of the classical splicing regulators. This lack of a general inhibition of splicing resonates the differential splicing effects observed in different disease pathologies associated with specific mutations targeting core spliceosomal components. In this review we will summarize what is currently known regarding the involvement of core spliceosomal U-snRNP complexes in perturbed tissue development and human diseases and argue for the existence of a compensatory mechanism enabling cells to cope with drastic perturbations in core splicing components. This system maintains the correct balance of spliceosomal snRNPs through differential expression of variant (v)U-snRNPs.
Collapse
Affiliation(s)
- Pilar Vazquez-Arango
- a Nuffield Department of Obstetrics and Gynaecology, Level 3 , Women's Centre, John Radcliffe Hospital , Oxford , England
| | - Dawn O'Reilly
- b Sir William Dunn School of pathology , University of Oxford , South Parks Road, Oxford , England
| |
Collapse
|
7
|
El-Heis S, Godfrey KM. The Role of Genetic Testing in Hereditary Poikiloderma: A Case Report. Glob Pediatr Health 2017; 4:2333794X17715840. [PMID: 28695158 PMCID: PMC5495503 DOI: 10.1177/2333794x17715840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/11/2017] [Indexed: 12/03/2022] Open
Affiliation(s)
- Sarah El-Heis
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|