1
|
Rivers C, Farber C, Heath M, Gonzales E, Barrett DW, Gonzalez-Lima F, Lane MA. Dietary omega-3 polyunsaturated fatty acids reduce cytochrome c oxidase in brain white matter and sensorimotor regions while increasing functional interactions between neural systems related to escape behavior in postpartum rats. Front Syst Neurosci 2024; 18:1423966. [PMID: 39544360 PMCID: PMC11560429 DOI: 10.3389/fnsys.2024.1423966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Previously, we showed that omega-3 polyunsaturated fatty acid n-3 (PUFA) supplementation improved the performance of postpartum rats in the shuttle box escape test (SBET). Methods The brains of these rats were used in the current study which examined brain cytochrome c oxidase (CCO) activity in white matter bundles and 39 regions spanning sensorimotor, limbic, and cognitive areas to determine the effects of n-3 PUFAs on neural metabolic capacity and network interactions. Results We found that n-3 PUFA supplementation decreased CCO activity in white matter bundles, deep and superficial areas within the inferior colliculus, the anterior and barrel field regions of the primary somatic sensorimotor cortex, the secondary somatic sensorimotor cortex, the lateral, anterior regions of the secondary visual cortex and the ventral posterior nucleus of the thalamus, and the medial nucleus of the amygdala. Structural equation modeling revealed that animals consuming diets without n-3 PUFAs exhibited fewer inter-regional interactions when compared to those fed diets with n-3 PUFAs. Without n-3 PUFAs, inter-regional interactions were observed between the posterior cingulate cortex and amygdala as well as among amygdala subregions. With n-3 PUFAs, more inter-regional interactions were observed, particularly between regions associated with fear memory processing and escape. Correlations between regional CCO activity and SBET behavior were observed in rats lacking dietary n-3 PUFAs but not in those supplemented with these nutrients. Discussion In conclusion, consumption of n-3 PUFAs results in reduced CCO activity in white matter bundles and sensorimotor regions, reflecting more efficient neurotransmission, and an increase in inter-regional interactions, facilitating escape from footshock.
Collapse
Affiliation(s)
- Carley Rivers
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| | - Christopher Farber
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| | - Melissa Heath
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| | - Elisa Gonzales
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| | - Douglas W. Barrett
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - F. Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Michelle A. Lane
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX, United States
| |
Collapse
|
2
|
Montero-Atalaya M, Expósito S, Muñoz-Arnaiz R, Makarova J, Bartolomé B, Martín E, Moreno-Arribas MV, Herreras O. A dietary polyphenol metabolite alters CA1 excitability ex vivo and mildly affects cortico-hippocampal field potential generators in anesthetized animals. Cereb Cortex 2023; 33:10411-10425. [PMID: 37550066 PMCID: PMC10545443 DOI: 10.1093/cercor/bhad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Abstract
Dietary polyphenols have beneficial effects in situations of impaired cognition in acute models of neurodegeneration. The possibility that they may have a direct effect on the electrical activity of neuronal populations has not been tested. We explored the electrophysiological action of protocatechuic acid (PCA) on CA1 pyramidal cells ex vivo and network activity in anesthetized female rats using pathway-specific field potential (FP) generators obtained from laminar FPs in cortex and hippocampus. Whole-cell recordings from CA1 pyramidal cells revealed increased synaptic potentials, particularly in response to basal dendritic excitation, while the associated evoked firing was significantly reduced. This counterintuitive result was attributed to a marked increase of the rheobase and voltage threshold, indicating a decreased ability to generate spikes in response to depolarizing current. Systemic administration of PCA only slightly altered the ongoing activity of some FP generators, although it produced a striking disengagement of infraslow activities between the cortex and hippocampus on a scale of minutes. To our knowledge, this is the first report showing the direct action of a dietary polyphenol on electrical activity, performing neuromodulatory roles at both the cellular and network levels.
Collapse
Affiliation(s)
- Marta Montero-Atalaya
- Dept Biotecnología y Microbiología de Alimentos, Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Sara Expósito
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Ricardo Muñoz-Arnaiz
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Julia Makarova
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Begoña Bartolomé
- Dept Biotecnología y Microbiología de Alimentos, Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Eduardo Martín
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - María Victoria Moreno-Arribas
- Dept Biotecnología y Microbiología de Alimentos, Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Oscar Herreras
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| |
Collapse
|
3
|
Pontes PB, Toscano AE, Lacerda DC, da Silva Araújo ER, Costa PCTD, Alves SM, Brito Alves JLD, Manhães-de-Castro R. Effectiveness of Polyphenols on Perinatal Brain Damage: A Systematic Review of Preclinical Studies. Foods 2023; 12:2278. [PMID: 37372488 DOI: 10.3390/foods12122278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Polyphenol supplementation during early life has been associated with a reduction of oxidative stress and neuroinflammation in diseases caused by oxygen deprivation, including cerebral palsy, hydrocephaly, blindness, and deafness. Evidence has shown that perinatal polyphenols supplementation may alleviate brain injury in embryonic, fetal, neonatal, and offspring subjects, highlighting its role in modulating adaptative responses involving phenotypical plasticity. Therefore, it is reasonable to infer that the administration of polyphenols during the early life period may be considered a potential intervention to modulate the inflammatory and oxidative stress that cause impairments in locomotion, cognitive, and behavioral functions throughout life. The beneficial effects of polyphenols are linked with several mechanisms, including epigenetic alterations, involving the AMP-activated protein kinase (AMPK), nuclear factor kappa B (NF-κB), and phosphoinositide 3-kinase (PI3K) pathways. To highlight these new perspectives, the objective of this systematic review was to summarize the understanding emerging from preclinical studies about polyphenol supplementation, its capacity to minimize brain injury caused by hypoxia-ischemia in terms of morphological, inflammatory, and oxidative parameters and its repercussions for motor and behavioral functions.
Collapse
Affiliation(s)
- Paula Brielle Pontes
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão 55608-680, Pernambuco, Brazil
| | - Diego Cabral Lacerda
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão 55608-680, Pernambuco, Brazil
| | - Eulália Rebeca da Silva Araújo
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Paulo César Trindade da Costa
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil
| | - Swane Miranda Alves
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil
| | - Raul Manhães-de-Castro
- Postgraduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
- Department of Nutrition, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil
| |
Collapse
|
4
|
Aldè M, Di Berardino F, Ambrosetti U, Barozzi S, Piatti G, Consonni D, Zanetti D, Pignataro L, Cantarella G. Hearing outcomes in preterm infants with confirmed hearing loss. Int J Pediatr Otorhinolaryngol 2022; 161:111262. [PMID: 35947927 DOI: 10.1016/j.ijporl.2022.111262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Premature infants are at high risk for hearing loss (HL). The aim of the present study is to assess the frequency of preterm infants affected by HL who experience hearing improvement over months and evaluate possible factors associated with hearing changes. METHODS This retrospective study was conducted in a third-level referral audiologic center. Preterm infants with a confirmed diagnosis of sensorineural HL within the first 3 months of life were reassessed at 18 months corrected age using the click-evoked auditory brainstem response between January 1, 2012, and June 30, 2020. The frequency of hearing improvement and associations between possible risk factors and hearing changes were evaluated. RESULTS A total of 138 preterm infants (71 male and 67 female; mean gestational age: 30+2 weeks) were assessed. The percentages of hearing improvement and hearing threshold normalization were 58.7% (81/138) and 35.5% (49/138), respectively. We observed a higher frequency of hearing improvement among preterm infants who had received exclusive breastfeeding or mixed feeding compared with those who had received exclusive infant formula (80% versus 29.3%, P < 0.001). CONCLUSION This study confirms the importance of performing a long audiological follow-up and postponing the indication for cochlear implantation in children with a history of preterm birth. Because of the expression of mesenchymal stem cells and high total antioxidant capacity, breast milk might play a protective role in the auditory system of preterm infants. These findings could have important implications for clinical practice, positively impacting the long-term hearing outcomes of preterm infants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Audiology Unit, Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Federica Di Berardino
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Audiology Unit, Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Umberto Ambrosetti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Stefania Barozzi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Gioia Piatti
- Department of Pathophysiology and Transplantation, University of Milan and Unit of Bronchopneumology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Diego Zanetti
- Audiology Unit, Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Otolaryngology Unit, Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Otolaryngology Unit, Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
5
|
Delmonego L, Maia TP, Delwing-Dal Magro D, Vincenzi KL, Lima AB, Pscheidt LC, Eger L, Delwing-de Lima D. Protective effect of resveratrol on citrullinemia type I-induced brain oxidative damage in male rats. Metab Brain Dis 2021; 36:685-699. [PMID: 33555496 DOI: 10.1007/s11011-020-00655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Citrullinemia Type I is an inborn error, which leads to accumulation of citrulline and ammonia in blood and body tissues. We evaluated the in vitro effects of citrulline, ammonia and the influence of resveratrol on oxidative stress parameters in the cerebrum of 30- and 60-day-old male Wistar rats. Citrulline (0.1, 2.5, 5.0 mM), ammonia (0.01, 0.1, 1.0 mM) and resveratrol (0.01, 0.1, 0.5 mM) were added to the assays to measure thiobarbituric acid reactive substances (TBA-RS), total sulfhydryl content and the activity of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Citrulline (2.5 and 5.0 mM) increased TBA-RS in the cerebellum of 30-day-old and in the cerebral cortex and cerebellum of 60-day-old. Citrulline (5.0 mM) increased SOD and reduced GSH-Px in the hippocampus of 30-day-old, whereas in the cerebellum it increased GSH-Px. In the cerebral cortex, 2.5 and 5.0 mM citrulline reduced GSH-Px. In 60-day-old, 2.5 and 5.0 mM citrulline increased SOD in the cerebellum, increased GSH-Px in the cerebral cortex and 5.0 mM citrulline reduced CAT and increased SOD in the cerebral cortex. Ammonia (0.1 and 1.0 mM) reduced the sulfhydryl content in the cerebral cortex of 30- and 60-day-old, 1.0 mM ammonia increased SOD and reduced GSH-Px in the cerebellum of 30-day-old and increased SOD in the hippocampus and cerebellum of 60-day-old. Resveratrol was able to prevent the majority of these alterations. Thus, citrulline and ammonia induce oxidative stress in the cerebrum of rats; however, resveratrol was able to exert antioxidant effects against these substances.
Collapse
Affiliation(s)
- Larissa Delmonego
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89201-972, Brazil
| | - Thayná Patachini Maia
- Departamento de Medicina, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89201-972, Brazil
| | - Débora Delwing-Dal Magro
- Departamento de Ciências Naturais, Centro de Ciências Exatas e Naturais, Universidade Regional de Blumenau - FURB, Rua Antônio da Veiga, 140, Blumenau, SC, CEP 89012-900, Brazil
| | - Karine Louize Vincenzi
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89201-972, Brazil
| | - Aline Barbosa Lima
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89201-972, Brazil
| | - Luana Carla Pscheidt
- Departamento de Farmácia, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89201-972, Brazil
| | - Letícia Eger
- Departamento de Farmácia, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89201-972, Brazil
| | - Daniela Delwing-de Lima
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89201-972, Brazil.
- Departamento de Medicina, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89201-972, Brazil.
| |
Collapse
|
6
|
Fu C, Zheng Y, Lin K, Wang H, Chen T, Li L, Huang J, Lin W, Zhu J, Li P, Fu X, Lin Z. Neuroprotective effect of apigenin against hypoxic-ischemic brain injury in neonatal rats via activation of the PI3K/Akt/Nrf2 signaling pathway. Food Funct 2021; 12:2270-2281. [PMID: 33599218 DOI: 10.1039/d0fo02555k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neonatal hypoxic-ischemic (HI) brain injury can lead to mortality and severe long-term disabilities including cerebral palsy and brain injury. However, the treatment options for neonatal hypoxic-ischemic (HI) brain injury are limited. Apigenin is abundantly present in vegetables, celery, and chamomile tea with diverse biological functions, such as anti-inflammatory, anti-apoptotic, antioxidant, and anticancer effects. However, it has not yet been reported whether apigenin exerts a neuroprotective effect against neonatal hypoxic-ischemic (HI) brain injury. In this study, we investigated whether apigenin could ameliorate HI brain injury and explored the associated mechanism using in vivo experiments. We found that apigenin remarkably reduced the infarct volume and ameliorated cerebral edema, decreased inflammatory response, inhibited apoptosis, promoted the recovery of tissue structure, and improved prognosis following HI brain injury. Mechanistically, we found that apigenin exerted a neuroprotective effect against HI brain injury by activating the PI3K/Akt/Nrf2 pathway. In summary, all these results demonstrate that apigenin could be a potential therapeutic approach for neonatal hypoxic-ischemic (HI) brain injury.
Collapse
Affiliation(s)
- Changchang Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Yihui Zheng
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Kun Lin
- The University of Illinois at Chicago, College of Pharmacy, 60612, USA
| | - Hongzeng Wang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Tingting Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Luyao Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Jiali Huang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Wei Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China
| | - Xiaoqin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
7
|
Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci 2021; 22:2524. [PMID: 33802413 PMCID: PMC7959318 DOI: 10.3390/ijms22052524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric complications that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent models, that have investigated the neuroprotective properties of nutraceuticals in preventing and reducing HI-induced brain damage and cognitive impairments. The natural products reviewed include polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane, and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These nutraceuticals were administered before the damage occurred, either to the mothers as a dietary supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few of these nutritional interventions have been investigated in humans, but we refer to those that have been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Noelia Sola-Idígora
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Joan Montaner
- Neurovascular Research Lab, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Patricia Ybot-González
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| |
Collapse
|
8
|
Fu C, Zheng Y, Zhu J, Chen B, Lin W, Lin K, Zhu J, Chen S, Li P, Fu X, Lin Z. Lycopene Exerts Neuroprotective Effects After Hypoxic-Ischemic Brain Injury in Neonatal Rats via the Nuclear Factor Erythroid-2 Related Factor 2/Nuclear Factor-κ-Gene Binding Pathway. Front Pharmacol 2020; 11:585898. [PMID: 33390957 PMCID: PMC7774511 DOI: 10.3389/fphar.2020.585898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a brain injury caused by perinatal asphyxia and is the main cause of neonatal death and chronic neurological diseases. Protection of neuron after hypoxic-ischemic (HI) brain injury is considered as a potential therapeutic target of HI brain injury. To date, there are no effective medicines for neonatal HI brain injury. Lycopene (Lyc), a member of the carotenoids family, has been reported to have anti-oxidative and anti-inflammatory effects. However, its effects and potential mechanisms in HI brain injury have not yet to be systematically evaluated. In this study, we investigated whether Lyc could ameliorate HI brain injury and explored the associated mechanism both in vivo and in vitro experiments. In vivo study, Lyc significantly reduced infarct volume and ameliorated cerebral edema, decreased inflammatory response, promoted the recovery of tissue structure, and improved prognosis following HI brain injury. In vitro study, results showed that Lyc reduced expression of apoptosis mediators in oxygen-glucose deprivation (OGD)-induced primary cortical neurons. Mechanistically, we found that Lyc-induced Nrf2/NF-κB pathway could partially reversed by Brusatol (an Nrf2 inhibitor), indicated that the Nrf2/NF-κB pathway was involved in the therapy of Lyc. In summary, our findings indicate that Lyc can attenuated HI brain injury in vivo and OGD-induced apoptosis of primary cortical neurons in vitro through the Nrf2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Changchang Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, China
| | - Yihui Zheng
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, China
| | - Jinjin Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, China
| | - Binwen Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, China
| | - Wei Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kun Lin
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL, United States
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shangqin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoqin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Ghazavi H, Shirzad S, Forouzanfar F, Sahab Negah S, Riyahi Rad M, Vafaee F. The role of resveratrol as a natural modulator in glia activation in experimental models of stroke. AVICENNA JOURNAL OF PHYTOMEDICINE 2020; 10:557-573. [PMID: 33299813 PMCID: PMC7711292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Stroke is one of the most important causes of death and disability in modern and developing societies. In a stroke, both the glial cells and neurons develop apoptosis due to decreased cellular access to glucose and oxygen. Resveratrol (3, 5, 4'-trihydroxy-trans-stilbene) as a herbal compound shows neuroprotective and glioprotective effects. This article reviews how resveratrol can alleviate symptoms after stroke to help neurons to survive by modulating some signaling pathways in glia. MATERIALS AND METHODS Various databases such as ISI Web of Knowledge, Scopus, Medline, PubMed, and Google Scholar, were searched from 2000 to February 2020 to gather the required articles using appropriate keywords. RESULTS Resveratrol enhances anti-inflammatory and decreases inflammatory cytokines by affecting the signaling pathways in microglia such as AMP-activated protein kinase (5' adenosine monophosphate-activated protein kinase, AMPK), SIRT1 (sirtuin 1) and SOCS1 (suppressor of cytokine signaling 1). Furthermore, through miR-155 overexpressing in microglia, resveratrol promotes M2 phenotype polarization. Resveratrol also increases AMPK and inhibits GSK-3β (glycogen synthase kinase 3 beta) activity in astrocytes, which release energy, makes ATP available to neurons and reduces reactive oxygen species (ROS). Besides, resveratrol increases oligodendrocyte survival, which can lead to maintaining post-stroke brain homeostasis. CONCLUSION These results suggest that resveratrol can be considered a novel therapeutic agent for the reduction of stroke symptoms that can not only affect neuronal function but also play an important role in reducing neurotoxicity by altering glial activity and signaling.
Collapse
Affiliation(s)
- Hamed Ghazavi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Shirzad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam-Alanbia Hospital, Tehran, Iran
| | - Mona Riyahi Rad
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Zeng Q, Lian W, Wang G, Qiu M, Lin L, Zeng R. Pterostilbene induces Nrf2/HO-1 and potentially regulates NF-κB and JNK-Akt/mTOR signaling in ischemic brain injury in neonatal rats. 3 Biotech 2020; 10:192. [PMID: 32269897 DOI: 10.1007/s13205-020-02167-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/15/2020] [Indexed: 01/02/2023] Open
Abstract
Hypoxic-ischemic (HI) brain injury has a high occurrence rate of 1-4 per 1000 live births and is the leading cause of neurological disabilities. Despite the improvement in neonatal care, the effectiveness of current therapeutic strategies is limited, and thus, additional therapies with better results are of much needed. Pterostilbene is a stilbenoid possessing numerous preventive and therapeutic properties. The current study aimed to assess whether pterostilbene exerted protective effects in neonatal rats against experimentally induced ischemic brain injury. Pterostilbene was administered via oral gavage from postnatal day 3 to day 8. Rat pups that were seven-day-old were exposed to hypoxic-ischemic insult via ligation of the common carotid artery and hypoxic environment exposure. Pterostilbene treatment reduced neuronal loss and infarct volume. Pterostilbene administration regulated the NF-κB pathway, and the levels of inflammatory mediators (Nitric oxide, TNF-α, IL-1β, and IL-6) were reduced. HI-induced oxidative stress was significantly reduced by pterostilbene, as presented by decreased production of malondialdehyde and reactive oxygen species. Levels of glutathione were enhanced by pterostilbene. Pterostilbene regulated Nrf2/HO-1 and JNK expression and activated the PI3K/Akt-mTOR signals. These findings suggest that pterostilbene is a candidate compound for the treatment of neonatal HI.
Collapse
Affiliation(s)
- Qinghuang Zeng
- 1Department of Paediatrics, The Affiliated Hospital (Group) of Putian University, Putian, 351100 Fujian China
- Department of Pediatric Neurological Rehabilitation, Putian Children's Hospital, Putian, 351100 Fujian China
| | - Wenchang Lian
- 1Department of Paediatrics, The Affiliated Hospital (Group) of Putian University, Putian, 351100 Fujian China
- Department of Pediatric Neurological Rehabilitation, Putian Children's Hospital, Putian, 351100 Fujian China
| | - Guizhi Wang
- 1Department of Paediatrics, The Affiliated Hospital (Group) of Putian University, Putian, 351100 Fujian China
- Department of Pediatric Neurological Rehabilitation, Putian Children's Hospital, Putian, 351100 Fujian China
| | - Manping Qiu
- 1Department of Paediatrics, The Affiliated Hospital (Group) of Putian University, Putian, 351100 Fujian China
- Department of Pediatric Neurological Rehabilitation, Putian Children's Hospital, Putian, 351100 Fujian China
| | - Lingmu Lin
- 1Department of Paediatrics, The Affiliated Hospital (Group) of Putian University, Putian, 351100 Fujian China
- Department of Pediatric Neurological Rehabilitation, Putian Children's Hospital, Putian, 351100 Fujian China
| | - Renhe Zeng
- 1Department of Paediatrics, The Affiliated Hospital (Group) of Putian University, Putian, 351100 Fujian China
- Department of Pediatric Neurological Rehabilitation, Putian Children's Hospital, Putian, 351100 Fujian China
| |
Collapse
|
11
|
Melatonin's efficacy in stroke patients; a matter of dose? A systematic review. Toxicol Appl Pharmacol 2020; 392:114933. [PMID: 32112789 DOI: 10.1016/j.taap.2020.114933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
There is a lack of effective therapies for stroke patients; its treatment is even more difficult considering the unexpected onset of the disease. In the last decade, melatonin has emerged as a promising neuroprotective agent which is able to cross the blood-brain-barrier (BBB) and with a low toxicity profile. The aim of this systematic review was to summarize and critically review clinical and pre-clinical evidence related to melatonin's effectiveness as a stroke treatment. Together with a comparative dose extrapolation with those used in the selected randomized controlled trials (RCTs), and based on these data to discuss whether the administered doses correlate with those advisable in human patients. To address this purpose, we performed a systematic review of the available literature. A total of 529 records were screened with the selecting of six full articles containing RCTs that met the inclusion/exclusion criteria. The evidence drawn from these six reports was analyzed to identify remaining gaps, treatment efficacy, and to suggest future directions. The primary outcome reported was the reduction of the oxidative response; the secondary outcome was the increase of the survival rate of the patients in the intervention groups. Calculations derived from animal studies revealed that the translational doses to humans were substantially higher than those employed in the RCTs. The findings of this systematic review revealed that there are insufficient RCTs to prove melatonin's value in stroke patients. Nevertheless, the evidence is promising, and further clinical research may support the benefits of melatonin in stroke patients, if the adequate dose is administered.
Collapse
|
12
|
Cardinali DP. An Assessment of Melatonin's Therapeutic Value in the Hypoxic-Ischemic Encephalopathy of the Newborn. Front Synaptic Neurosci 2019; 11:34. [PMID: 31920617 PMCID: PMC6914689 DOI: 10.3389/fnsyn.2019.00034] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the most frequent causes of brain injury in the newborn. From a pathophysiological standpoint, a complex process takes place at the cellular and tissue level during the development of newborn brain damage in the absence of oxygen. Initially, the lesion is triggered by a deficit in the supply of oxygen to cells and tissues, causing a primary energy insufficiency. Subsequently, high energy phosphate levels recover transiently (the latent phase) that is followed by a secondary phase, in which many of the pathophysiological mechanisms involved in the development of neonatal brain damage ensue (i.e., excitotoxicity, massive influx of Ca2+, oxidative and nitrosative stress, inflammation). This leads to cell death by necrosis or apoptosis. Eventually, a tertiary phase occurs, characterized by the persistence of brain damage for months and even years after the HI insult. Hypothermia is the only therapeutic strategy against HIE that has been incorporated into neonatal intensive care units with limited success. Thus, there is an urgent need for agents with the capacity to curtail acute and chronic damage in HIE. Melatonin, a molecule of unusual phylogenetic conservation present in all known aerobic organisms, has a potential role as a neuroprotective agent both acutely and chronically in HIE. Melatonin displays a remarkable antioxidant and anti-inflammatory activity and is capable to cross the blood-brain barrier readily. Moreover, in many animal models of brain degeneration, melatonin was effective to impair chronic mechanisms of neuronal death. In animal models, and in a limited number of clinical studies, melatonin increased the level of protection developed by hypothermia in newborn asphyxia. This review article summarizes briefly the available therapeutic strategies in HIE and assesses the role of melatonin as a potentially relevant therapeutic tool to cover the hypoxia-ischemia phase and the secondary and tertiary phases following a hypoxic-ischemic insult.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
13
|
Hortensius LM, van Elburg RM, Nijboer CH, Benders MJNL, de Theije CGM. Postnatal Nutrition to Improve Brain Development in the Preterm Infant: A Systematic Review From Bench to Bedside. Front Physiol 2019; 10:961. [PMID: 31404162 PMCID: PMC6677108 DOI: 10.3389/fphys.2019.00961] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Preterm infants are at high risk for Encephalopathy of Prematurity and successive adverse neurodevelopmental outcome. Adequate nutrition is crucial for healthy brain development. Maternal breast milk is first choice of post-natal enteral nutrition for preterm infants. However, breast milk contains insufficient nutrient quantities to meet the greater nutritional needs of preterm infants, meaning that supplementation is recommended. Aim: To provide an overview of current literature on potential nutritional interventions for improvement of neurodevelopmental outcome in preterm infants, by taking a bench to bedside approach from pre-clinical models of neonatal brain injury to randomized controlled clinical trials (RCTs) in preterm infants. Methods: Separate clinical and pre-clinical searches were performed in Medline and Embase for English written papers published between 08/2008 and 08/2018 that studied a single nutritional component. Papers were included if one of the following components was studied: lipids, carbohydrates, proteins, vitamins, minerals, probiotics, prebiotics, oligosaccharides, fatty acids, or amino acids, with brain injury, brain development or neurodevelopmental outcome as outcome measure in preterm infants (gestational age <32 weeks and/or birth weight <1,500 g) or in animal models of neonatal brain injury. Results: In total, 2,671 pre-clinical studies and 852 RCTs were screened, of which 24 pre-clinical and 22 RCTs were included in this review. In these trials supplementation with amino acids and protein, lipids, probiotics (only clinical), prebiotics (only clinical), vitamins, and minerals was studied. All included pre-clinical studies show positive effect of supplementation on brain injury and/or neurodevelopment. Although some nutrients, such as glutamine, show promising short term outcome in clinical studies, no evident long term effect of any supplemented nutrient was found. Main limitations were inclusion of studies no older than 10 years at time of search and studies that focused on single nutritional components only. Conclusion: Even though many pre-clinical trials demonstrate promising effects of different nutritional interventions on reducing brain injury and/or improving neurodevelopmental outcome, these positive effects have so far not evidently been demonstrated in RCTs. More clinically relevant animal models and long term follow up after clinical trials are needed to move novel nutritional therapies from bench to bedside of preterm infants.
Collapse
Affiliation(s)
- Lisa M. Hortensius
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ruurd M. van Elburg
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Cora H. Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Caroline G. M. de Theije
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
Parikh P, Juul SE. Neuroprotective Strategies in Neonatal Brain Injury. J Pediatr 2018; 192:22-32. [PMID: 29031859 DOI: 10.1016/j.jpeds.2017.08.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/26/2017] [Accepted: 08/15/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Pratik Parikh
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA
| | - Sandra E Juul
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA.
| |
Collapse
|
15
|
Ma Z, Xin Z, Di W, Yan X, Li X, Reiter RJ, Yang Y. Melatonin and mitochondrial function during ischemia/reperfusion injury. Cell Mol Life Sci 2017; 74:3989-3998. [PMID: 28795196 PMCID: PMC11107672 DOI: 10.1007/s00018-017-2618-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
Abstract
Ischemia/reperfusion (IR) injury occurs in many organs and tissues, and contributes to morbidity and mortality worldwide. Melatonin, an endogenously produced indolamine, provides a strong defense against IR injury. Mitochondrion, an organelle for ATP production and a decider for cell fate, has been validated to be a crucial target for melatonin to exert its protection against IR injury. In this review, we first clarify the mechanisms underlying mitochondrial dysfunction during IR and melatonin's protection of mitochondria under this condition. Thereafter, special focus is placed on the protective actions of melatonin against IR injury in brain, heart, liver, and others. Finally, we explore several potential future directions of research in this area. Collectively, the information compiled here will serve as a comprehensive reference for the actions of melatonin in IR injury identified to date and will hopefully aid in the design of future research and increase the potential of melatonin as a therapeutic agent.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, UT Health San Antonio, 229 Taibai North Road, Xi'an, 710069, China
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Russel J Reiter
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, UT Health San Antonio, 229 Taibai North Road, Xi'an, 710069, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, UT Health San Antonio, 229 Taibai North Road, Xi'an, 710069, China.
- Department of Cellular and Structural Biology, UT Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
16
|
Revuelta M, Santaolalla F, Arteaga O, Alvarez A, Sánchez-del-Rey A, Hilario E. Recent advances in cochlear hair cell regeneration-A promising opportunity for the treatment of age-related hearing loss. Ageing Res Rev 2017; 36:149-155. [PMID: 28414155 DOI: 10.1016/j.arr.2017.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 01/22/2023]
Abstract
The objective of this paper is to review current information regarding the treatment of age-related hearing loss by using cochlear hair cell regeneration. Recent advances in the regeneration of the inner ear, including the usefulness of stem cells, are also presented. Based on the current literature, cochlear cell regeneration may well be possible in the short term and cochlear gene therapy may also be useful for the treatment of hearing loss associated with ageing. The present review provide further insight into the pathogenesis of Inner Ear senescence and aged-related hearing loss and facilitate the development of therapeutic strategies to repair hair cells damaged by ageing. More research will be needed in order to translate them into an effective treatment for deafness linked to cochlear senescence in humans.
Collapse
|
17
|
Chan YC, Hwang JH. Effects of Spirulina on the functions and redox status of auditory system in senescence-accelerated prone-8 mice. PLoS One 2017. [PMID: 28636628 PMCID: PMC5479523 DOI: 10.1371/journal.pone.0178916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To our knowledge, the effects of Spirulina platensis water extract (SP) on hearing function have not yet been reported. This study investigated the effects of SP on the function and redox status of the auditory system. Auditory brainstem responses and redox status were compared between two groups of 3-month-old senescence-accelerated prone-8 (SAMP8) mice: the control group was fed a normal diet, and the experimental group was fed a normal diet with oral supplementation of SP for 6 weeks. Compared with the control group, the experimental group had significantly lower hearing thresholds according to auditory brainstem responses measured using click sounds and 8-kHz tone burst sound stimulation at the end of this study. The experimental group had a shorter I-III interval of auditory brainstem responses with 16-kHz tone burst stimulation than the control group that was of borderline significance. Additionally, the experimental group had significantly higher mRNA expression of the superoxide dismutase and catalase genes in the cochlea and brainstem and significantly higher mRNA expression of the glutathione peroxidase gene in the cochlea. Further, the experimental group had significantly lower malondialdehyde levels in the cochlea and brainstem than the control group. However, tumor necrosis factor-α mRNA expression was not significantly different between the control and experimental groups. SP could decrease hearing degeneration in senescence-accelerated prone-8 mice possibly by increasing superoxide dismutase, catalase, and glutathione peroxidase gene expression and decreasing damage from oxidative stress in the cochlea and brainstem.
Collapse
Affiliation(s)
- Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| | - Juen-Haur Hwang
- Department of Otolaryngology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
19
|
Arteaga O, Álvarez A, Revuelta M, Santaolalla F, Urtasun A, Hilario E. Role of Antioxidants in Neonatal Hypoxic-Ischemic Brain Injury: New Therapeutic Approaches. Int J Mol Sci 2017; 18:E265. [PMID: 28134843 PMCID: PMC5343801 DOI: 10.3390/ijms18020265] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
Hypoxic-ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia-ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative stress, a higher concentration of free cytosolic calcium and impaired mitochondrial function, triggering the activation of apoptotic pathways, DNA fragmentation and cell death. The high incidence of this type of lesion in newborns can be partly attributed to the fact that the developing brain is particularly vulnerable to oxidative stress. Since antioxidants can safely interact with free radicals and terminate that chain reaction before vital molecules are damaged, exogenous antioxidant therapy may have the potential to diminish cellular damage caused by hypoxia-ischemia. In this review, we focus on the neuroprotective effects of antioxidant treatments against perinatal hypoxic-ischemic brain injury, in the light of the most recent advances.
Collapse
Affiliation(s)
- Olatz Arteaga
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Antonia Álvarez
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Miren Revuelta
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Francisco Santaolalla
- Department of Otorhinolaryngology, Basurto University Hospital, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Andoni Urtasun
- Department of Neuroscience, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
- Neurogenomiks Laboratory, Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain.
| | - Enrique Hilario
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| |
Collapse
|
20
|
Busija DW, Rutkai I, Dutta S, Katakam PV. Role of Mitochondria in Cerebral Vascular Function: Energy Production, Cellular Protection, and Regulation of Vascular Tone. Compr Physiol 2016; 6:1529-48. [PMID: 27347901 DOI: 10.1002/cphy.c150051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria not only produce energy in the form of ATP to support the activities of cells comprising the neurovascular unit, but mitochondrial events, such as depolarization and/or ROS release, also initiate signaling events which protect the endothelium and neurons against lethal stresses via pre-/postconditioning as well as promote changes in cerebral vascular tone. Mitochondrial depolarization in vascular smooth muscle (VSM), via pharmacological activation of the ATP-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels), leads to vasorelaxation through generation of calcium sparks by the sarcoplasmic reticulum and subsequent downstream signaling mechanisms. Increased release of ROS by mitochondria has similar effects. Relaxation of VSM can also be indirectly achieved via actions of nitric oxide (NO) and other vasoactive agents produced by endothelium, perivascular and parenchymal nerves, and astroglia following mitochondrial activation. Additionally, NO production following mitochondrial activation is involved in neuronal preconditioning. Cerebral arteries from female rats have greater mitochondrial mass and respiration and enhanced cerebral arterial dilation to mitochondrial activators. Preexisting chronic conditions such as insulin resistance and/or diabetes impair mitoKATP channel relaxation of cerebral arteries and preconditioning. Surprisingly, mitoKATP channel function after transient ischemia appears to be retained in the endothelium of large cerebral arteries despite generalized cerebral vascular dysfunction. Thus, mitochondrial mechanisms may represent the elusive signaling link between metabolic rate and blood flow as well as mediators of vascular change according to physiological status. Mitochondrial mechanisms are an important, but underutilized target for improving vascular function and decreasing brain injury in stroke patients. © 2016 American Physiological Society. Compr Physiol 6:1529-1548, 2016.
Collapse
Affiliation(s)
- David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Somhrita Dutta
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
21
|
Revuelta M, Arteaga O, Alvarez A, Martinez-Ibargüen A, Hilario E. Characterization of Gene Expression in the Rat Brainstem After Neonatal Hypoxic–Ischemic Injury and Antioxidant Treatment. Mol Neurobiol 2016; 54:1129-1143. [DOI: 10.1007/s12035-016-9724-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/13/2016] [Indexed: 11/29/2022]
|
22
|
Arteaga O, Revuelta M, Urigüen L, Álvarez A, Montalvo H, Hilario E. Pretreatment with Resveratrol Prevents Neuronal Injury and Cognitive Deficits Induced by Perinatal Hypoxia-Ischemia in Rats. PLoS One 2015; 10:e0142424. [PMID: 26544861 PMCID: PMC4636303 DOI: 10.1371/journal.pone.0142424] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/21/2015] [Indexed: 01/24/2023] Open
Abstract
Despite advances in neonatal care, hypoxic-ischemic brain injury is still a serious clinical problem, which is responsible for many cases of perinatal mortality, cerebral palsy, motor impairment and cognitive deficits. Resveratrol, a natural polyphenol with important anti-oxidant and anti-inflammatory properties, is present in grapevines, peanuts and pomegranates. The aim of the present work was to evaluate the possible neuroprotective effect of resveratrol when administered before or immediately after a hypoxic-ischemic brain event in neonatal rats by analyzing brain damage, the mitochondrial status and long-term cognitive impairment. Our results indicate that pretreatment with resveratrol protects against brain damage, reducing infarct volume, preserving myelination and minimizing the astroglial reactive response. Moreover its neuroprotective effect was found to be long lasting, as behavioral outcomes were significantly improved at adulthood. We speculate that one of the mechanisms for this neuroprotection may be related to the maintenance of the mitochondrial inner membrane integrity and potential, and to the reduction of reactive oxygen species. Curiously, none of these protective features was observed when resveratrol was administered immediately after hypoxia-ischemia.
Collapse
Affiliation(s)
- Olatz Arteaga
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Miren Revuelta
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Leyre Urigüen
- Department of Pharmacology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Antonia Álvarez
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Haizea Montalvo
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Enrique Hilario
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|