1
|
Shi Q, Sun X, Zhang H, Yang L, Fu Y, Wang G, Su Y, Li W, Li W. PLC-CN-NFAT1 signaling-mediated Aβ and IL-1β crosstalk synergistically promotes hippocampal neuronal damage. Int Immunopharmacol 2024; 134:112259. [PMID: 38749336 DOI: 10.1016/j.intimp.2024.112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Neuronal calcium overload plays an important role in Aβ deposition and neuroinflammation, which are strongly associated with AD. However, the specific mechanisms by which calcium overload contributes to neuroinflammation and AD and the relationship between them have not been elucidated. Phospholipase C (PLC) is involved in regulation of calcium homeostasis, and CN-NFAT1 signaling is dependent on intracellular Ca2+ ([Ca2+]i) to regulate transcription of genes. Therefore, we hypothesized that the PLC-CN-NFAT1 signaling might mediate the interaction between Aβ and inflammation to promote neuronal injury in AD. In this experiment, the results showed that the levels of Aβ, IL-1β and [Ca2+]i in the hippocampal primary neurons of APP/PS1 mice (APP neurons) were significantly increased. IL-1β exposure also significantly increased Aβ and [Ca2+]i in HT22 cells, suggesting a close association between Aβ and IL-1β in the development of AD. Furthermore, PLC activation induced significant calcium homeostasis imbalance, cell apoptosis, Aβ and ROS production, and significantly increased expressions of CN and NFAT1, while PLC inhibitor significantly reversed these changes in APP neurons and IL-1β-induced HT22 cells. Further results indicated that PLC activation significantly increased the expressions of NOX2, APP, BACE1, and NCSTN, which were inhibited by PLC inhibitor in APP neurons and IL-1β-induced HT22 cells. All indications point to a synergistic interaction between Aβ and IL-1β by activating the PLC-CN-NFAT1 signal, ultimately causing a vicious cycle, resulting in neuronal damage in AD. The study may provide a new idea and target for treatment of AD.
Collapse
Affiliation(s)
- Qifeng Shi
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xiangyu Sun
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhang
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liu Yang
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yinglin Fu
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Guohang Wang
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong Su
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Du P, Zhang X, Lian X, Hölscher C, Xue G. O-GlcNAcylation and Its Roles in Neurodegenerative Diseases. J Alzheimers Dis 2024; 97:1051-1068. [PMID: 38250776 DOI: 10.3233/jad-230955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
As a non-classical post-translational modification, O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) is widely found in human organ systems, particularly in our brains, and is indispensable for healthy cell biology. With the increasing age of the global population, the incidence of neurodegenerative diseases is increasing, too. The common characteristic of these disorders is the aggregation of abnormal proteins in the brain. Current research has found that O-GlcNAcylation dysregulation is involved in misfolding or aggregation of these abnormal proteins to mediate disease progression, but the specific mechanism has not been defined. This paper reviews recent studies on O-GlcNAcylation's roles in several neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, Machado-Joseph's disease, and giant axonal neuropathy, and shows that O-GlcNAcylation, as glucose metabolism sensor, mediating synaptic function, participating in oxidative stress response and signaling pathway conduction, directly or indirectly regulates characteristic pathological protein toxicity and affects disease progression. The existing results suggest that targeting O-GlcNAcylation will provide new ideas for clinical diagnosis, prevention, and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pengyang Du
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaomin Zhang
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xia Lian
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, China
| | - Guofang Xue
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Zhao J, Lang M. New insight into protein glycosylation in the development of Alzheimer's disease. Cell Death Discov 2023; 9:314. [PMID: 37626031 PMCID: PMC10457297 DOI: 10.1038/s41420-023-01617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that seriously endangers the physical and mental health of patients, however, there are still no effective drugs or methods to cure this disease up to now. Protein glycosylation is the most common modifications of the translated proteins in eukaryotic cells. Recently many researches disclosed that aberrant glycosylation happens in some important AD-related proteins, such as APP, Tau, Reelin and CRMP-2, etc, suggesting a close link between abnormal protein glycosylation and AD. Because of its complexity and diversity, glycosylation is thus considered a completely new entry point for understanding the precise cause of AD. This review comprehensively summarized the currently discovered changes in protein glycosylation patterns in AD, and especially introduced the latest progress on the mechanism of protein glycosylation affecting the progression of AD and the potential application of protein glycosylation in AD detection and treatment, thereby providing a wide range of opportunities for uncovering the pathogenesis of AD and promoting the translation of glycosylation research into future clinical applications.
Collapse
Affiliation(s)
- Jingwei Zhao
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Life Science, Agricultural University of Hebei, Baoding, 071000, China.
| |
Collapse
|
4
|
Ben Ahmed A, Lemaire Q, Scache J, Mariller C, Lefebvre T, Vercoutter-Edouart AS. O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells. Cells 2023; 12:1396. [PMID: 37408229 PMCID: PMC10216988 DOI: 10.3390/cells12101396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
The transport of proteins between the different cellular compartments and the cell surface is governed by the secretory pathway. Alternatively, unconventional secretion pathways have been described in mammalian cells, especially through multivesicular bodies and exosomes. These highly sophisticated biological processes rely on a wide variety of signaling and regulatory proteins that act sequentially and in a well-orchestrated manner to ensure the proper delivery of cargoes to their final destination. By modifying numerous proteins involved in the regulation of vesicular trafficking, post-translational modifications (PTMs) participate in the tight regulation of cargo transport in response to extracellular stimuli such as nutrient availability and stress. Among the PTMs, O-GlcNAcylation is the reversible addition of a single N-acetylglucosamine monosaccharide (GlcNAc) on serine or threonine residues of cytosolic, nuclear, and mitochondrial proteins. O-GlcNAc cycling is mediated by a single couple of enzymes: the O-GlcNAc transferase (OGT) which catalyzes the addition of O-GlcNAc onto proteins, and the O-GlcNAcase (OGA) which hydrolyses it. Here, we review the current knowledge on the emerging role of O-GlcNAc modification in the regulation of protein trafficking in mammalian cells, in classical and unconventional secretory pathways.
Collapse
|
5
|
The role of CaMKK2 in Golgi-associated vesicle trafficking. Biochem Soc Trans 2023; 51:331-342. [PMID: 36815702 PMCID: PMC9987998 DOI: 10.1042/bst20220833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a serine/threonine-protein kinase, that is involved in maintaining various physiological and cellular processes within the cell that regulate energy homeostasis and cell growth. CaMKK2 regulates glucose metabolism by the activation of downstream kinases, AMP-activated protein kinase (AMPK) and other calcium/calmodulin-dependent protein kinases. Consequently, its deregulation has a role in multiple human metabolic diseases including obesity and cancer. Despite the importance of CaMKK2, its signalling pathways and pathological mechanisms are not completely understood. Recent work has been aimed at broadening our understanding of the biological functions of CaMKK2. These studies have uncovered new interaction partners that have led to the description of new functions that include lipogenesis and Golgi vesicle trafficking. Here, we review recent insights into the role of CaMKK2 in membrane trafficking mechanisms and discuss the functional implications in a cellular context and for disease.
Collapse
|
6
|
Escobar EE, Seeley EH, Serrano-Negrón JE, Vocadlo DJ, Brodbelt JS. In Situ Imaging of O-Linked β-N-Acetylglucosamine Using On-Tissue Hydrolysis and MALDI Mass Spectrometry. Cancers (Basel) 2023; 15:1224. [PMID: 36831567 PMCID: PMC9954453 DOI: 10.3390/cancers15041224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Post-translational O-glycosylation of proteins via the addition of N-acetylglucosamine (O-GlcNAc) is a regulator of many aspects of cellular physiology. Processes driven by perturbed dynamics of O-GlcNAcylation modification have been implicated in cancer development. Variability in O-GlcNAcylation is emerging as a metabolic biomarker of many cancers. Here, we evaluate the use of MALDI-mass spectrometry imaging (MSI) to visualize the location of O-GlcNAcylated proteins in tissue sections by mapping GlcNAc that has been released by the enzymatic hydrolysis of glycoproteins using an O-GlcNAc hydrolase. We use this strategy to monitor O-GlcNAc within hepatic VX2 tumor tissue. We show that increased O-GlcNAc is found within both viable tumor and tumor margin regions, implicating GlcNAc in tumor progression.
Collapse
Affiliation(s)
- Edwin E. Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Erin H. Seeley
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - David J. Vocadlo
- Department of Molecular Biology and Biochemistry, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
7
|
Ding S, Yang L, Huang L, Kong L, Chen M, Su Y, Li X, Dong X, Han Y, Li W, Li W. Chronic glucocorticoid exposure accelerates Aβ generation and neurotoxicity by activating calcium-mediated CN-NFAT1 signaling in hippocampal neurons in APP/PS1 mice. Food Chem Toxicol 2022; 168:113407. [PMID: 36075474 DOI: 10.1016/j.fct.2022.113407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Glucocorticoid (GC) exposure can lead to deterioration of the structure and function of hippocampal neurons and is closely involved in Alzheimer's disease (AD). Amyloid-β (Aβ) overproduction is an important aspect of AD pathogenesis. Our study mainly investigated the mechanism of chronic GC exposure in accelerating Aβ production in primary cultured hippocampal neurons from APP/PS1 mice. The results indicated that chronic dexamethasone (DEX, 1 μM) significantly accelerated neuronal damage and Aβ accumulation in hippocampal neurons from APP/PS1 mice. Meanwhile, DEX exposure markedly upregulated APP, NCSTN, BACE1 and p-Tau/Tau expression in hippocampal neurons from APP/PS1 mice. Our study also indicated that chronic DEX exposure significantly increased intracellular Ca2+ ([Ca2+]i) levels and the expressions of p-PLC, CN and NFAT1 in hippocampal neurons from APP/PS1 mice. We further found that stabilizing intracellular calcium homeostasis with 2-APB (50 μM) and SKF-96365 (10 μM) significantly alleviated neuronal damage and Aβ accumulation in chronic DEX-induced hippocampal neurons from APP/PS1 mice. Additionally, dual luciferase assays showed that NFAT1 upregulated NCSTN transactivation, which was further increased upon DEX treatment. This study suggests that chronic DEX exposure accelerates Aβ accumulation by activating calcium-mediated CN-NFAT1 signaling in hippocampal neurons from APP/PS1 mice, which may be closely related to the acceleration of AD.
Collapse
Affiliation(s)
- Shixin Ding
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China; Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Liu Yang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Lei Huang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liangliang Kong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ming Chen
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xuewang Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xianan Dong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yuli Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Yuan D, Yang G, Wu W, Li Q, Xu D, Ntim M, Jiang C, Liu J, Zhang Y, Wang Y, Zhu D, Kundu S, Li A, Xiao Z, Ma Q, Li S. Reducing Nav1.6 expression attenuates the pathogenesis of Alzheimer's disease by suppressing BACE1 transcription. Aging Cell 2022; 21:e13593. [PMID: 35353937 PMCID: PMC9124306 DOI: 10.1111/acel.13593] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Aberrant increases in neuronal network excitability may contribute to cognitive deficits in Alzheimer's disease (AD). However, the mechanisms underlying hyperexcitability of neurons are not fully understood. Voltage‐gated sodium channels (VGSC or Nav), which are involved in the formation of excitable cell's action potential and can directly influence the excitability of neural networks, have been implicated in AD‐related abnormal neuronal hyperactivity and higher incidence of spontaneous non‐convulsive seizures. Here, we have shown that the reduction of VGSC α‐subunit Nav1.6 (by injecting adeno‐associated virus (AAV) with short hairpin RNA (shRNA) into the hippocampus) rescues cognitive impairments and attenuates synaptic deficits in APP/PS1 transgenic mice. Concurrently, amyloid plaques in the hippocampus and levels of soluble Aβ are significantly reduced. Interfering with Nav1.6 reduces the transcription level of β‐site APP‐cleaving enzyme 1 (BACE1), which is Aβ‐dependent. In the presence of Aβ oligomers, knockdown of Nav1.6 reduces intracellular calcium overload by suppressing reverse sodium–calcium exchange channel, consequently increasing inactive NFAT1 (the nuclear factor of activated T cells) levels and thus reducing BACE1 transcription. This mechanism leads to a reduction in the levels of Aβ in APP/PS1 transgenic mice, alleviates synaptic loss, improves learning and memory disorders in APP/PS1 mice after downregulating Nav1.6 in the hippocampus. Our study offers a new potential therapeutic strategy to counteract hippocampal hyperexcitability and subsequently rescue cognitive deficits in AD by selective blockade of Nav1.6 overexpression and/or hyperactivity.
Collapse
Affiliation(s)
- De‐Juan Yuan
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
- Department of Neurology and Clinical Research Center of Neurological Disease The Second Affiliated Hospital of Soochow University Suzhou China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Institute of Neuroscience Soochow University Suzhou China
- The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University Wuxi China
| | - Guang Yang
- Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wei Wu
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Qi‐Fa Li
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - De‐en Xu
- Department of Neurology and Clinical Research Center of Neurological Disease The Second Affiliated Hospital of Soochow University Suzhou China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Institute of Neuroscience Soochow University Suzhou China
- The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University Wuxi China
| | - Michael Ntim
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Chun‐Yan Jiang
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Ji‐Chuan Liu
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
- Department of Neurology and Clinical Research Center of Neurological Disease The Second Affiliated Hospital of Soochow University Suzhou China
| | - Yue Zhang
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Ying‐Zi Wang
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Dan‐Dan Zhu
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Supratik Kundu
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Ai‐Ping Li
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| | - Zhi‐Cheng Xiao
- Development and Stem Cells Program Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology Monash University Melbourne Victoria Australia
| | - Quan‐Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease The Second Affiliated Hospital of Soochow University Suzhou China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Institute of Neuroscience Soochow University Suzhou China
| | - Shao Li
- Department of Physiology College of Basic Medical Sciences Liaoning Provincial Key Laboratory of Cerebral Diseases National‐Local Joint Engineering Research Center for Drug‐Research and Development (R&D) of Neurodegenerative Diseases Dalian Medical University Dalian China
| |
Collapse
|
9
|
Sargeant J, Seiler DK, Costain T, Madreiter-Sokolowski CT, Gordon DE, Peden AA, Malli R, Graier WF, Hay JC. ALG-2 and peflin regulate COPII targeting and secretion in response to calcium signaling. J Biol Chem 2021; 297:101393. [PMID: 34762908 PMCID: PMC8671942 DOI: 10.1016/j.jbc.2021.101393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023] Open
Abstract
ER-to-Golgi transport is the first step in the constitutive secretory pathway, which, unlike regulated secretion, is believed to proceed nonstop independent of Ca2+ flux. However, here we demonstrate that penta-EF hand (PEF) proteins ALG-2 and peflin constitute a hetero-bifunctional COPII regulator that responds to Ca2+ signaling by adopting one of several distinct activity states. Functionally, these states can adjust the rate of ER export of COPII-sorted cargos up or down by ∼50%. We found that at steady-state Ca2+, ALG-2/peflin hetero-complexes bind to ER exit sites (ERES) through the ALG-2 subunit to confer a low, buffered secretion rate, while peflin-lacking ALG-2 complexes markedly stimulate secretion. Upon Ca2+ signaling, ALG-2 complexes lacking peflin can either increase or decrease the secretion rate depending on signaling intensity and duration-phenomena that could contribute to cellular growth and intercellular communication following secretory increases or protection from excitotoxicity and infection following decreases. In epithelial normal rat kidney (NRK) cells, the Ca2+-mobilizing agonist ATP causes ALG-2 to depress ER export, while in neuroendocrine PC12 cells, Ca2+ mobilization by ATP results in ALG-2-dependent enhancement of secretion. Furthermore, distinct Ca2+ signaling patterns in NRK cells produce opposing ALG-2-dependent effects on secretion. Mechanistically, ALG-2-dependent depression of secretion involves decreased levels of the COPII outer shell and increased peflin targeting to ERES, while ALG-2-dependent enhancement of secretion involves increased COPII outer shell and decreased peflin at ERES. These data provide insights into how PEF protein dynamics affect secretion of important physiological cargoes such as collagen I and significantly impact ER stress.
Collapse
Affiliation(s)
- John Sargeant
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Danette Kowal Seiler
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | - Tucker Costain
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, USA
| | | | - David E Gordon
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Andrew A Peden
- Department of Biomedical Science and Centre for Membrane Interactions and Dynamics, The University of Sheffield, Sheffield, United Kingdom
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Jesse C Hay
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, USA.
| |
Collapse
|