1
|
Tondi F, Cirsmaru RA, Conti C, Follenzi A, Gresele P, Olgasi C, Bury L. Hermansky-Pudlak Syndrome: From Molecular Pathogenesis to Targeted Therapies. IUBMB Life 2025; 77:e70025. [PMID: 40387003 PMCID: PMC12086961 DOI: 10.1002/iub.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare inherited disorder caused by defects in lysosome-related organelles (LROs) in various tissues, including platelets, melanocytes, and endothelial cells. Key features of HPS include oculocutaneous albinism, bleeding tendency, and, in some cases, pulmonary fibrosis, granulomatous colitis, and immunodeficiency. The condition is linked to mutations in 11 genes involved in the formation of LROs. Currently, treatment options for HPS are limited and often ineffective. Though cell and gene therapies have been explored for melanosomes and epithelial cells, there is limited knowledge about their application to platelets and endothelial cells. Understanding the detailed mechanisms of HPS pathogenesis is crucial, and using induced pluripotent stem cell (iPSC) models may provide valuable insights into the disease's molecular processes, aiding the development of new treatments. In this review, we will focus on the genetics and molecular mechanisms of HPS, on its clinical manifestations and current therapeutic approaches, highlighting the need for further research into the disease mechanisms and potential innovative therapies.
Collapse
Affiliation(s)
- Francesca Tondi
- Department of Medicine and Surgery, Section of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| | | | - Chiara Conti
- Department of Medicine and Surgery, Section of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| | - Antonia Follenzi
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
- Dipartimento Attività Integrate Ricerca InnovazioneAzienda Ospedaliero‐Universitaria SS. Antonio e Biagio e C. ArrigoAlessandriaItaly
| | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| | - Cristina Olgasi
- Department of Translational Medicine, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Loredana Bury
- Department of Medicine and Surgery, Section of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| |
Collapse
|
2
|
Hu X, Wei Z, Wu Y, Zhao M, Zhou L, Lin Q. Pathogenesis and Therapy of Hermansky-Pudlak Syndrome (HPS)-Associated Pulmonary Fibrosis. Int J Mol Sci 2024; 25:11270. [PMID: 39457053 PMCID: PMC11508683 DOI: 10.3390/ijms252011270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS)-associated pulmonary fibrosis (HPS-PF) is a progressive lung disease that is a major cause of morbidity and mortality in HPS patients. Previous studies have demonstrated that the HPS proteins play an essential role in the biogenesis and function of lysosome-related organelles (LROs) in alveolar epithelial type II (AT2) cells and found that HPS-PF is associated with dysfunction of AT2 cells and abnormal immune reactions. Despite recent advances in research on HPS and the pathology of HPS-PF, the pathological mechanisms underlying HPS-PF remain poorly understood, and no effective treatment has been established. Therefore, it is necessary to refresh the progress in the pathogenesis of HPS-PF to increase our understanding of the pathogenic mechanism of HPS-PF and develop targeted therapeutic strategies. This review summarizes the recent progress in the pathogenesis of HPS-PF provides information about the current treatment strategies for HPS-PF, and hopefully increases our understanding of the pathogenesis of HPS-PF and offers thoughts for new therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (X.H.); (Z.W.); (Y.W.); (M.Z.); (L.Z.)
| |
Collapse
|
3
|
Yokoyama T, O’Brien KJ, Franklin TM, Zuo BLG, Zuo MXG, Merideth MA, Introne WJ, Gochuico BR. Impairment of Renal Function in Hermansky-Pudlak Syndrome. Am J Nephrol 2024; 56:25-34. [PMID: 39383848 PMCID: PMC11810587 DOI: 10.1159/000541835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by defective biogenesis of lysosome-related organelles. The genetic types of HPS are associated with a spectrum of multisystemic clinical manifestations. Phenotypic features of HPS type 1 (HPS-1) or HPS-4, which are associated with defects in biogenesis of lysosome-related organelles complex-3 (BLOC-3), are generally more severe than those of HPS-3, HPS-5, or HPS-6, which are associated with defects in BLOC-2. A paucity of information is available about renal impairment in HPS. The objective of this study is to expand the understanding of kidney disease in HPS. METHODS Medical records and clinical data of patients with HPS evaluated at the National Institutes of Health Clinical Center from 1995 to 2020 were retrospectively reviewed. For patients with more than one visit, the most recent renal function and urinalysis tests were analyzed. Estimated glomerular filtration rate (eGFR) was calculated using standard equations (i.e., Chronic Kidney Disease Epidemiology Collaboration, Modification of Diet in Renal Disease). Kidney tissue sections from 5 patients with HPS-1 and 1 patient with HPS-6 were examined. RESULTS Records from 205 adults and 52 children with HPS were reviewed. Calculated eGFR of adult patients with different HPS types differed significantly, and calculated eGFR of pediatric and adult patients with BLOC-3 disorders was significantly lower than that of patients with BLOC-2 disorders. Linear regression analysis showed that renal function progressively decreases with age in patients with BLOC-3 or BLOC-2 disorders, but the rate of decline was more rapid in patients with BLOC-3 disorders compared to patients with BLOC-2 disorders. In adult patients with HPS-1, glucosuria was found in 4%, proteinuria in 12%, hematuria in 15%, high levels of urinary β2MG in 24%, and elevated urinary albumin to creatinine ratios in 9%. Histological examination of kidney tissue showed accumulation of intracellular deposits of ceroid lipofuscin in proximal renal tubular epithelial cells in patients with HPS-1. There was no evidence of fibrosis, and glomeruli, distal renal tubular epithelial cells, and interstitial regions appeared histologically normal. CONCLUSION Mild impairment of renal function is a feature of HPS. Kidneys of patients with HPS-1 contain proximal renal tubular intracellular deposits and no histologic evidence of fibrosis. Consistent with other manifestations of HPS, the phenotype of renal impairment is relatively more pronounced in patients with BLOC-3 disorders than in patients with BLOC-2 disorders. Strategies to avoid nephrotoxicity or renal tubular injury and to protect renal function should be considered for patients with HPS irrespective of age.
Collapse
Affiliation(s)
- Tadafumi Yokoyama
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin J. O’Brien
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tesiya M. Franklin
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ben Long G. Zuo
- Section of Fibrosis, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Mei Xing G. Zuo
- Section of Fibrosis, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Melissa A. Merideth
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J. Introne
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernadette R. Gochuico
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Chiang SCC, Covill LE, Tesi B, Campbell TM, Schlums H, Nejati-Zendegani J, Mördrup K, Wood S, Theorell J, Sekine T, Al-Herz W, Akar HH, Belen FB, Chan MY, Devecioglu O, Aksu T, Ifversen M, Malinowska I, Sabel M, Unal E, Unal S, Introne WJ, Krzewski K, Gilmour KC, Ehl S, Ljunggren HG, Nordenskjöld M, Horne A, Henter JI, Meeths M, Bryceson YT. Efficacy of T-cell assays for the diagnosis of primary defects in cytotoxic lymphocyte exocytosis. Blood 2024; 144:873-887. [PMID: 38958468 PMCID: PMC11375501 DOI: 10.1182/blood.2024024499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
ABSTRACT Primary hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disorder associated with autosomal recessive variants in genes required for perforin-mediated lymphocyte cytotoxicity. A rapid diagnosis is crucial for successful treatment. Although defective cytotoxic T lymphocyte (CTL) function causes pathogenesis, quantification of natural killer (NK)-cell exocytosis triggered by K562 target cells currently represents a standard diagnostic procedure for primary HLH. We have prospectively evaluated different lymphocyte exocytosis assays in 213 patients referred for evaluation for suspected HLH and related hyperinflammatory syndromes. A total of 138 patients received a molecular diagnosis consistent with primary HLH. Assessment of Fc receptor-triggered NK-cell and T-cell receptor (TCR)-triggered CTL exocytosis displayed higher sensitivity and improved specificity for the diagnosis of primary HLH than routine K562 cell-based assays, with these assays combined providing a sensitivity of 100% and specificity of 98.3%. By comparison, NK-cell exocytosis after K562 target cell stimulation displayed a higher interindividual variability, in part explained by differences in NK-cell differentiation or large functional reductions after shipment. We thus recommend combined analysis of TCR-triggered CTL and Fc receptor-triggered NK-cell exocytosis for the diagnosis of patients with suspected familial HLH or atypical manifestations of congenital defects in lymphocyte exocytosis.
Collapse
MESH Headings
- Humans
- Exocytosis
- T-Lymphocytes, Cytotoxic/immunology
- Lymphohistiocytosis, Hemophagocytic/diagnosis
- Lymphohistiocytosis, Hemophagocytic/immunology
- Lymphohistiocytosis, Hemophagocytic/genetics
- Lymphohistiocytosis, Hemophagocytic/pathology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Adolescent
- Child
- Adult
- Female
- K562 Cells
- Male
- Child, Preschool
- Middle Aged
- Infant
- Young Adult
- Aged
- Sensitivity and Specificity
- Prospective Studies
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Samuel C. C. Chiang
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Laura E. Covill
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Tessa M. Campbell
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Heinrich Schlums
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jelve Nejati-Zendegani
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Karina Mördrup
- Unit of Pediatric Rheumatology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie Wood
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jakob Theorell
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Takuya Sekine
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Himmet Haluk Akar
- Department of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fatma Burcu Belen
- Department of Pediatrics, Baskent University Medical Faculty, Ankara, Turkey
| | - Mei Yoke Chan
- Haematology/Oncology Service, Department of Paediatric Subspecialties, Kandang Kerbau Women’s and Children’s Hospital, Singapore, Singapore
| | - Omer Devecioglu
- Department of Pediatric Hematology-Oncology, Istanbul Medical School, Istanbul, Turkey
| | - Tekin Aksu
- Division of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| | - Marianne Ifversen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Iwona Malinowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Magnus Sabel
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Ekrem Unal
- Faculty of Health Sciences, Medical Point Hospital, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Sule Unal
- Division of Pediatric Hematology, Hacettepe University, Ankara, Turkey
| | - Wendy J. Introne
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Kimberly C. Gilmour
- Immunology, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Gustaf Ljunggren
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - AnnaCarin Horne
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Marie Meeths
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Nazir HF, Al Sukaiti N, Khater D, Elbeshlawy I, Hassanein N. Hermansky-Pudlak Syndrome: Spectrum in Oman. J Pediatr Hematol Oncol 2023; 45:e389-e394. [PMID: 36162005 DOI: 10.1097/mph.0000000000002552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/14/2022] [Indexed: 11/25/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder, characterized by oculocutaneous albinism, a hemorrhagic diathesis secondary to storage pool-deficient platelets, and in some patients' pulmonary fibrosis, granulomatous colitis, and immunodeficiency. To date, 11 different types of Hermansky-Pudlak syndrome were identified. HPS type 2 is distinctively characterized by severe neutropenia and recurrent sinopulmonary infections. HPS is more common in Puerto Rico, and this is the first report deciphering the genotypic spectrum of HPS in Oman. Between 2001 and 2021, 8 Omani cases with HPS (3 HPS type 2, 1 HPS type 3, and 4 HPS type 6) had been suspected clinically and confirmed through genetic mutation analysis. Patients had mild hemorrhagic phenotype, and variable platelet aggregation defects with different platelet agonists. All patients had characteristic eye manifestations. In addition, patients with HPS type 2 had severe neutropenia. Novel mutations in AP3B1(c.205-1G>C, c.12_13delTA (p.Asn4Lysfs*6) and HPS6 (c.19_20delCT (p. Leu7Alafs*168) were not reported in population variant databases. Diagnosis of HPS had markedly improved in Oman; however, increased clinician awareness is needed. A high index of suspicion and early referral for diagnosis and initiation of proper treatment might help improve outcomes.
Collapse
Affiliation(s)
- Hanan F Nazir
- Department of Pediatrics, Alexandria Faculty of Medicine, Alexandria, Egypt
| | | | - Doaa Khater
- Department of Pediatrics, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Ismail Elbeshlawy
- Paediatric Haematology/Oncology, Oxford University Hospital, Oxford, UK
| | - Nehad Hassanein
- Department of Pediatrics, Alexandria Faculty of Medicine, Alexandria, Egypt
| |
Collapse
|
6
|
Takaldani AHS, Javanshir N, Salimi M, Negaresh M. A case of Hermansky-Pudlak with dyspnea. Oxf Med Case Reports 2023; 2023:omad001. [PMID: 36860960 PMCID: PMC9969820 DOI: 10.1093/omcr/omad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 03/02/2023] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare multisystem disorder inherited in an autosomal recessive manner. Its prevalence is 1 in 500 000 to 1 000 000 people worldwide. The cause of this disorder is genetic mutations that lead to defective organelles of lysosomes. In this report, a 49-year-old man is introduced who was referred to the medical center with ocular albinism and recently exacerbated shortness of breath. Imaging showed peripheral reticular opacities, ground-glass opacities of the lungs with subpleural sparing in some regions, and thickening of bronchovascular bundles, which were all in favor of non-specific interstitial pneumonia. This imaging pattern is an unusual finding in a patient with HPS.
Collapse
Affiliation(s)
- Ali Hossein Samadi Takaldani
- Department of Internal Medicine (Pulmonology Division), School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Javanshir
- Correspondence address. Students Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran. Tel: +984533534818; Fax: +984533534817; E-mail:
| | - Maryam Salimi
- Department of Internal Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Negaresh
- Department of Internal Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
7
|
Parker J, Guslund NC, Jentoft S, Roth O. Characterization of Pipefish Immune Cell Populations Through Single-Cell Transcriptomics. Front Immunol 2022; 13:820152. [PMID: 35154138 PMCID: PMC8828949 DOI: 10.3389/fimmu.2022.820152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 01/16/2023] Open
Abstract
Teleost adaptive immune systems have evolved with more flexibility than previously assumed. A particularly enigmatic system to address immune system modifications in the evolutionary past is represented by the Syngnathids, the family of pipefishes, seahorses and seadragons. These small fishes with their unique male pregnancy have lost the spleen as an important immune organ as well as a functional major histocompatibility class II (MHC II) pathway. How these evolutionary changes have impacted immune cell population dynamics have up to this point remained unexplored. Here, we present the first immune cell repertoire characterization of a syngnathid fish (Syngnathus typhle) using single-cell transcriptomics. Gene expression profiles of individual cells extracted from blood and head-kidney clustered in twelve putative cell populations with eight belonging to those with immune function. Upregulated cell marker genes identified in humans and teleosts were used to define cell clusters. While the suggested loss of CD4+ T-cells accompanied the loss of the MHC II pathway was supported, the upregulation of specific subtype markers within the T-cell cluster indicates subpopulations of regulatory T-cells (il2rb) and cytotoxic T-cells (gzma). Utilizing single-cell RNA sequencing this report is the first to characterize immune cell populations in syngnathids and provides a valuable foundation for future cellular classification and experimental work within the lineage.
Collapse
Affiliation(s)
- Jamie Parker
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Marine Evolutionary Biology, Christian-Albrechts-University, Kiel, Germany
| | - Naomi Croft Guslund
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Olivia Roth
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Marine Evolutionary Biology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
8
|
O'Brien KJ, Parisi X, Shelman NR, Merideth MA, Introne WJ, Heller T, Gahl WA, Malicdan MCV, Gochuico BR. Inflammatory bowel disease in Hermansky-Pudlak syndrome: a retrospective single-centre cohort study. J Intern Med 2021; 290:129-140. [PMID: 33423334 DOI: 10.1111/joim.13224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Knowledge about inflammatory bowel disease (IBD) in patients with Hermansky-Pudlak syndrome (HPS), a rare autosomal recessive disorder characterized by defective biogenesis of lysosome-related organelles, could provide insights into IBD in general. OBJECTIVE To expand the understanding of IBD in patients with HPS. METHODS Retrospective review of records from patients with HPS evaluated at the National Institutes of Health Clinical Center from 1995 to 2019 was conducted. Clinical features of IBD, genotyping results and histologic findings of colectomy specimens were analysed. RESULTS IBD affected 37 (14.2%; 12 male, 25 female) of 261 patients with HPS. Median age of onset was 17 years; range was 1 to 52 years. The most common symptoms of HPS IBD were hematochezia, abdominal pain and loose stools. Fistulae or extra-intestinal manifestations developed in 30% or 22%, respectively. Genotyping showed that patients with biallelic variants in HPS1, HPS3, HPS4 or HPS6 were diagnosed with IBD. Six children had very early-onset IBD. Patients with HPS-3 had mild manifestations of IBD. Medical therapy and bowel resection were utilized to treat 73% and 35% of patients with HPS IBD, respectively; 7 of 13 patients receiving anti-tumor necrosis factor alpha therapy had prolonged clinical responses. Active cryptitis, chronic inflammatory changes, granulomas and ceroid lipofuscinosis were histopathologic findings in three colectomy specimens. CONCLUSIONS IBD resembling Crohn's disease affects some patients with HPS; genetic heterogeneity is a feature of HPS IBD. HPS3 is a new gene associated with human IBD. Very early-onset IBD can develop in HPS.
Collapse
Affiliation(s)
- K J O'Brien
- From the, Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - X Parisi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Medical Research Scholars Program, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - N R Shelman
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - M A Merideth
- From the, Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - W J Introne
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - W A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, MD, USA
| | - M C V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, MD, USA
| | - B R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Testa LC, Jule Y, Lundh L, Bertotti K, Merideth MA, O'Brien KJ, Nathan SD, Venuto DC, El-Chemaly S, Malicdan MCV, Gochuico BR. Automated Digital Quantification of Pulmonary Fibrosis in Human Histopathology Specimens. Front Med (Lausanne) 2021; 8:607720. [PMID: 34211981 PMCID: PMC8240807 DOI: 10.3389/fmed.2021.607720] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is characterized by abnormal interstitial extracellular matrix and cellular accumulations. Methods quantifying fibrosis severity in lung histopathology samples are semi-quantitative, subjective, and analyze only portions of sections. We sought to determine whether automated computerized imaging analysis shown to continuously measure fibrosis in mice could also be applied in human samples. A pilot study was conducted to analyze a small number of specimens from patients with Hermansky-Pudlak syndrome pulmonary fibrosis (HPSPF) or idiopathic pulmonary fibrosis (IPF). Digital images of entire lung histological serial sections stained with picrosirius red and alcian blue or anti-CD68 antibody were analyzed using dedicated software to automatically quantify fibrosis, collagen, and macrophage content. Automated fibrosis quantification based on parenchymal tissue density and fibrosis score measurements was compared to pulmonary function values or Ashcroft score. Automated fibrosis quantification of HPSPF lung explants was significantly higher than that of IPF lung explants or biopsies and was also significantly higher in IPF lung explants than in IPF biopsies. A high correlation coefficient was found between some automated quantification measurements and lung function values for the three sample groups. Automated quantification of collagen content in lung sections used for digital image analyses was similar in the three groups. CD68 immunolabeled cell measurements were significantly higher in HPSPF explants than in IPF biopsies. In conclusion, computerized image analysis provides access to accurate, reader-independent pulmonary fibrosis quantification in human histopathology samples. Fibrosis, collagen content, and immunostained cells can be automatically and individually quantified from serial sections. Robust automated digital image analysis of human lung samples enhances the available tools to quantify and study fibrotic lung disease.
Collapse
Affiliation(s)
- Lauren C Testa
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Linnea Lundh
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Melissa A Merideth
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Steven D Nathan
- Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Falls Church, VA, United States
| | - Drew C Venuto
- Advanced Lung Disease and Lung Transplant Program, Inova Fairfax Hospital, Falls Church, VA, United States
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - May Christine V Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.,Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, United States
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Velázquez-Díaz P, Nakajima E, Sorkhdini P, Hernandez-Gutierrez A, Eberle A, Yang D, Zhou Y. Hermansky-Pudlak Syndrome and Lung Disease: Pathogenesis and Therapeutics. Front Pharmacol 2021; 12:644671. [PMID: 33841163 PMCID: PMC8028140 DOI: 10.3389/fphar.2021.644671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Hermansky-Pudlak Syndrome (HPS) is a rare, genetic, multisystem disorder characterized by oculocutaneous albinism (OCA), bleeding diathesis, immunodeficiency, granulomatous colitis, and pulmonary fibrosis. HPS pulmonary fibrosis (HPS-PF) occurs in 100% of patients with subtype HPS-1 and has a similar presentation to idiopathic pulmonary fibrosis. Upon onset, individuals with HPS-PF have approximately 3 years before experiencing signs of respiratory failure and eventual death. This review aims to summarize current research on HPS along with its associated pulmonary fibrosis and its implications for the development of novel treatments. We will discuss the genetic basis of the disease, its epidemiology, and current therapeutic and clinical management strategies. We continue to review the cellular processes leading to the development of HPS-PF in alveolar epithelial cells, lymphocytes, mast cells, and fibrocytes, along with the molecular mechanisms that contribute to its pathogenesis and may be targeted in the treatment of HPS-PF. Finally, we will discuss emerging new cellular and molecular approaches for studying HPS, including lentiviral-mediated gene transfer, induced pluripotent stem cells (iPSCs), organoid and 3D-modelling, and CRISPR/Cas9-based gene editing approaches.
Collapse
Affiliation(s)
| | - Erika Nakajima
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | | | - Adam Eberle
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Dongqin Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
11
|
Yokoyama T, Gochuico BR. Hermansky-Pudlak syndrome pulmonary fibrosis: a rare inherited interstitial lung disease. Eur Respir Rev 2021; 30:30/159/200193. [PMID: 33536261 DOI: 10.1183/16000617.0193-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a progressive interstitial lung disease of unknown aetiology with a poor prognosis. Studying genetic diseases associated with pulmonary fibrosis provides insights into the pathogenesis of the disease. Hermansky-Pudlak syndrome (HPS), a rare autosomal recessive disorder characterised by abnormal biogenesis of lysosome-related organelles, manifests with oculocutaneous albinism and excessive bleeding of variable severity. Pulmonary fibrosis is highly prevalent in three out of 10 genetic types of HPS (HPS-1, HPS-2 and HPS-4). Thus, genotyping of individuals with HPS is clinically relevant. HPS-1 tends to affect Puerto Rican individuals due to a genetic founder effect. HPS pulmonary fibrosis shares some clinical features with idiopathic pulmonary fibrosis (IPF), including dyspnoea, cough, restrictive lung physiology and computed tomography (CT) findings of fibrosis. In contrast to IPF, HPS pulmonary fibrosis generally affects children (HPS-2) or middle-aged adults (HPS-1 or HPS-4) and may be associated with ground-glass opacification in CT scans. Histopathology of HPS pulmonary fibrosis, and not IPF, shows vacuolated hyperplastic type II cells with enlarged lamellar bodies and alveolar macrophages with lipofuscin-like deposits. Antifibrotic drugs approved as treatment for IPF are not approved for HPS pulmonary fibrosis. However, lung transplantation has been performed in patients with severe HPS pulmonary fibrosis. HPS pulmonary fibrosis serves as a model for studying fibrotic lung disease and fibrosis in general.
Collapse
Affiliation(s)
- Tadafumi Yokoyama
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Dept of Pediatrics, Kanazawa University, Kanazawa, Japan
| | - Bernadette R Gochuico
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Huizing M, Malicdan MCV, Wang JA, Pri-Chen H, Hess RA, Fischer R, O'Brien KJ, Merideth MA, Gahl WA, Gochuico BR. Hermansky-Pudlak syndrome: Mutation update. Hum Mutat 2020; 41:543-580. [PMID: 31898847 DOI: 10.1002/humu.23968] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a group of 10 autosomal recessive multisystem disorders, each defined by the deficiency of a specific gene. HPS-associated genes encode components of four ubiquitously expressed protein complexes: Adaptor protein-3 (AP-3) and biogenesis of lysosome-related organelles complex-1 (BLOC-1) through -3. All individuals with HPS exhibit albinism and a bleeding diathesis; additional features occur depending on the defective protein complex. Pulmonary fibrosis is associated with AP-3 and BLOC-3 deficiency, immunodeficiency with AP-3 defects, and gastrointestinal symptoms are more prevalent and severe in BLOC-3 deficiency. Therefore, identification of the HPS subtype is valuable for prognosis, clinical management, and treatment options. The prevalence of HPS is estimated at 1-9 per 1,000,000. Here we summarize 264 reported and novel variants in 10 HPS genes and estimate that ~333 Puerto Rican HPS subjects and ~385 with other ethnicities are reported to date. We provide pathogenicity predictions for missense and splice site variants and list variants with high minor allele frequencies. Current cellular and clinical aspects of HPS are also summarized. This review can serve as a manifest for molecular diagnostics and genetic counseling aspects of HPS.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - May C V Malicdan
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer A Wang
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Hadass Pri-Chen
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard A Hess
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Roxanne Fischer
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Melissa A Merideth
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Bernadette R Gochuico
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Power B, Ferreira CR, Chen D, Zein WM, O'Brien KJ, Introne WJ, Stephen J, Gahl WA, Huizing M, Malicdan MCV, Adams DR, Gochuico BR. Hermansky-Pudlak syndrome and oculocutaneous albinism in Chinese children with pigmentation defects and easy bruising. Orphanet J Rare Dis 2019; 14:52. [PMID: 30791930 PMCID: PMC6385472 DOI: 10.1186/s13023-019-1023-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022] Open
Abstract
Background Determining the etiology of oculocutaneous albinism is important for proper clinical management and to determine prognosis. The purpose of this study was to genotype and phenotype eight adopted Chinese children who presented with oculocutaneous albinism and easy bruisability. Results The patients were evaluated at a single center; their ages ranged from 3 to 8 years. Whole exome or direct sequencing showed that two of the children had Hermansky-Pudlak syndrome (HPS) type-1 (HPS-1), one had HPS-3, one had HPS-4, and four had non-syndromic oculocutaneous albinism associated with TYR variants (OCA1). Two frameshift variants in HPS1 (c.9delC and c.1477delA), one nonsense in HPS4 (c.416G > A), and one missense variant in TYR (c.1235C > T) were unreported. The child with HPS-4 is the first case with this subtype reported in the Chinese population. Hypopigmentation in patients with HPS was mild compared to that in OCA1 cases, who had severe pigment defects. Bruises, which may be more visible in patients with hypopigmentation, were found in all cases with either HPS or OCA1. Whole mount transmission electron microscopy demonstrated absent platelet dense granules in the HPS cases; up to 1.9 mean dense granules per platelet were found in those with OCA1. Platelet aggregation studies in OCA1 cases were inconclusive. Conclusions Clinical manifestations of oculocutaneous albinism and easy bruisability may be observed in children with HPS or OCA1. Establishing definitive diagnoses in children presenting with these phenotypic features is facilitated by genetic testing. Non-syndromic oculocutaneous albinism and various HPS subtypes, including HPS-4, are found in children of Chinese ancestry.
Collapse
Affiliation(s)
- Bradley Power
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA
| | - Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA
| | - Dong Chen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Wadih M Zein
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy J Introne
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshi Stephen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA.,Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Undiagnosed Diseases Program, NIH Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA
| | - May Christine V Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA.,Undiagnosed Diseases Program, NIH Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA.,Undiagnosed Diseases Program, NIH Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, MSC 1851, Bethesda, MD, 20892-1851, USA.
| |
Collapse
|
14
|
Han CG, O'Brien KJ, Coon LM, Majerus JA, Huryn LA, Haroutunian SG, Moka N, Introne WJ, Macnamara E, Gahl WA, Malicdan MCV, Chen D, Krishnan K, Gochuico BR. Severe bleeding with subclinical oculocutaneous albinism in a patient with a novel HPS6 missense variant. Am J Med Genet A 2018; 176:2819-2823. [PMID: 30369044 DOI: 10.1002/ajmg.a.40514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 11/10/2022]
Abstract
Heřmanský-Pudlák syndrome (HPS), a rare autosomal recessive disorder, manifests with oculocutaneous albinism and a bleeding diathesis. However, severity of disease can be variable and is typically related to the genetic subtype of HPS; HPS type 6 (HPS-6) is an uncommon subtype generally associated with mild disease. A Caucasian adult female presented with a history of severe bleeding; ophthalmologic examination indicated occult oculocutaneous albinism. The patient was diagnosed with a platelet storage pool disorder, and platelet whole mount electron microscopy demonstrated absent delta granules. Genome-wide SNP analysis showed regions of homozygosity that included the HPS1 and HPS6 genes. Full length HPS1 transcript was amplified by PCR of genomic DNA. Targeted next-generation sequencing identified a novel homozygous missense variant in HPS6 (c.383 T > C; p.V128A); this was associated with significantly reduced HPS6 mRNA and protein expression in the patient's fibroblasts compared to control cells. These findings highlight the variable severity of disease manifestations in patients with HPS, and illustrate that HPS can be diagnosed in patients with excessive bleeding and occult oculocutaneous albinism. Genetic analysis and platelet electron microscopy are useful diagnostic tests in evaluating patients with suspected HPS. Clinical Trial registration: Registrar: ClinicalTrials.gov Website: www.clinicaltrials.gov Registration Numbers: NCT00001456 and NCT00084305.
Collapse
Affiliation(s)
- Chen G Han
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Lea M Coon
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | - Julie A Majerus
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | - Laryssa A Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Sara G Haroutunian
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Nagabhishek Moka
- Division of Hematology-Oncology, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Wendy J Introne
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ellen Macnamara
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - May Christine V Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Dong Chen
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | - Koyamangalath Krishnan
- Division of Hematology-Oncology, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
El-Chemaly S, Cheung F, Kotliarov Y, O'Brien KJ, Gahl WA, Chen J, Perl SY, Biancotto A, Gochuico BR. The Immunome in Two Inherited Forms of Pulmonary Fibrosis. Front Immunol 2018; 9:76. [PMID: 29445374 PMCID: PMC5797737 DOI: 10.3389/fimmu.2018.00076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/11/2018] [Indexed: 02/01/2023] Open
Abstract
The immunome (immune cell phenotype, gene expression, and serum cytokines profiling) in pulmonary fibrosis is incompletely defined. Studies focusing on inherited forms of pulmonary fibrosis provide insights into mechanisms of fibrotic lung disease in general. To define the cellular and molecular immunologic phenotype in peripheral blood, high-dimensional flow cytometry and large-scale gene expression of peripheral blood mononuclear cells and serum proteomic multiplex analyses were performed and compared in a cohort with familial pulmonary fibrosis (FPF), an autosomal dominant disorder with incomplete penetrance; Hermansky-Pudlak syndrome pulmonary fibrosis (HPSPF), a rare autosomal recessive disorder; and their unaffected relatives. Our results showed high peripheral blood concentrations of activated central memory helper cells in patients with FPF. Proportions of CD38+ memory CD27- B-cells, IgA+ memory CD27+ B-cells, IgM+ and IgD+ B-cells, and CD39+ T helper cells were increased whereas those of CD39- T helper cells were reduced in patients affected with either familial or HPSPF. Gene expression and serum proteomic analyses revealed enrichment of upregulated genes associated with mitosis and cell cycle control in circulating mononuclear cells as well as altered levels of several analytes, including leptin, cytokines, and growth factors. In conclusion, dysregulation of the extra-pulmonary immunome is a phenotypic feature of FPF or HPSPF. Further studies investigating the blood immunome are indicated to determine the role of immune system dysregulation in the pathogenesis of pulmonary fibrosis. Clinical Trial Registration www.ClinicalTrials.gov, identifiers NCT00968084, NCT01200823, NCT00001456, and NCT00084305.
Collapse
Affiliation(s)
- Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Foo Cheung
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD, United States
| | - Yuri Kotliarov
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD, United States
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - William A Gahl
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.,Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jinguo Chen
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD, United States
| | - Shira Y Perl
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD, United States
| | - Angélique Biancotto
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institutes of Health, Bethesda, MD, United States
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Bryan MM, Tolman NJ, Simon KL, Huizing M, Hufnagel RB, Brooks BP, Speransky V, Mullikin JC, Gahl WA, Malicdan MCV, Gochuico BR. Clinical and molecular phenotyping of a child with Hermansky-Pudlak syndrome-7, an uncommon genetic type of HPS. Mol Genet Metab 2017; 120:378-383. [PMID: 28259707 PMCID: PMC5395203 DOI: 10.1016/j.ymgme.2017.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE Hermansky-Pudlak syndrome (HPS) is a rare inherited disorder with ten reported genetic types; each type has defects in subunits of either Adaptor Protein-3 complex or Biogenesis of Lysosome-related Organelles Complex (BLOC)-1, -2, or -3. Very few patients with BLOC-1 deficiency (HPS-7, -8, and -9 types) have been diagnosed. We report results of comprehensive clinical testing and molecular analyses of primary fibroblasts from a new case of HPS-7. RESULTS A 6-year old Paraguayan male presented with hypopigmentation, ocular albinism, nystagmus, reduced visual acuity, and easy bruising. He also experienced delayed motor and language development as a very young child; head and chest trauma resulted in intracranial hemorrhage with subsequent right hemiparesis and lung scarring. There was no clinical evidence of immunodeficiency or colitis. Whole mount transmission electron microscopy revealed absent platelet delta granules; platelet aggregation testing was abnormal. Exome sequencing revealed a homozygous nonsense mutation in the Dystrobrevin binding protein 1 (DTNBP1) gene [NM_032122.4: c.307C>T; p.Gln103*], previously reported in a Portuguese adult. The gene encodes the dysbindin subunit of BLOC-1. Dysbindin protein expression was negligible in our patient's dermal fibroblasts, while his DTNBP1 mRNA level was similar to that of a normal control. CONCLUSIONS Comprehensive clinical evaluation of the first pediatric case reported with HPS-7 reveals oculocutaneous albinism and platelet storage pool deficiency; his phenotype is consistent with findings in other patients with BLOC-1 disorders. This patient's markedly reduced Dysbindin protein expression in HPS-7 resulted from a mechanism other than nonsense mediated decay.
Collapse
Affiliation(s)
- Melanie M Bryan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Nathanial J Tolman
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Karen L Simon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Vladislav Speransky
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA; NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|