1
|
Oyarbide U, Crane GM, Corey SJ. The metabolic basis of inherited neutropenias. Br J Haematol 2024; 204:45-55. [PMID: 38049194 DOI: 10.1111/bjh.19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
Neutrophils are the shortest-lived blood cells, which requires a prodigious degree of proliferation and differentiation to sustain physiologically sufficient numbers and be poised to respond quickly to infectious emergencies. More than 107 neutrophils are produced every minute in an adult bone marrow-a process that is tightly regulated by a small group of cytokines and chemical mediators and dependent on nutrients and energy. Like granulocyte colony-stimulating factor, the primary growth factor for granulopoiesis, they stimulate signalling pathways, some affecting metabolism. Nutrient or energy deficiency stresses the survival, proliferation, and differentiation of neutrophils and their precursors. Thus, it is not surprising that monogenic disorders related to metabolism exist that result in neutropenia. Among these are pathogenic mutations in HAX1, G6PC3, SLC37A4, TAFAZZIN, SBDS, EFL1 and the mitochondrial disorders. These mutations perturb carbohydrate, lipid and/or protein metabolism. We hypothesize that metabolic disturbances may drive the pathogenesis of a subset of inherited neutropenias just as defects in DNA damage response do in Fanconi anaemia, telomere maintenance in dyskeratosis congenita and ribosome formation in Diamond-Blackfan anaemia. Greater understanding of metabolic pathways in granulopoiesis will identify points of vulnerability in production and may point to new strategies for the treatment of neutropenias.
Collapse
Affiliation(s)
- Usua Oyarbide
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pediatrics, Cleveland Clinic, Cleveland, Ohio, USA
| | - Genevieve M Crane
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Seth J Corey
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Pediatrics, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Pogozhykh D, Yilmaz Karapinar D, Klimiankou M, Gerschmann N, Ebetsberger-Dachs G, Palmblad J, Carlsson G, Masmas T, Kinsey S, Bartels M, Mellor-Heineke S, Welte K, Skokowa J, Zeidler C. HAX1-related congenital neutropenia: Long-term observation in paediatric and adult patients enrolled in the European branch of the Severe Chronic Neutropenia International Registry (SCNIR). Br J Haematol 2023. [PMID: 37193639 DOI: 10.1111/bjh.18840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
HAX1-related congenital neutropenia (HAX1-CN) is a rare autosomal recessive disorder caused by pathogenic variants in the HAX1 gene. HAX1-CN patients suffer from bone marrow failure as assessed by a maturation arrest of the myelopoiesis revealing persistent severe neutropenia from birth. The disorder is strongly associated with severe bacterial infections and a high risk of developing myelodysplastic syndrome or acute myeloid leukaemia. This study aimed to describe the long-term course of the disease, the treatment, outcome and quality of life in patients with homozygous HAX1 mutations reported to the European branch of the Severe Chronic Neutropenia International Registry. We have analysed a total of 72 patients with different types of homozygous (n = 68), compound heterozygous (n = 3), and digenic (n = 1) HAX1 mutations. The cohort includes 56 paediatric (<18 years) and 16 adult patients. All patients were initially treated with G-CSF with a sufficient increase in absolute neutrophil counts. Twelve patients required haematopoietic stem cell transplantation for leukaemia (n = 8) and non-leukaemic indications (n = 4). While previous genotype-phenotype reports documented a striking correlation between two main transcript variants and clinical neurological phenotypes, our current analysis reveals novel mutation subtypes and clinical overlaps between all genotypes including severe secondary manifestations, e.g., high incidence of secondary ovarian insufficiency.
Collapse
Affiliation(s)
- Denys Pogozhykh
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Maksim Klimiankou
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Natali Gerschmann
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Georg Ebetsberger-Dachs
- Department of Paediatrics and Adolescent Medicine, Kepler University Hospital, Linz, Austria
| | - Jan Palmblad
- Departments of Medicine and Hematology, The Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Carlsson
- Childhood Cancer Research Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tania Masmas
- Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, The Child and Adolescent Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sally Kinsey
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Marije Bartels
- Department of Paediatric Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sabine Mellor-Heineke
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Karl Welte
- University Children's Hospital Tübingen, Tübingen, Germany
| | - Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Cornelia Zeidler
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Chakraborty S, Tabrizi Z, Bhatt NN, Franciosa SA, Bracko O. A Brief Overview of Neutrophils in Neurological Diseases. Biomolecules 2023; 13:biom13050743. [PMID: 37238612 DOI: 10.3390/biom13050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in circulation and are the first line of defense after an infection or injury. Neutrophils have a broad spectrum of functions, including phagocytosis of microorganisms, the release of pro-inflammatory cytokines and chemokines, oxidative burst, and the formation of neutrophil extracellular traps. Traditionally, neutrophils were thought to be most important for acute inflammatory responses, with a short half-life and a more static response to infections and injury. However, this view has changed in recent years showing neutrophil heterogeneity and dynamics, indicating a much more regulated and flexible response. Here we will discuss the role of neutrophils in aging and neurological disorders; specifically, we focus on recent data indicating the impact of neutrophils in chronic inflammatory processes and their contribution to neurological diseases. Lastly, we aim to conclude that reactive neutrophils directly contribute to increased vascular inflammation and age-related diseases.
Collapse
Affiliation(s)
| | - Zeynab Tabrizi
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | | | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Department of Neurology, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
4
|
Cichon I, Ortmann W, Kolaczkowska E. Metabolic Pathways Involved in Formation of Spontaneous and Lipopolysaccharide-Induced Neutrophil Extracellular Traps (NETs) Differ in Obesity and Systemic Inflammation. Int J Mol Sci 2021; 22:ijms22147718. [PMID: 34299338 PMCID: PMC8303382 DOI: 10.3390/ijms22147718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity manifests itself with low-grade chronic inflammation that shapes immune responses during infection. Albeit obese individuals are at risk of higher mortality due to comorbidities, they are better protected from systemic inflammation. Recently, we showed that in the vasculature of obese mice kept on high-fat diet (HFD), neutrophils produce less neutrophil extracellular traps (NETs) than in lean controls (normal diet, ND). NETs are used by neutrophils to counteract severe infection, but they also cause collateral damage. Hardly anything is known about metabolic requirements for their formation, especially in the context of obesity and/or sepsis. Thus, we aimed to study the immunometabolism of NET formation by application of ex vivo neutrophil analyses (Seahorse analyzer, selective inhibitors, confocal imaging) and intravital microscopy. The obtained data show that glycolysis and/or pentose phosphate pathway are involved in NETs release by ND neutrophils in both physiological and inflammatory conditions. In contrast, such cells of septic HFD mice utilize these routes only to spontaneously cast NETs, while after secondary ex vivo activation they exhibit so called "exhausted phenotype", which manifests itself in diminished NET release despite high glycolytic potential and flexibility to oxidize fatty acids. Moreover, impact of ATP synthase inhibition on NET formation is revealed. Overall, the study shows that the neutrophil potential to cast NETs depends on both the metabolic and inflammatory state of the individual.
Collapse
|
5
|
Rao S, Yao Y, Soares de Brito J, Yao Q, Shen AH, Watkinson RE, Kennedy AL, Coyne S, Ren C, Zeng J, Serbin AV, Studer S, Ballotti K, Harris CE, Luk K, Stevens CS, Armant M, Pinello L, Wolfe SA, Chiarle R, Shimamura A, Lee B, Newburger PE, Bauer DE. Dissecting ELANE neutropenia pathogenicity by human HSC gene editing. Cell Stem Cell 2021; 28:833-845.e5. [PMID: 33513358 PMCID: PMC8106646 DOI: 10.1016/j.stem.2020.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/15/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Severe congenital neutropenia (SCN) is a life-threatening disorder most often caused by dominant mutations of ELANE that interfere with neutrophil maturation. We conducted a pooled CRISPR screen in human hematopoietic stem and progenitor cells (HSPCs) that correlated ELANE mutations with neutrophil maturation potential. Highly efficient gene editing of early exons elicited nonsense-mediated decay (NMD), overcame neutrophil maturation arrest in HSPCs from ELANE-mutant SCN patients, and produced normal hematopoietic engraftment function. Conversely, terminal exon frameshift alleles that mimic SCN-associated mutations escaped NMD, recapitulated neutrophil maturation arrest, and established an animal model of ELANE-mutant SCN. Surprisingly, only -1 frame insertions or deletions (indels) impeded neutrophil maturation, whereas -2 frame late exon indels repressed translation and supported neutrophil maturation. Gene editing of primary HSPCs allowed faithful identification of variant pathogenicity to clarify molecular mechanisms of disease and encourage a universal therapeutic approach to ELANE-mutant neutropenia, returning normal neutrophil production and preserving HSPC function.
Collapse
Affiliation(s)
- Shuquan Rao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Yao Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Josias Soares de Brito
- Departments of Pediatrics and of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Qiuming Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, MA 02129, USA
| | - Anne H Shen
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alyssa L Kennedy
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Coyne
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Victoria Serbin
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard College, Cambridge, MA 02138, USA
| | - Sabine Studer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kaitlyn Ballotti
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chad E Harris
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myriam Armant
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Luca Pinello
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, MA 02129, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter E Newburger
- Departments of Pediatrics and of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Mörtberg A, Pütsep K, Höglund P. The blood protein hCAP-18 in neutropenia: An 18-month experience of a new ELISA for clinical use. Scand J Immunol 2021; 94:e13037. [PMID: 33662157 DOI: 10.1111/sji.13037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
Neutropenia as an isolated clinical finding may include aetiologies ranging from severe disease to a transient condition, and differential diagnosis may be challenging. Previous data and clinical experience suggest that low levels of the neutrophil-derived protein human 18 kDa cathelicidin antimicrobial protein (hCAP-18) in the blood are predictive of more severe forms of neutropenia. The objective of this study was to present the results from a newly developed ELISA method that has been used in clinical routine in Sweden since 2018 for quantification of hCAP-18 in blood plasma. Using this method, we report that patients with severe disease analysed during the study period presented with low or undetectable levels of blood plasma hCAP-18, validating its use as screening tool for severe neutropenia. Furthermore, neutropenic patients as a group displayed lower levels of hCAP-18 as compared to blood donors. Within the group of neutropenic patients, those with neutrophil antibodies displayed significantly higher hCAP-18 levels compared to patients with idiopathic neutropenia. By including an analysis of hCAP-18 in the primary investigation of neutropenia, an increased accuracy in differential diagnosis is achieved, thus contributing to reduced costs of neutropenia management.
Collapse
Affiliation(s)
- Anette Mörtberg
- Medical Unit Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Katrin Pütsep
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Medical Unit Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Noseykina EM, Schepetkin IA, Atochin DN. Molecular Mechanisms for Regulation of Neutrophil Apoptosis under Normal and Pathological Conditions. J EVOL BIOCHEM PHYS+ 2021; 57:429-450. [PMID: 34226754 PMCID: PMC8245921 DOI: 10.1134/s0022093021030017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Neutrophils are one of the main cells of innate immunity that perform a key effector and regulatory function in the development of the human inflammatory response. Apoptotic forms of neutrophils are important for regulating the intensity of inflammation and restoring tissue homeostasis. This review summarizes current data on the molecular mechanisms of modulation of neutrophil apoptosis by the main regulatory factors of the inflammatory response-cytokines, integrins, and structural components of bacteria. Disturbances in neutrophil apoptosis under stress are also considered, molecular markers of changes in neutrophil lifespan associated with various diseases and pathological conditions are presented, and data on pharmacological agents for modulating apoptosis as potential therapeutics are also discussed.
Collapse
Affiliation(s)
| | - I. A. Schepetkin
- Tomsk Polytechnic University, Tomsk, Russia ,Department of Microbiology
and Immunology, Montana State University, Bozeman, MT, USA
| | - D. N. Atochin
- Tomsk Polytechnic University, Tomsk, Russia ,Cardiovascular Research Center,
Cardiology Division, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
8
|
Guo X, Jia Y, Han L, Zhao Y, Li W, Zhang Z, Peng Y, Zheng J. Metabolic Activation of Tofacitinib Mediated by Myeloperoxidase in Vitro. Chem Res Toxicol 2019; 32:2459-2465. [PMID: 31725283 DOI: 10.1021/acs.chemrestox.9b00280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tofacitinib (TFT) is used for the treatment of moderately and severely active rheumatoid arthritis. Unfortunately, TFT was reported to induce leukopenia, and the underlying mechanisms remain unclear. The present study demonstrated that TFT was oxidized to a chemically reactive nitrenium ion by myeloperoxidase (MPO) occurring in neutrophils. The electrophilic ion showed chemical reactivity toward N-acetyl-cysteine (NAC) to produce two TFT-NAC conjugates (M1 and M2) in incubation of TFT with leucocytes in the presence of NAC. The generation of the nitrenium ion was verified by HClO-mediated oxidation of TFT. In addition, the nitrenium ion was found to react with sulfhydryl groups of cysteine residues of cellular protein in leucocytes after exposure to TFT. The study facilitates the understanding of the mechanisms of TFT toxic action.
Collapse
Affiliation(s)
- Xiucai Guo
- Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning 110016 , P.R. China
| | - Yudi Jia
- Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning 110016 , P.R. China
| | - Lingling Han
- Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning 110016 , P.R. China
| | - Yanhong Zhao
- Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning 110016 , P.R. China
| | - Wei Li
- Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning 110016 , P.R. China
| | - Zhengyu Zhang
- Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning 110016 , P.R. China
| | - Ying Peng
- Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning 110016 , P.R. China
| | - Jiang Zheng
- Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning 110016 , P.R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province , Guizhou Medical University , Guiyang , Guizhou 550004 , P.R. China
| |
Collapse
|
9
|
Seneviratne AK, Xu M, Henao JJA, Fajardo VA, Hao Z, Voisin V, Xu GW, Hurren R, Kim S, MacLean N, Wang X, Gronda M, Jeyaraju D, Jitkova Y, Ketela T, Mullokandov M, Sharon D, Thomas G, Chouinard-Watkins R, Hawley JR, Schafer C, Yau HL, Khuchua Z, Aman A, Al-Awar R, Gross A, Claypool SM, Bazinet RP, Lupien M, Chan S, De Carvalho DD, Minden MD, Bader GD, Stark KD, LeBlanc P, Schimmer AD. The Mitochondrial Transacylase, Tafazzin, Regulates for AML Stemness by Modulating Intracellular Levels of Phospholipids. Cell Stem Cell 2019; 24:621-636.e16. [PMID: 30930145 DOI: 10.1016/j.stem.2019.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/19/2018] [Accepted: 02/27/2019] [Indexed: 12/17/2022]
Abstract
Tafazzin (TAZ) is a mitochondrial transacylase that remodels the mitochondrial cardiolipin into its mature form. Through a CRISPR screen, we identified TAZ as necessary for the growth and viability of acute myeloid leukemia (AML) cells. Genetic inhibition of TAZ reduced stemness and increased differentiation of AML cells both in vitro and in vivo. In contrast, knockdown of TAZ did not impair normal hematopoiesis under basal conditions. Mechanistically, inhibition of TAZ decreased levels of cardiolipin but also altered global levels of intracellular phospholipids, including phosphatidylserine, which controlled AML stemness and differentiation by modulating toll-like receptor (TLR) signaling.
Collapse
Affiliation(s)
- Ayesh K Seneviratne
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingjing Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Juan J Aristizabal Henao
- Laboratory of Nutritional Lipidomics, Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Val A Fajardo
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Zhenyue Hao
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Veronique Voisin
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - G Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - S Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Neil MacLean
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xiaoming Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Danny Jeyaraju
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - David Sharon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Geethu Thomas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - James R Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Caitlin Schafer
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Helen Loo Yau
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Zaza Khuchua
- Department of Biochemistry, Sechenov Medical University, Moscow, Russian Federation; Institute of Medical Research Ilia State University, Tbilisi, Georgia
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Steven M Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Steven Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ken D Stark
- Laboratory of Nutritional Lipidomics, Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Paul LeBlanc
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Thunström Salzer A, Niemiec MJ, Hosseinzadeh A, Stylianou M, Åström F, Röhm M, Ahlm C, Wahlin A, Ermert D, Urban CF. Assessment of Neutrophil Chemotaxis Upon G-CSF Treatment of Healthy Stem Cell Donors and in Allogeneic Transplant Recipients. Front Immunol 2018; 9:1968. [PMID: 30254629 PMCID: PMC6141688 DOI: 10.3389/fimmu.2018.01968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are crucial for the human innate immunity and constitute the majority of leukocytes in circulation. Thus, blood neutrophil counts serve as a measure for the immune system's functionality. Hematological patients often have low neutrophil counts due to disease or chemotherapy. To increase neutrophil counts and thereby preventing infections in high-risk patients, recombinant G-CSF is widely used as adjunct therapy to stimulate the maturation of neutrophils. In addition, G-CSF is utilized to recruit stem cells (SCs) into the peripheral blood of SC donors. Still, the actual functionality of neutrophils resulting from G-CSF treatment remains insufficiently understood. We tested the ex vivo functionality of neutrophils isolated from blood of G-CSF-treated healthy SC donors. We quantified chemotaxis, oxidative burst, and phagocytosis before and after treatment and detected significantly reduced chemotactic activity upon G-CSF treatment. Similarly, in vitro treatment of previously untreated neutrophils with G-CSF led to reduced chemotactic activity. In addition, we revealed that this effect persists in the allogeneic SC recipients up to 4 weeks after neutrophil engraftment. Our data indicates that neutrophil quantity, as a sole measure of immunocompetence in high-risk patients should be considered cautiously as neutrophil functionality might be affected by the primary treatment.
Collapse
Affiliation(s)
- Anna Thunström Salzer
- Department of Radiation Sciences, University of Umeå, Umeå, Sweden.,Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Maria J Niemiec
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Ava Hosseinzadeh
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Marios Stylianou
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Fredrik Åström
- Department of Radiation Sciences, University of Umeå, Umeå, Sweden
| | - Marc Röhm
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Anders Wahlin
- Department of Radiation Sciences, University of Umeå, Umeå, Sweden
| | - David Ermert
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Constantin F Urban
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Makaryan V, Kelley ML, Fletcher B, Bolyard AA, Aprikyan AA, Dale DC. Elastase inhibitors as potential therapies for ELANE-associated neutropenia. J Leukoc Biol 2017; 102:1143-1151. [PMID: 28754797 DOI: 10.1189/jlb.5a1016-445r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/23/2017] [Accepted: 07/12/2017] [Indexed: 02/03/2023] Open
Abstract
Mutations in ELANE, the gene for neutrophil elastase (NE), a protease expressed early in neutrophil development, are the most frequent cause of cyclic (CyN) and severe congenital neutropenia (SCN). We hypothesized that inhibitors of NE, acting either by directly inhibiting enzymatic activity or as chaperones for the mutant protein, might be effective as therapy for CyN and SCN. We investigated β-lactam-based inhibitors of human NE (Merck Research Laboratories, Kenilworth, NJ, USA), focusing on 1 inhibitor called MK0339, a potent, orally absorbed agent that had been tested in clinical trials and shown to have a favorable safety profile. Because fresh, primary bone marrow cells are rarely available in sufficient quantities for research studies, we used 3 cellular models: patient-derived, induced pluripotent stem cells (iPSCs); HL60 cells transiently expressing mutant NE; and HL60 cells with regulated expression of the mutant enzyme. In all 3 models, the cells expressing the mutant enzyme had reduced survival as measured with annexin V and FACS. Coincubation with the inhibitors, particularly MK0339, promoted cell survival and increased formation of mature neutrophils. These studies suggest that cell-permeable inhibitors of neutrophil elastase show promise as novel therapies for ELANE-associated neutropenia.
Collapse
Affiliation(s)
- Vahagn Makaryan
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Merideth L Kelley
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Breanna Fletcher
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Audrey Anna Bolyard
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Severe Chronic Neutropenia International Registry, University of Washington, Seattle, Washington, USA; and
| | | | - David C Dale
- Department of Medicine, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
12
|
Abstract
Neutropenia, usually defined as a blood neutrophil count <1·5 × 109 /l, is a common medical problem for children and adults. There are many causes for neutropenia, and at each stage in life the clinical pattern of causes and consequences differs significantly. I recommend utilizing the age of the child and clinical observations for the preliminary diagnosis and primary management. In premature infants, neutropenia is quite common and contributes to the risk of sepsis with necrotizing enterocolitis. At birth and for the first few months of life, neutropenia is often attributable to isoimmune or alloimmune mechanisms and predisposes to the risk of severe bacterial infections. Thereafter when a child is discovered to have neutropenia, often associated with relatively minor symptoms, it is usually attributed to autoimmune disorder or viral infection. The congenital neutropenia syndromes are usually recognized when there are recurrent infections, the neutropenia is severe and there are congenital anomalies suggesting a genetic disorder. This review focuses on the key clinical finding and laboratory tests for diagnosis with commentaries on treatment, particularly the use of granulocyte colony-stimulating factor to treat childhood neutropenia.
Collapse
Affiliation(s)
- David C Dale
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Epigenetic regulation of neutrophil development and function. Semin Immunol 2016; 28:83-93. [PMID: 27084194 DOI: 10.1016/j.smim.2016.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
Abstract
In addition to performing well-defined effector functions, neutrophils are now recognized as versatile and sophisticated cells with critical immunoregulatory roles. These include the release of a variety of proinflammatory or immunosuppressive cytokines, as well as the expression of genes with regulatory functions. Neutrophils share broad transcriptional features with monocytes, in keeping with the close developmental relation between the two cell types. However, neutrophil-specific gene expression patterns conferring cell type-specific responses to bacterial, viral or fungal components have been identified. Accumulating evidence suggest that these differences reflect the peculiar epigenomic and regulatory landscapes of neutrophils and monocytes, in turn controlled by the specific lineage-determining transcription factors shaping their identity. In this review, we will describe current knowledge on how neutrophil identity and function are controlled at the molecular level, focusing on transcriptional and chromatin regulation of neutrophil development and activation in response to inflammatory stimuli.
Collapse
|