1
|
Fu L, Zhou X, Zhang X, Li X, Zhang F, Gu H, Wang X. Circulating tumor DNA in lymphoma: technologies and applications. J Hematol Oncol 2025; 18:29. [PMID: 40069858 PMCID: PMC11900646 DOI: 10.1186/s13045-025-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Lymphoma, a malignant tumor derived from lymphocytes and lymphoid tissues, presents with complex and heterogeneous clinical manifestations, requiring accurate patient classification for appropriate treatment. While invasive pathological examination of lymph nodes or lymphoid tissue remains the gold standard for lymphoma diagnosis, its utility is limited in cases of deep-seated tumors such as intraperitoneal and central nervous system lymphomas. In addition, biopsy procedures carry an inherent risk of complications. Computed tomography (CT) and positron emission tomography/computed tomography (PET/CT) imaging are essential for treatment assessment and monitoring, but lack the ability to detect early clonal evolution and minimal residual disease (MRD). Liquid biopsy-based analysis of circulating tumor DNA (ctDNA) offers a non-invasive alternative that allows for repeated sampling and overcomes the limitations of spatial heterogeneity and invasive biopsies. ctDNA provides genetic and epigenetic insights into lymphoma and serves as a dynamic, quantifiable biomarker for diagnosis, risk stratification, and treatment response. This review comprehensively summarizes common genetic variations in lymphoma and systematically evaluates ctDNA detection technologies, including PCR-based assays and next-generation sequencing (NGS). Applications of ctDNA detection in noninvasive genotyping, risk stratification, therapeutic response monitoring, and MRD detection are discussed across various lymphoma subtypes, including diffuse large B-cell lymphoma, Hodgkin lymphoma, follicular lymphoma, and T-cell lymphoma. By integrating recent research findings, the review highlights the role of ctDNA profiling in advancing precision medicine, enabling personalized therapeutic strategies, and improving clinical outcomes in lymphoma.
Collapse
Affiliation(s)
- Lina Fu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Xuerong Zhou
- Department of Hematology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong Province, 250012, Jinan, China
| | - Xuhua Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Fan Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China.
| | - Xiaoxue Wang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
2
|
Zou H, Liu W, Wang X, Wang Y, Wang C, Qiu C, Liu H, Shan D, Xie T, Huang W, Sui W, Yi S, An G, Xu Y, Ma T, Wang J, Qiu L, Zou D. Dynamic monitoring of circulating tumor DNA reveals outcomes and genomic alterations in patients with relapsed or refractory large B-cell lymphoma undergoing CAR T-cell therapy. J Immunother Cancer 2024; 12:e008450. [PMID: 38443094 PMCID: PMC11146396 DOI: 10.1136/jitc-2023-008450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Over 50% of patients with relapsed or refractory large B-cell lymphoma (r/r LBCL) receiving CD19-targeted chimeric antigen receptor (CAR19) T-cell therapy fail to achieve durable remission. Early identification of relapse or progression remains a significant challenge. In this study, we prospectively investigate the prognostic value of dynamic circulating tumor DNA (ctDNA) and track genetic evolution non-invasively, for the first time in an Asian population of r/r patients undergoing CAR19 T-cell therapy. METHODS Longitudinal plasma samples were prospectively collected both before lymphodepletion and at multiple timepoints after CAR19 T-cell infusion. ctDNA was detected using a capture-based next-generation sequencing which has been validated in untreated LBCL. RESULTS The study enrolled 23 patients with r/r LBCL and collected a total of 101 ctDNA samples. Higher pretreatment ctDNA levels were associated with inferior progression-free survival (PFS) (p=0.031) and overall survival (OS) (p=0.023). Patients with undetectable ctDNA negative (ctDNA-) at day 14 (D14) achieved an impressive 3-month complete response rate of 77.8% vs 22.2% (p=0.015) in patients with detectable ctDNA positive (ctDNA+), similar results observed for D28. CtDNA- at D28 predicted significantly longer 1-year PFS (90.9% vs 27.3%; p=0.004) and OS (90.9% vs 49.1%; p=0.003) compared with patients who remained ctDNA+. Notably, it is the first time to report that shorter ctDNA fragments (<170 base pairs) were significantly associated with poorer PFS (p=0.031 for D14; p=0.002 for D28) and OS (p=0.013 for D14; p=0.008 for D28) in patients with LBCL receiving CAR T-cell therapy. Multiple mutated genes exhibited an elevated prevalence among patients with progressive disease, including TP53, IGLL5, PIM1, BTG1, CD79B, GNA13, and P2RY8. Notably, we observed a significant correlation between IGLL5 mutation and inferior PFS (p=0.008) and OS (p=0.014). CONCLUSIONS Our study highlights that dynamic ctDNA monitoring during CAR T-cell therapy can be a promising non-invasive method for early predicting treatment response and survival outcomes. Additionally, the ctDNA mutational profile provides novel insights into the mechanisms of tumor-intrinsic resistance to CAR19 T-cell therapy.
Collapse
Affiliation(s)
- Hesong Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaojuan Wang
- Jichen Biotechnology Co, Ltd, Hangzhou, Zhejiang, China
- Genecn-Biotech Co, Ltd, Hangzhou, Zhejiang, China
| | - Yi Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Chunyang Wang
- Jichen Biotechnology Co, Ltd, Hangzhou, Zhejiang, China
- Genecn-Biotech Co, Ltd, Hangzhou, Zhejiang, China
| | - Chen Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huimin Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dandan Shan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ting Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tonghui Ma
- Jichen Biotechnology Co, Ltd, Hangzhou, Zhejiang, China
- Genecn-Biotech Co, Ltd, Hangzhou, Zhejiang, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
3
|
Kim JJ, Kim HM, Kim H, Kim SJ, Lee ST, Choi JR, Shin S, Hwang DY. Circulating Tumor DNA Reflects Histologic and Clinical Characteristics of Various Lymphoma Subtypes. Cancer Res Treat 2024; 56:314-323. [PMID: 37475138 PMCID: PMC10789961 DOI: 10.4143/crt.2023.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023] Open
Abstract
PURPOSE We designed and evaluated the clinical performance of a plasma circulating tumor DNA (ctDNA) panel of 112 genes in various subtypes of lymphoma. MATERIALS AND METHODS Targeted deep sequencing with an error-corrected algorithm was performed in ctDNA from plasma samples that were collected before treatment in 42 lymphoma patients. Blood buffy coat was utilized as a germline control. We evaluated the targeted gene panel using mutation detection concordance on the plasma samples with matched tissue samples analyzed the mutation profiles of the ctDNA. RESULTS Next-generation sequencing analysis using matched tissue samples was available for 18 of the 42 patients. At least one mutation was detected in the majority of matched tissue biopsy samples (88.9%) and plasma samples (83.3%). A considerable number of mutations (40.4%) that were detected in the tissue samples were also found in the matched plasma samples. Majority of patients (21/42) were diffuse large B cell lymphoma patients. The overall detection rate of ctDNA in patients was 85.7% (36/42). The frequently mutated genes included PIM1, TET2, BCL2, KMT2D, KLHL6, HIST1H1E, and IRF8. A cutoff concentration (4,506 pg/mL) of ctDNA provided 88.9% sensitivity and 82.1% specificity to predict ctDNA mutation detection. The ctDNA concentration correlated with elevated lactate dehydrogenase level and the disease stage. CONCLUSION Our design panel can detect many actionable gene mutations, including those at low frequency. Therefore, liquid biopsy can be applied clinically in the evaluation of lymphoma patients, especially in aggressive lymphoma patients.
Collapse
Affiliation(s)
- Jin Ju Kim
- Department of Laboratory Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Hye Min Kim
- Department of Pathology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Hongkyung Kim
- Department of Laboratory Medicine, Chung-Ang University Gwangmyung Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Korea
| | - Soo-Jeong Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Doh Yu Hwang
- Division of Hematology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Condoluci A, Rossi D. Special issue on circulating tumor DNA: Introductory editorial. Semin Hematol 2023; 60:125-131. [PMID: 37620237 DOI: 10.1053/j.seminhematol.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Affiliation(s)
- Adalgisa Condoluci
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland
| | - Davide Rossi
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
| |
Collapse
|
5
|
Li M, Mi L, Wang C, Wang X, Zhu J, Qi F, Yu H, Ye Y, Wang D, Cao J, Hu D, Yang Q, Zhao D, Ma T, Song Y, Zhu J. Clinical implications of circulating tumor DNA in predicting the outcome of diffuse large B cell lymphoma patients receiving first-line therapy. BMC Med 2022; 20:369. [PMID: 36280874 PMCID: PMC9594942 DOI: 10.1186/s12916-022-02562-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has been proven to be a promising tumor-specific biomarker in solid tumors, but its clinical utility in risk stratification and early prediction of relapse for diffuse large B cell lymphoma (DLBCL) has not been well explored. METHODS Here, using a lymphoma-specific sequencing panel, we assessed the prognostic and predictive utilities of ctDNA measurements before, during, and after first-line therapy in 73 Chinese DLBCL patients. RESULTS The pretreatment ctDNA level serving as an independent prognostic factor for both progression-free survival (PFS, adjusted HR 2.47; p = 0.004) and overall survival (OS, adjusted HR 2.49; p = 0.011) was confirmed in our cohort. Furthermore, the patients classified as molecular responders who presented a larger decrease in ctDNA levels after the initial two treatment cycles had more favorable PFS (unreached vs. 6.25 months; HR 5.348; p = 0.0015) and OS (unreached vs. 25.87; HR 4.0; p = 0.028) than non-responders. In addition, interim ctDNA clearance may be an alternative noninvasive method of positron emission tomography and computed tomography (PET-CT) for predicting better PFS (HR 3.65; p = 0.0033) and OS (HR 3.536; p = 0.016). We also demonstrated that posttreatment ctDNA was a sensitive indicator for detecting minimal residual disease (MRD) in patients with a high risk of recurrence (HR 6.471; p = 0.014), who were otherwise claimed to achieve radiographic CR (complete remission). CONCLUSIONS CtDNA is a promising noninvasive tool for prognosis prediction, response assessment, and early relapse prediction of first-line treatment in DLBCL patients.
Collapse
Affiliation(s)
- Miaomiao Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lan Mi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chunyang Wang
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Xiaojuan Wang
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Jianhua Zhu
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Fei Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hui Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yingying Ye
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dedao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiaowu Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dingyao Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Quanyu Yang
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Dandan Zhao
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China
| | - Tonghui Ma
- Jichenjunchuang Clinical Laboratory, Hangzhou, Zhejiang, China.
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
6
|
Lauer EM, Mutter J, Scherer F. Circulating tumor DNA in B-cell lymphoma: technical advances, clinical applications, and perspectives for translational research. Leukemia 2022; 36:2151-2164. [PMID: 35701522 PMCID: PMC9417989 DOI: 10.1038/s41375-022-01618-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/22/2022]
Abstract
Noninvasive disease monitoring and risk stratification by circulating tumor DNA (ctDNA) profiling has become a potential novel strategy for patient management in B-cell lymphoma. Emerging innovative therapeutic options and an unprecedented growth in our understanding of biological and molecular factors underlying lymphoma heterogeneity have fundamentally increased the need for precision-based tools facilitating personalized and accurate disease profiling and quantification. By capturing the entire mutational landscape of tumors, ctDNA assessment has some decisive advantages over conventional tissue biopsies, which usually target only one single tumor site. Due to its non- or minimal-invasive nature, serial and repeated ctDNA profiling provides a real-time picture of the genetic composition and facilitates quantification of tumor burden any time during the course of the disease. In this review, we present a comprehensive overview of technologies used for ctDNA detection and genotyping in B-cell lymphoma, focusing on pre-analytical and technical requirements, the advantages and limitations of various approaches, and highlight recent advances around improving sensitivity and suppressing technical errors. We broadly review potential applications of ctDNA in clinical practice and for translational research by describing how ctDNA might enhance lymphoma subtype classification, treatment response assessment, outcome prediction, and monitoring of measurable residual disease. We finally discuss how ctDNA could be implemented in prospective clinical trials as a novel surrogate endpoint and be utilized as a decision-making tool to guide lymphoma treatment in the future.
Collapse
Affiliation(s)
- Eliza M Lauer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jurik Mutter
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Florian Scherer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Rivas-Delgado A, Nadeu F, Andrade-Campos M, López C, Enjuanes A, Mozas P, Frigola G, Colomo L, Sanchez-Gonzalez B, Villamor N, Beà S, Campo E, Salar A, Giné E, López-Guillermo A, Bellosillo B. Cell-Free DNA for Genomic Analysis in Primary Mediastinal Large B-Cell Lymphoma. Diagnostics (Basel) 2022; 12:diagnostics12071575. [PMID: 35885481 PMCID: PMC9324191 DOI: 10.3390/diagnostics12071575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
High-throughput sequencing of cell-free DNA (cfDNA) has emerged as a promising noninvasive approach in lymphomas, being particularly useful when a biopsy specimen is not available for molecular analysis, as it frequently occurs in primary mediastinal large B-cell lymphoma (PMBL). We used cfDNA for genomic characterization in 20 PMBL patients by means of a custom NGS panel for gene mutations and low-pass whole-genome sequencing (WGS) for copy number analysis (CNA) in a real-life setting. Appropriate cfDNA to perform the analyses was obtained in 18/20 cases. The sensitivity of cfDNA to detect the mutations present in paired FFPE samples was 69% (95% CI: 60–78%). The mutational landscape found in cfDNA samples was highly consistent with that of the tissue, with the most frequently mutated genes being B2M (61%), SOCS1 (61%), GNA13 (44%), STAT6 (44%), NFKBIA (39%), ITPKB (33%), and NFKBIE (33%). Overall, we observed a 75% concordance to detect CNA gains/losses between DNA microarray and low-pass WGS. The sensitivity of low-pass WGS was remarkably higher for clonal CNA (18/20, 90%) compared to subclonal alterations identified by DNA microarray. No significant associations between cfDNA amount and tumor burden or outcome were found. cfDNA is an excellent alternative source for the accurate genetic characterization of PMBL cases.
Collapse
Affiliation(s)
- Alfredo Rivas-Delgado
- Hematology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (P.M.); (E.G.); (A.L.-G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
- Correspondence: ; Tel.: +34-932275428
| | - Ferran Nadeu
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Marcio Andrade-Campos
- Hematology Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain; (M.A.-C.); (B.S.-G.); (A.S.)
- Grup de Recerca Clínica, Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Cristina López
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Anna Enjuanes
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Pablo Mozas
- Hematology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (P.M.); (E.G.); (A.L.-G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
| | - Gerard Frigola
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Luis Colomo
- Pathology Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Blanca Sanchez-Gonzalez
- Hematology Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain; (M.A.-C.); (B.S.-G.); (A.S.)
- Grup de Recerca Clínica, Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Neus Villamor
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Sílvia Beà
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Elías Campo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Antonio Salar
- Hematology Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain; (M.A.-C.); (B.S.-G.); (A.S.)
- Grup de Recerca Clínica, Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, 08003 Barcelona, Spain;
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Eva Giné
- Hematology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (P.M.); (E.G.); (A.L.-G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Armando López-Guillermo
- Hematology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (P.M.); (E.G.); (A.L.-G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (F.N.); (C.L.); (A.E.); (N.V.); (S.B.); (E.C.)
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Beatriz Bellosillo
- Grup de Recerca Clínica, Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, 08003 Barcelona, Spain;
- Pathology Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| |
Collapse
|
8
|
Pirosa MC, Borchmann S, Jardin F, Gaidano G, Rossi D. Controversies in the Interpretation of Liquid Biopsy Data in Lymphoma. Hemasphere 2022; 6:e727. [PMID: 35747846 PMCID: PMC9208882 DOI: 10.1097/hs9.0000000000000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
The rapid evolution of genomic technologies over the last years has led to the development of different methods for the detection, measurement and analysis of cell-free DNA fragments (cfDNA) which are shed into the bloodstream by apoptotic cells and circulate at a low concentration in plasma. In cancer patients, the proportion of tumor-derived cfDNA is defined as circulating tumor DNA. This analysis, commonly known as liquid biopsy, allows to access tumor DNA through a simple blood sampling and therefore without the need of an invasive tissue biopsy. For this reason, this tool may have several clinical applications in terms of diagnosis, prognosis, and monitoring of minimal residual disease. However, there are still several critical issues that need to be resolved. In this review, we will discuss some of the controversies around this method and its potential clinical applications.
Collapse
|
9
|
Fu H, Shen J, Zhou H, Zhang F, Li H, Ma Z, Huang W, Chen L, Chen Y, Liu T. Mutation profiling of circulating tumor DNA identifies distinct mutation patterns in non-Hodgkin lymphoma. Eur J Haematol 2022; 108:298-309. [PMID: 34997652 DOI: 10.1111/ejh.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Circulating tumor DNA (ctDNA) is emerging as a versatile biomarker for noninvasive genotyping and response monitoring in specific B-cell lymphomas; however, few studies have been conducted to explore ctDNA-based mutation profiling across non-Hodgkin lymphomas (NHLs) and genomic changes after initiation of chemotherapy. METHODS A targeted sequencing of 362 genes was performed to detect the mutation profiles in paired blood and tissue samples from 42 NHL patients. Genomic alterations were explored in 11 diffuse large B-cell lymphoma (DLBCL) patients using paired blood samples collected pre- and post-R-CHOP chemotherapy. RESULTS The frequencies of PIM1, MYD88, MYC, ZNF292, JAK, and MAF mutations were higher in aggressive than in indolent B-cell lymphoma and NK/T subtypes. Tumor mutation burden in blood samples was higher in aggressive than in indolent B-cell lymphomas and higher in patients who progressed than in those who responded to treatments. Our data also revealed significant enhance of concordance index through integrating mutated genes that were significantly associated with prognosis into International Prognostic Index-based prognostic model. Moreover, acquisition of mutations such as PCLO_p.L1220Tfs*3 was associated with resistance to R-CHOP in DLBCL patients. CONCLUSIONS Our findings illustrated distinct mutation patterns across various NHL subtypes and suggested the association of genomic alterations in ctDNA with treatment outcomes.
Collapse
Affiliation(s)
- Haiying Fu
- Department of Hematology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Jianzhen Shen
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Huarong Zhou
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Feng Zhang
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Hongping Li
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Zhiming Ma
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Wanling Huang
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Lushan Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yi Chen
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Tingbo Liu
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| |
Collapse
|
10
|
Weber T, Schmitz R. Molecular Subgroups of Diffuse Large B Cell Lymphoma: Biology and Implications for Clinical Practice. Curr Oncol Rep 2022; 24:13-21. [PMID: 35060000 PMCID: PMC8831345 DOI: 10.1007/s11912-021-01155-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Purpose of Review Genomic analyses have immensely advanced our conception of the heterogeneity of diffuse large B cell lymphoma (DLBCL), resulting in subgroups with distinct molecular profiles. In this review, we summarize our current knowledge of the biology of DLBCL complexity and discuss the potential implications for precision medicine. Recent Findings During the last two decades, gene expression profiling, copy number analysis, and high throughput sequencing enabled the identification of molecular subclasses of DLBCL that are biologically and clinically meaningful. The resulting classifications provided novel prospects of diagnosis, prognostication, and therapeutic strategies for this aggressive disease. Summary The molecular characterization of DLBCL offers unprecedented insights into the biology of these lymphomas that can guide precision medicine. The knowledge of the molecular setup of an individual DLBCL patients enables prognostication of patients and will be useful to stratify patients in clinical trials. Future direction should focus to implement the molecular classifications of DLBCL in the clinical practice to evaluate their significance and scope using real-world data.
Collapse
|
11
|
Giudice ID, Starza ID, Foà R. Does MRD have a role in the management of iNHL? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:320-330. [PMID: 34889425 PMCID: PMC8791119 DOI: 10.1182/hematology.2021000312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Among indolent non-Hodgkin lymphomas (iNHLs), the analysis of measurable/minimal residual disease (MRD) has been extensively applied to follicular lymphoma (FL). Treatment combinations have deeply changed over the years, as well as the techniques to measure MRD, which is currently evaluated only in the setting of clinical trials. Here, we discuss the evidence on the role of molecular monitoring in the management of FL. Mature data support the quantification of molecular tumor burden at diagnosis as a tool to stratify patients in risk categories and of MRD evaluation at the end of treatment to predict progression-free survival and overall survival. Moreover, MRD deserves further studies as a tool to refine the clinical/metabolic response and to modulate treatment intensity/duration. Patients with a higher relapse probability can be identified, but the relevance of continuous molecular follow-up should be clarified by kinetic models of MRD analysis. Being the BCL2/heavy chain immunoglobulin gene hybrid rearrangement detectable in about 50% to 60% of advanced FL and in 30% of positron emission tomography/computed tomography-staged localized FL, technical advancements such as next-generation sequencing/target locus amplification may allow broadening the FL population carrying a molecular marker. Droplet digital polymerase chain reaction can better quantify MRD at low levels, and novel sources of DNA, such as cell-free DNA, may represent a noninvasive tool to monitor MRD. Finally, MRD in other iNHLs, such as lymphoplasmacytic lymphoma/Waldenström macroglobulinemia and marginal zone lymphoma, is beginning to be explored.
Collapse
Affiliation(s)
- Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|