1
|
Ji Y, Xiao C, Fan T, Deng Z, Wang D, Cai W, Li J, Liao T, Li C, He J. The epigenetic hallmarks of immune cells in cancer. Mol Cancer 2025; 24:66. [PMID: 40038722 DOI: 10.1186/s12943-025-02255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Targeting the dysregulation of epigenetic mechanisms in cancer has emerged as a promising therapeutic strategy. Although the significant rationale progress of epigenetic therapies in blocking cancer cells, how epigenetic regulation shapes tumor microenvironment (TME) and establishes antitumor immunity remains less understood. Recent study focus has been put on the epigenetic-mediated changes in the fate of immune cells, including the differentiation, expansion, recruitment, functionalization, and exhaustion of T cells, natural killer (NK) cells, tumor-associated macrophages (TAMs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), and B cells within the TME. Here, we review the latest molecular and clinical insights into how DNA modifications, histone modification, and epitranscriptome-related regulations shape immune cells of various cancers. We also discuss opportunities for leveraging epigenetic therapies to improve cancer immunotherapies. This review provides the epigenetic foundations of cancer immunity and proposes the future direction of combination therapies.
Collapse
Affiliation(s)
- Yu Ji
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianle Liao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Song Y, Yu B. Leveraging non-enzymatic functions of LSD1 for novel therapeutics. Trends Pharmacol Sci 2025; 46:204-219. [PMID: 39966067 DOI: 10.1016/j.tips.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/28/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025]
Abstract
Lysine-specific demethylase 1 (LSD1) is a key enzyme that removes the methylation marks from lysines in the histone tails of nucleosomes. Emerging evidence suggests that LSD1 exhibits both enzyme-dependent and independent functions across various diseases. However, most LSD1-targeted therapies in clinical trials focus on its classic demethylase activity. Only one allosteric inhibitor (SP-2577) and two nonproteolysis-targeting chimera (PROTAC) LSD1 degraders (BEA-17 and UM171), which target its enzyme-independent functions, have entered clinical assessment. Given the limited exploration of therapeutic strategies targeting the non-enzymatic functions of LSD1, in this opinion, we summarize current insights into its biological roles and structural characteristics. We also highlight potential therapeutic interventions targeting the non-enzymatic functions of LSD1, including allosteric inhibitors, protein-protein interaction (PPI) inhibitors, and small-molecule degraders, and discuss challenges and future directions in drug discovery targeting these functions.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Bin Yu
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China; College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
He Y, Wang X, Chen S, Luo H, Huo B, Guo X, Li R, Chen Y, Yi X, Wei X, Jiang DS. SP2509 functions as a novel ferroptosis inhibitor by reducing intracellular iron level in vascular smooth muscle cells. Free Radic Biol Med 2024; 219:49-63. [PMID: 38608823 DOI: 10.1016/j.freeradbiomed.2024.04.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Previous studies have shown that ferroptosis of vascular smooth muscle cells (VSMCs) is involved in the development of aortic dissection (AD) and that histone methylation regulates this process. SP2509 acts as a specific inhibitor of lysine-specific demethylase 1 (LSD1), which governs a variety of biological processes. However, the effect of SP2509 on VSMC ferroptosis and AD remains to be elucidated. This aim of this study was to investigate the role and underlying mechanism of SP2509-mediated histone methylation on VSMC ferroptosis. Here, a mouse model of AD was established, and significantly reduced levels of H3K4me1 and H3K4me2 (target of SP2509) were found in the aortas of AD mice. In VSMCs, SP2509 treatment led to a dose-dependent increase in H3K4me2 levels. Furthermore, we found that SP2509 provided equivalent protection to ferrostatin-1 against VSMC ferroptosis, as evidenced by increased cell viability, decreased cell death and lipid peroxidation. RNA-sequencing analysis and subsequent experiments revealed that SP2509 counteracted cystine deficiency-induced response to inflammation and oxidative stress. More importantly, we demonstrated that SP2509 inhibited the expression of TFR and ferritin to reduce intracellular iron levels, thereby effectively blocking the process of ferroptosis. Therefore, our findings indicate that SP2509 protects VSMCs from multiple stimulus-induced ferroptosis by reducing intracellular iron levels, thereby preventing lipid peroxidation and cell death. These findings suggest that SP2509 may be a promising drug to alleviate AD by reducing iron deposition and VSMC ferroptosis.
Collapse
MESH Headings
- Ferroptosis/drug effects
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Mice
- Iron/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Oxidative Stress/drug effects
- Humans
- Disease Models, Animal
- Lipid Peroxidation/drug effects
- Phenylenediamines/pharmacology
- Male
- Cell Survival/drug effects
- Histones/metabolism
- Histones/genetics
- Histone Demethylases/metabolism
- Histone Demethylases/genetics
- Mice, Inbred C57BL
- Cyclohexylamines
Collapse
Affiliation(s)
- Yi He
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xingbo Wang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Siqi Chen
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hanshen Luo
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Huo
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Guo
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Chen
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Zhao X, Zhang Y, Qu S, Tang W, He T, Li P, Zheng X. SP2509, a specific antagonist of LSD1, exhibits antiviral properties against Porcine epidemic diarrhea virus. BMC Vet Res 2024; 20:187. [PMID: 38730463 PMCID: PMC11084069 DOI: 10.1186/s12917-024-04052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV), a type of coronavirus, is one of the main pathogens that can infect pigs of all ages. It causes diarrhea and acute death of newborn piglets, resulting in massive economic losses to the worldwide swine industry. While vaccination remains the primary approach in combating PEDV, it often fails to address all the challenges posed by the infection, particularly in light of the emergence of evolving mutant strains. Therefore, there is a critical need to identify potent antiviral drugs that can effectively safeguard pigs against PEDV infection. RESULTS In this study, the antiviral efficacy of SP2509, a specific antagonist of Lysine-specific demethylase 1(LSD1), was evaluated in vitro. The RT-qPCR, Western blot, TCID50, and IFA showed that at a concentration of 1µmol/L, SP2509 significantly inhibited PEDV infection. Additionally, viral life cycle assays showed that SP2509 operates by impeding PEDV internalization and replication rather than attachment and release. Regarding mechanism, in Huh-7 cells, knockdowns LSD1 can suppress PEDV replication. This indicated that the inhibition effect of SP2509 on PEDV largely depends on the activity of its target protein, LSD1. CONCLUSION Our results in vitro show that SP2509 can inhibit PEDV infection during the internalization and replication stage and revealed a role of LSD1 as a restriction factor for PEDV. These imply that LSD1 might be a target for interfering with the viral infection, and SP2509 could be developed as an effective anti-PEDV agent.
Collapse
Affiliation(s)
- Xinyu Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yuhang Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Shiyin Qu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Wuyang Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Tianqiong He
- Department of Laboratory Animal Science, Central South University, Changsha, 410013, China
| | - Pishun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Xiaofeng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
5
|
Zhang Z, Aoki H, Umezawa K, Kranrod J, Miyazaki N, Oshima T, Hirao T, Miura Y, Seubert J, Ito K, Aoki S. Potential role of lipophagy impairment for anticancer effects of glycolysis-suppressed pancreatic ductal adenocarcinoma cells. Cell Death Discov 2024; 10:166. [PMID: 38580661 PMCID: PMC10997792 DOI: 10.1038/s41420-024-01933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
Although increased aerobic glycolysis is common in various cancers, pancreatic ductal adenocarcinoma (PDAC) cells can survive a state of glycolysis suppression. We aimed to identify potential therapeutic targets in glycolysis-suppressed PDAC cells. By screening anticancer metabolic compounds, we identified SP-2509, an inhibitor of lysine-specific histone demethylase 1A (LSD1), which dramatically decreased the growth of PDAC PANC-1 cells and showed an anti-tumoral effect in tumor-bearing mice. The growth of glycolysis-suppressed PANC-1 cells was also inhibited by another LSD1 inhibitor, OG-L002. Similarly, the other two PDAC cells (PK-1 and KLM-1) with suppressed glycolysis exhibited anticancer effects against SP-2509. However, the anticancer effects on PDAC cells were unrelated to LSD1. To investigate how PDAC cells survive in a glycolysis-suppressed condition, we conducted proteomic analyses. These results combined with our previous findings suggested that glucose-starvation causes PDAC cells to enhance mitochondrial oxidative phosphorylation. In particular, mitochondrial fatty acid metabolism was identified as a key factor contributing to the survival of PDAC cells under glycolysis suppression. We further demonstrated that SP-2509 and OG-L002 disturbed fatty acid metabolism and induced lipid droplet accumulation through the impairment of lipophagy, but not bulk autophagy. These findings indicate a significant potential association of lipophagy and anticancer effects in glycolysis-suppressed PDAC cells, offering ideas for new therapeutic strategies for PDAC by dual inhibition of glycolysis and fatty acids metabolism.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan
| | - Haruna Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan
| | - Keitaro Umezawa
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35‑2 Sakae‑cho, Itabashi‑ku, Tokyo, 173‑0015, Japan
| | - Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2026-M Katz Group Centre for Pharmacy and Health Research, 11361-97 Ave, Edmonton, AB, T6G 2E1, Canada
| | - Natsumi Miyazaki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan
| | - Taichi Oshima
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan
| | - Takuya Hirao
- Divisions of Clinical Pharmacokinetics, Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35‑2 Sakae‑cho, Itabashi‑ku, Tokyo, 173‑0015, Japan
| | - John Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 2026-M Katz Group Centre for Pharmacy and Health Research, 11361-97 Ave, Edmonton, AB, T6G 2E1, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-city, Chiba, 260-8675, Japan.
| |
Collapse
|
6
|
Agboyibor C, Dong J, Effah CY, Drokow EK, Ampomah-Wireko M, Pervaiz W, Sangmor A, Ma X, Li J, Liu HM, Zhang P. Epigenetic compounds targeting pharmacological target lysine specific demethylase 1 and its impact on immunotherapy, chemotherapy and radiotherapy for treatment of tumor recurrence and resistance. Biomed Pharmacother 2023; 157:113934. [PMID: 36395607 DOI: 10.1016/j.biopha.2022.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
It has been proven that metastatic recurrence and therapeutic resistance are linked. Due to the variability of individuals and tumors, as well as the tumor's versatility in avoiding therapies, therapy resistance is more difficult to treat. Therapy resistance has significantly restricted the clinical feasibility and efficacy of tumor therapy, despite the discovery of novel compounds and therapy combinations with increasing efficacy. In several tumors, lysine specific demethylase 1 (LSD1) has been associated to metastatic recurrence and therapeutic resistance. For researchers to better comprehend how LSD1-mediated tumor therapy resistance occurs and how to overcome it in various tumors, this study focused on the role of LSD1 in tumor recurrence and therapeutic resistance. The importance of therapeutically targeted LSD1 was also discussed. Most gene pathway signatures are related to LSD1 inhibitor sensitivity. However, some gene pathway signatures, especially in AML, negatively correlate with LSD1 inhibitor sensitivity, but targeting LSD1 makes the therapy-resistant tumor sensitive to physiological doses of conventional therapy. We propose that combining LSD1 inhibitor with traditional tumor therapy can help patients attain a complete response and prevent cancer relapse.
Collapse
Affiliation(s)
- Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Emmanuel Kwateng Drokow
- Department of Oncology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | | | - Waqar Pervaiz
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China
| | - Augustina Sangmor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, PR China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; Zhengzhou University, Zhengzhou 450001, PR China; Institute of Drug Discovery and Development; Zhengzhou University, Zhengzhou 450001, PR China.
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan province, PR China 450008.
| |
Collapse
|
7
|
Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:353. [PMID: 36198685 PMCID: PMC9535022 DOI: 10.1038/s41392-022-01200-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death across the world. Unlike lung adenocarcinoma, patients with lung squamous cell carcinoma (LSCC) have not benefitted from targeted therapies. Although immunotherapy has significantly improved cancer patients' outcomes, the relatively low response rate and severe adverse events hinder the clinical application of this promising treatment in LSCC. Therefore, it is of vital importance to have a better understanding of the mechanisms underlying the pathogenesis of LSCC as well as the inner connection among different signaling pathways, which will surely provide opportunities for more effective therapeutic interventions for LSCC. In this review, new insights were given about classical signaling pathways which have been proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways which may have therapeutic potentials in LSCC were also discussed, including the FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. Next, chromosome 3q, which harbors two key squamous differentiation markers SOX2 and TP63 is discussed as well as its related potential therapeutic targets. We also provided some progress of LSCC in epigenetic therapies and immune checkpoints blockade (ICB) therapies. Subsequently, we outlined some combination strategies of ICB therapies and other targeted therapies. Finally, prospects and challenges were given related to the exploration and application of novel therapeutic strategies for LSCC.
Collapse
|
8
|
Sacilotto N, Dessanti P, Lufino MMP, Ortega A, Rodríguez-Gimeno A, Salas J, Maes T, Buesa C, Mascaró C, Soliva R. Comprehensive in Vitro Characterization of the LSD1 Small Molecule Inhibitor Class in Oncology. ACS Pharmacol Transl Sci 2021; 4:1818-1834. [PMID: 34927013 DOI: 10.1021/acsptsci.1c00223] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 01/10/2023]
Abstract
Lysine-specific demethylase 1 (LSD1 or KDM1A) is a chromatin modifying enzyme playing a key role in the cell cycle and cell differentiation and proliferation through the demethylation of histones and nonhistone substrates. In addition to its enzymatic activity, LSD1 plays a fundamental scaffolding role as part of transcription silencing complexes such as rest co-repressor (CoREST) and nucleosome remodeling and deacetylase (NuRD). A host of classical amine oxidase inhibitors such as tranylcypromine, pargyline, and phenelzine together with LSD1 tool compounds such as SP-2509 and GSK-LSD1 have been extensively utilized in LSD1 mechanistic cancer studies. Additionally, several optimized new chemical entities have reached clinical trials in oncology such as ORY-1001 (iadademstat), GSK2879552, SP-2577 (seclidemstat), IMG-7289 (bomedemstat), INCB059872, and CC-90011 (pulrodemstat). Despite this, no single study exists that characterizes them all under the same experimental conditions, preventing a clear interpretation of published results. Herein, we characterize the whole LSD1 small molecule compound class as inhibitors of LSD1 catalytic activity, disruptors of SNAIL/GFI1 (SNAG)-scaffolding protein-protein interactions, inducers of cell differentiation, and potential anticancer treatments for hematological and solid tumors to yield an updated, unified perspective of this field. Our results highlight significant differences in potency and selectivity among the clinical compounds with iadademstat being the most potent and reveal that most of the tool compounds have very low activity and selectivity, suggesting some conclusions derived from their use should be taken with caution.
Collapse
Affiliation(s)
- Natalia Sacilotto
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Paola Dessanti
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Michele M P Lufino
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Alberto Ortega
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | | | - Jordi Salas
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Tamara Maes
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Carlos Buesa
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Cristina Mascaró
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Robert Soliva
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| |
Collapse
|
9
|
Liu XY, Guo CH, Xi ZY, Xu XQ, Zhao QY, Li LS, Wang Y. Histone methylation in pancreatic cancer and its clinical implications. World J Gastroenterol 2021; 27:6004-6024. [PMID: 34629816 PMCID: PMC8476335 DOI: 10.3748/wjg.v27.i36.6004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive human cancer. Appropriate methods for the diagnosis and treatment of PC have not been found at the genetic level, thus making epigenetics a promising research path in studies of PC. Histone methylation is one of the most complicated types of epigenetic modifications and has proved crucial in the development of PC. Histone methylation is a reversible process regulated by readers, writers, and erasers. Some writers and erasers can be recognized as potential biomarkers and candidate therapeutic targets in PC because of their unusual expression in PC cells compared with normal pancreatic cells. Based on the impact that writers have on the development of PC, some inhibitors of writers have been developed. However, few inhibitors of erasers have been developed and put to clinical use. Meanwhile, there is not enough research on the reader domains. Therefore, the study of erasers and readers is still a promising area. This review focuses on the regulatory mechanism of histone methylation, and the diagnosis and chemotherapy of PC based on it. The future of epigenetic modification in PC research is also discussed.
Collapse
Affiliation(s)
- Xing-Yu Liu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Chuan-Hao Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhi-Yuan Xi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Xin-Qi Xu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Qing-Yang Zhao
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Ying Wang
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
10
|
Zhen H, Zhang X, Zhang L, Zhou M, Lu L, Wu L, He N, Wang J, Li R, Guo Y. SP2509, an inhibitor of LSD1, exerts potential antitumor effects by targeting the JAK/STAT3 signaling. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1098-1105. [PMID: 34169322 DOI: 10.1093/abbs/gmab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Hyperactivation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling promotes tumorigenesis and cancer progression. STAT3 participates in the essential processes of cell proliferation, survival, and differentiation in many types of tumors. In the present study, SP2509 was identified as a potent inhibitor of the JAK/STAT3 signaling pathway by high-throughput drug screening based on a STAT3-driven luciferase expression system. Our results indicated that SP2509 inhibits constitutive STAT3 activation and the expression of STAT3-driven downstream genes. Bcl-xL, c-Myc, and Cyclin D1 were downregulated after treatment with SP2509. In addition, SP2509 specifically inhibits JAK activity, which could cause cell cycle arrest, inhibit cell growth, and induce apoptosis of various cancer cells. These results confirmed that SP2509 inhibits tumor progression by suppressing the expression of JAK/STAT3 signaling and STAT3-related downstream genes. Moreover, we demonstrated that SP2509 inhibits tumor growth in vivo and induces cell death in vitro. SP2509-mediated inhibition of STAT3 phosphorylation is dependent on its original target lysine-specific demethylase 1 in cancer cells. In summary, our results indicate that SP2509 is a novel inhibitor of JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Huiyan Zhen
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Xinxin Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Lei Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Mingming Zhou
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Liangliang Lu
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Lihong Wu
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Na He
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Juan Wang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Rui Li
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Yan Guo
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
11
|
Bailey CP, Figueroa M, Gangadharan A, Yang Y, Romero MM, Kennis BA, Yadavilli S, Henry V, Collier T, Monje M, Lee DA, Wang L, Nazarian J, Gopalakrishnan V, Zaky W, Becher OJ, Chandra J. Pharmacologic inhibition of lysine-specific demethylase 1 as a therapeutic and immune-sensitization strategy in pediatric high-grade glioma. Neuro Oncol 2021; 22:1302-1314. [PMID: 32166329 DOI: 10.1093/neuonc/noaa058] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diffuse midline gliomas (DMG), including brainstem diffuse intrinsic pontine glioma (DIPG), are incurable pediatric high-grade gliomas (pHGG). Mutations in the H3 histone tail (H3.1/3.3-K27M) are a feature of DIPG, rendering them therapeutically sensitive to small-molecule inhibition of chromatin modifiers. Pharmacological inhibition of lysine-specific demethylase 1 (LSD1) is clinically relevant but has not been carefully investigated in pHGG or DIPG. METHODS Patient-derived DIPG cell lines, orthotopic mouse models, and pHGG datasets were used to evaluate effects of LSD1 inhibitors on cytotoxicity and immune gene expression. Immune cell cytotoxicity was assessed in DIPG cells pretreated with LSD1 inhibitors, and informatics platforms were used to determine immune infiltration of pHGG. RESULTS Selective cytotoxicity and an immunogenic gene signature were established in DIPG cell lines using clinically relevant LSD1 inhibitors. Pediatric HGG patient sequencing data demonstrated survival benefit of this LSD1-dependent gene signature. Pretreatment of DIPG with these inhibitors increased lysis by natural killer (NK) cells. Catalytic LSD1 inhibitors induced tumor regression and augmented NK cell infusion in vivo to reduce tumor burden. CIBERSORT analysis of patient data confirmed NK infiltration is beneficial to patient survival, while CD8 T cells are negatively prognostic. Catalytic LSD1 inhibitors are nonperturbing to NK cells, while scaffolding LSD1 inhibitors are toxic to NK cells and do not induce the gene signature in DIPG cells. CONCLUSIONS LSD1 inhibition using catalytic inhibitors is selectively cytotoxic and promotes an immune gene signature that increases NK cell killing in vitro and in vivo, representing a therapeutic opportunity for pHGG. KEY POINTS 1. LSD1 inhibition using several clinically relevant compounds is selectively cytotoxic in DIPG and shows in vivo efficacy as a single agent.2. An LSD1-controlled gene signature predicts survival in pHGG patients and is seen in neural tissue from LSD1 inhibitor-treated mice.3. LSD1 inhibition enhances NK cell cytotoxicity against DIPG in vivo and in vitro with correlative genetic biomarkers.
Collapse
Affiliation(s)
- Cavan P Bailey
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas.,Department of Epigenetics and Molecular Carcinogenesis, The MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The MD Anderson Cancer Center, Houston, Texas
| | - Mary Figueroa
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas.,Department of Epigenetics and Molecular Carcinogenesis, The MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The MD Anderson Cancer Center, Houston, Texas
| | - Achintyan Gangadharan
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas.,Department of Epigenetics and Molecular Carcinogenesis, The MD Anderson Cancer Center, Houston, Texas
| | - Yanwen Yang
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas
| | - Megan M Romero
- Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Bridget A Kennis
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas
| | - Sridevi Yadavilli
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
| | - Verlene Henry
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas
| | - Tiara Collier
- Brain Tumor Center, The MD Anderson Cancer Center, Houston, Texas
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California
| | - Dean A Lee
- Department of Pediatrics, Nationwide Children's and the Ohio State Comprehensive Cancer Center, Columbus, Ohio
| | - Linghua Wang
- Department of Genomic Medicine, The MD Anderson Cancer Center, Houston, Texas
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
| | - Vidya Gopalakrishnan
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas.,Center for Cancer Epigenetics, The MD Anderson Cancer Center, Houston, Texas
| | - Wafik Zaky
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas
| | - Oren J Becher
- Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Joya Chandra
- Department of Pediatrics , Research, The MD Anderson Cancer Center, Houston, Texas.,Department of Epigenetics and Molecular Carcinogenesis, The MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Perillo B, Tramontano A, Pezone A, Migliaccio A. LSD1: more than demethylation of histone lysine residues. Exp Mol Med 2020; 52:1936-1947. [PMID: 33318631 PMCID: PMC8080763 DOI: 10.1038/s12276-020-00542-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Lysine-specific histone demethylase 1 (LSD1) represents the first example of an identified nuclear protein with histone demethylase activity. In particular, it plays a special role in the epigenetic regulation of gene expression, as it removes methyl groups from mono- and dimethylated lysine 4 and/or lysine 9 on histone H3 (H3K4me1/2 and H3K9me1/2), behaving as a repressor or activator of gene expression, respectively. Moreover, it has been recently found to demethylate monomethylated and dimethylated lysine 20 in histone H4 and to contribute to the balance of several other methylated lysine residues in histone H3 (i.e., H3K27, H3K36, and H3K79). Furthermore, in recent years, a plethora of nonhistone proteins have been detected as targets of LSD1 activity, suggesting that this demethylase is a fundamental player in the regulation of multiple pathways triggered in several cellular processes, including cancer progression. In this review, we analyze the molecular mechanism by which LSD1 displays its dual effect on gene expression (related to the specific lysine target), placing final emphasis on the use of pharmacological inhibitors of its activity in future clinical studies to fight cancer. Further research into the complex structure and behavior of an enzyme involved in gene regulation could improve future cancer therapies. The modification of chromosomal proteins known as histones can fundamentally change gene expression and influence the progression of diseases such as cancer. Bruno Perillo at the Italian National Research Council, Naples, Italy, and co-workers reviewed understanding of the structurally complex enzyme lysine-specific histone demethylase 1 A (LSD1), which interacts with multiple targets including histones. LSD1 removes methyl groups from histones, fine-tuning gene expression and influencing protein activity. The overexpression of LSD1 is linked to cancer development, particularly in aggressive cancers, and inhibiting LSD1 has shown promise in slowing progression and cancer spread. The researchers call for further research into the complexities of LSD1 activity, both in cancers and normal cell function.
Collapse
Affiliation(s)
- Bruno Perillo
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore" C.N.R, 80131, Naples, Italy.
| | - Alfonso Tramontano
- Dipartimento di Medicina di Precisione Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Antonio Pezone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche Università Federico II, 80131, Naples, Italy.
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
13
|
Dai XJ, Liu Y, Xiong XP, Xue LP, Zheng YC, Liu HM. Tranylcypromine Based Lysine-Specific Demethylase 1 Inhibitor: Summary and Perspective. J Med Chem 2020; 63:14197-14215. [PMID: 32931269 DOI: 10.1021/acs.jmedchem.0c00919] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone lysine-specific demethylase 1 (LSD1/KDM1A) has become an important and promising anticancer target since it was first identified in 2004 and specially demethylates lysine residues of histone H3K4me1/2 and H3K9me1/2. LSD1 is ubiquitously overexpressed in diverse cancers, and abrogation of LSD1 results in inhibition of proliferation, invasion, and migration in cancer cells. Over the past decade, a number of biologically active small-molecule LSD1 inhibitors have been developed. To date, six trans-2-phenylcyclopropylamine (TCP)-based LSD1 inhibitors (including TCP, ORY-1001, GSK-2879552, INCB059872, IMG-7289, and ORY-2001) that covalently bind to the flavin adenine dinucleotide (FAD) within the LSD1 catalytic cavity have already entered into clinical trials. Here, we provide an overview about the structures, activities, and structure-activity relationship (SAR) of TCP-based LSD1 inhibitors that mainly covers the literature from 2008 to date. The opportunities, challenges, and future research directions in this emerging and promising field are also discussed.
Collapse
Affiliation(s)
- Xing-Jie Dai
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiao-Peng Xiong
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Lei-Peng Xue
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| |
Collapse
|
14
|
Pandey MR, Wang ES. What potential is there for LSD1 inhibitors to reach approval for AML? Expert Opin Emerg Drugs 2020; 24:205-212. [PMID: 31914875 DOI: 10.1080/14728214.2019.1694001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Manu R Pandey
- Leukemia Service, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eunice S Wang
- Leukemia Service, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
15
|
Deb G, Wingelhofer B, Amaral FMR, Maiques-Diaz A, Chadwick JA, Spencer GJ, Williams EL, Leong HS, Maes T, Somervaille TCP. Pre-clinical activity of combined LSD1 and mTORC1 inhibition in MLL-translocated acute myeloid leukaemia. Leukemia 2020; 34:1266-1277. [PMID: 31780813 PMCID: PMC7192845 DOI: 10.1038/s41375-019-0659-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/12/2022]
Abstract
The histone demethylase lysine-specific demethylase 1 (LSD1 or KDM1A) has emerged as a candidate therapeutic target in acute myeloid leukaemia (AML); tranylcypromine-derivative inhibitors induce loss of clonogenic activity and promote differentiation, in particular in the MLL-translocated molecular subtype of AML. In AML, the use of drugs in combination often delivers superior clinical activity. To identify genes and cellular pathways that collaborate with LSD1 to maintain the leukaemic phenotype, and which could be targeted by combination therapies, we performed a genome-wide CRISPR-Cas9 dropout screen. We identified multiple components of the amino acid sensing arm of mTORC1 signalling-RRAGA, MLST8, WDR24 and LAMTOR2-as cellular sensitizers to LSD1 inhibition. Knockdown of mTORC1 components, or mTORC1 pharmacologic inhibition, in combination with LSD1 inhibition enhanced differentiation in both cell line and primary cell settings, in vitro and in vivo, and substantially reduced the frequency of clonogenic primary human AML cells in a modelled minimal residual disease setting. Synergistic upregulation of a set of transcription factor genes associated with terminal monocytic lineage differentiation was observed. Thus, dual mTORC1 and LSD1 inhibition represents a candidate combination approach for enhanced differentiation in MLL-translocated AML which could be evaluated in early phase clinical trials.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Antineoplastic Agents/pharmacology
- Apoptosis
- Cell Proliferation
- Drug Therapy, Combination
- Everolimus/pharmacology
- Female
- Gene Expression Regulation, Leukemic
- Histone Demethylases/antagonists & inhibitors
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myeloid-Lymphoid Leukemia Protein/genetics
- Translocation, Genetic
- Tranylcypromine/pharmacology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Gauri Deb
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Bettina Wingelhofer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Alba Maiques-Diaz
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - John A Chadwick
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Emma L Williams
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Hui-Sun Leong
- Computational Biology Support, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Tamara Maes
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940, Barcelona, Spain
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| |
Collapse
|
16
|
Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol 2019; 12:129. [PMID: 31801559 PMCID: PMC6894138 DOI: 10.1186/s13045-019-0811-9] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Histone demethylase LSD1 plays key roles during carcinogenesis, targeting LSD1 is becoming an emerging option for the treatment of cancers. Numerous LSD1 inhibitors have been reported to date, some of them such as TCP, ORY-1001, GSK-2879552, IMG-7289, INCB059872, CC-90011, and ORY-2001 currently undergo clinical assessment for cancer therapy, particularly for small lung cancer cells (SCLC) and acute myeloid leukemia (AML). This review is to provide a comprehensive overview of LSD1 inhibitors in clinical trials including molecular mechanistic studies, clinical efficacy, adverse drug reactions, and PD/PK studies and offer prospects in this field.
Collapse
Affiliation(s)
- Yuan Fang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
17
|
LSD1/KDM1A, a Gate-Keeper of Cancer Stemness and a Promising Therapeutic Target. Cancers (Basel) 2019; 11:cancers11121821. [PMID: 31756917 PMCID: PMC6966601 DOI: 10.3390/cancers11121821] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
A new exciting area in cancer research is the study of cancer stem cells (CSCs) and the translational implications for putative epigenetic therapies targeted against them. Accumulating evidence of the effects of epigenetic modulating agents has revealed their dramatic consequences on cellular reprogramming and, particularly, reversing cancer stemness characteristics, such as self-renewal and chemoresistance. Lysine specific demethylase 1 (LSD1/KDM1A) plays a well-established role in the normal hematopoietic and neuronal stem cells. Overexpression of LSD1 has been documented in a variety of cancers, where the enzyme is, usually, associated with the more aggressive types of the disease. Interestingly, recent studies have implicated LSD1 in the regulation of the pool of CSCs in different leukemias and solid tumors. However, the precise mechanisms that LSD1 uses to mediate its effects on cancer stemness are largely unknown. Herein, we review the literature on LSD1's role in normal and cancer stem cells, highlighting the analogies of its mode of action in the two biological settings. Given its potential as a pharmacological target, we, also, discuss current advances in the design of novel therapeutic regimes in cancer that incorporate LSD1 inhibitors, as well as their future perspectives.
Collapse
|
18
|
van Bergen MGJM, van der Reijden BA. Targeting the GFI1/1B-CoREST Complex in Acute Myeloid Leukemia. Front Oncol 2019; 9:1027. [PMID: 31649884 PMCID: PMC6794713 DOI: 10.3389/fonc.2019.01027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022] Open
Abstract
One of the hallmarks of acute myeloid leukemia (AML) is a block in cellular differentiation. Recent studies have shown that small molecules targeting Lysine Specific Demethylase 1A (KDM1A) may force the malignant cells to terminally differentiate. KDM1A is a core component of the chromatin binding CoREST complex. Together with histone deacetylases CoREST regulates gene expression by histone 3 demethylation and deacetylation. The transcription factors GFI1 and GFI1B (for growth factor independence) are major interaction partners of KDM1A and recruit the CoREST complex to chromatin in myeloid cells. Recent studies show that the small molecules that target KDM1A disrupt the GFI1/1B-CoREST interaction and that this is key to inducing terminal differentiation of leukemia cells.
Collapse
Affiliation(s)
| | - Bert A. van der Reijden
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
19
|
Small molecule inhibition of lysine-specific demethylase 1 (LSD1) and histone deacetylase (HDAC) alone and in combination in Ewing sarcoma cell lines. PLoS One 2019; 14:e0222228. [PMID: 31550266 PMCID: PMC6759167 DOI: 10.1371/journal.pone.0222228] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Ewing Sarcoma (ES) is characterized by recurrent translocations between EWSR1 and members of the ETS family of transcription factors. The transcriptional activity of the fusion oncoprotein is dependent on interaction with the nucleosome remodeling and deactylase (NuRD) co-repressor complex. While inhibitors of both histone deacetylase (HDAC) and lysine-specific demethylase-1 (LSD1) subunits of the NuRD complex demonstrate single agent activity in preclinical models, combination strategies have not been investigated. We selected 7 clinically utilized chemotherapy agents, or active metabolites thereof, for experimentation: doxorubicin, cyclophosphamide, vincristine, etoposide and irinotecan as well as the HDAC inhibitor romidepsin and the reversible LSD1 inhibitor SP2509. All agents were tested at clinically achievable concentrations in 4 ES cell lines. All possible 2 drug combinations were then tested for potential synergy. Order of addition of second-line conventional combination therapy agents was tested with the addition of SP2509. In two drug experiments, synergy was observed with several combinations, including when SP2509 was paired with topoisomerase inhibitors or romidepsin. Addition of SP2509 after treatment with second-line combination therapy agents enhanced treatment effect. Our findings suggest promising combination treatment strategies that utilize epigenetic agents in ES.
Collapse
|
20
|
Romo-Morales A, Aladowicz E, Blagg J, Gatz SA, Shipley JM. Catalytic inhibition of KDM1A in Ewing sarcoma is insufficient as a therapeutic strategy. Pediatr Blood Cancer 2019; 66:e27888. [PMID: 31207107 DOI: 10.1002/pbc.27888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/02/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ewing sarcoma and desmoplastic small round cell tumors (DSRCT) are rare and clinically aggressive sarcomas usually characterized by oncogenic fusion proteins involving EWS. Emerging studies of Ewing sarcoma have demonstrated EWS-FLI1-driven chromatin remodeling as a key aspect of tumorigenicity. In particular, the lysine-specific demethylase KDM1A/LSD1 is linked to transcriptional regulation of target genes orchestrated by the EWS portion of the fusion protein interacting with repressive chromatin-remodeling complexes. Consistent with this model, depletion of KDM1A supports it is a molecular therapeutic target in Ewing sarcoma cells, but effective drugs need to be identified. PROCEDURE A comprehensive phenotypic analysis of the effects of catalytic KDM1A inhibitors ORY-1001 and GSK2879552, including clinically relevant doses, was carried out in 2D and 3D spheroid models of Ewing sarcoma and DSRCT. RESULTS Catalytic inhibition of KDM1A did not affect cell viability in 2D and 3D assays and had no impact on invasion in a 3D assay. CONCLUSIONS Overall, evidence presented here does not support inhibition of KDM1A catalytic demethylase activity as an effective therapeutic strategy for Ewing sarcoma or DSRCT. However, roles of KDM1A beyond its demethylase activity should be considered for these sarcomas.
Collapse
Affiliation(s)
- Antonio Romo-Morales
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Ewa Aladowicz
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Susanne A Gatz
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK.,Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
21
|
Macheleidt IF, Dalvi PS, Lim SY, Meemboor S, Meder L, Käsgen O, Müller M, Kleemann K, Wang L, Nürnberg P, Rüsseler V, Schäfer SC, Mahabir E, Büttner R, Odenthal M. Preclinical studies reveal that LSD1 inhibition results in tumor growth arrest in lung adenocarcinoma independently of driver mutations. Mol Oncol 2018; 12:1965-1979. [PMID: 30220105 PMCID: PMC6210049 DOI: 10.1002/1878-0261.12382] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/01/2018] [Accepted: 08/22/2018] [Indexed: 01/18/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent subtype of non-small cell lung cancer. Despite the development of novel targeted and immune therapies, the 5-year survival rate is still only 21%, indicating the need for more efficient treatment regimens. Lysine-specific demethylase 1 (LSD1) is an epigenetic eraser that modifies histone 3 methylation status, and is highly overexpressed in LUAD. Using representative human cell culture systems and two autochthonous transgenic mouse models, we investigated inhibition of LSD1 as a novel therapeutic option for treating LUAD. The reversible LSD1 inhibitor HCI-2509 significantly reduced cell growth with an IC50 of 0.3-5 μmin vitro, which was linked to an enhancement of histone 3 lysine methylation. Most importantly, growth arrest, as well as inhibition of the invasion capacities, was independent of the underlying driver mutations. Subsequent expression profiling revealed that the cell cycle and replication machinery were prominently affected after LSD1 inhibition. In addition, our data provide evidence that LSD1 blockade significantly interferes with EGFR downstream signaling. Finally, our in vitro results were confirmed by preclinical therapeutic approaches, including the use of two autochthonous transgenic LUAD mouse models driven by either EGFR or KRAS mutations. Importantly, LSD1 inhibition resulted in significantly lower tumor formation and a strong reduction in tumor progression, which were independent of the underlying mutational background of the mouse models. Hence, our findings provide substantial evidence indicating that tumor growth of LUAD can be markedly decreased by HCI-2509 treatment, suggesting its use as a single agent maintenance therapy or combined therapeutical application in novel concerted drug approaches.
Collapse
Affiliation(s)
- Iris F Macheleidt
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - Priya S Dalvi
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - So-Young Lim
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - Sonja Meemboor
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - Lydia Meder
- Center for Molecular Medicine, University of Cologne, Germany.,Department I of Internal Medicine, University Hospital of Cologne, Germany
| | - Olivia Käsgen
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - Marion Müller
- Institute for Pathology, University Hospital of Cologne, Germany
| | - Karolin Kleemann
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - Lingyu Wang
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Germany
| | - Vanessa Rüsseler
- Institute for Pathology, University Hospital of Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Germany
| | - Stephan C Schäfer
- Institute for Pathology, University Hospital of Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Germany.,Center for Integrative Oncology, University Clinic of Cologne and Bonn, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine, University of Cologne, Germany
| | - Reinhard Büttner
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Germany.,Center for Integrative Oncology, University Clinic of Cologne and Bonn, Germany
| | - Margarete Odenthal
- Institute for Pathology, University Hospital of Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Germany
| |
Collapse
|