1
|
Gibson S, Ellsworth P. Emerging therapies for overactive bladder: preclinical, phase I and phase II studies. Expert Opin Investig Drugs 2024; 33:601-612. [PMID: 38695250 DOI: 10.1080/13543784.2024.2349285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/25/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Overactive bladder syndrome is a common chronic condition with a significant impact on quality of life and economic burden. Persistence with pharmacologic therapy has been limited by efficacy and side effects. A greater understanding of the pathophysiology of overactive bladder has led to the initial evaluation of several drugs affecting ion channels, the autonomic nervous system, and enzymes which may provide useful alternatives for the management of overactive bladder. AREAS COVERED A comprehensive review was performed using PubMed and Cochrane databases as well as reviewing clinical trials in the United States. The current standard of care for overactive bladder will be discussed, but this paper focuses on investigational drugs currently in preclinical studies and phase I and II clinical trials. EXPERT OPINION Current therapies for overactive bladder have limitations in efficacy and side effects. A greater understanding of the pathophysiology of overactive bladder has identified the role(s) of other pathways in the overactive bladder syndrome. Targeting alternative pathways including ion channels and enzymes may provide alternative therapies of overactive bladder and a more tailored approach to the management of overactive bladder.
Collapse
Affiliation(s)
- Samantha Gibson
- Division of urology, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Pamela Ellsworth
- Division of urology, University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
2
|
Li J, Liu T, Li N, Dong F, Wang P. SKA-31-induced activation of small-conductance calcium-activated potassium channels decreased modulation of detrusor smooth muscle function in a rat model of obesity. J Bioenerg Biomembr 2022; 54:135-144. [PMID: 35478071 DOI: 10.1007/s10863-022-09939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
Increased excitability and contractility of detrusor smooth muscle (DSM) cells are associated with overactive bladder (OAB), which is often induced by obesity. Small-conductance Ca2+-activated K+ (SK) channels regulate the excitability and contractility of DSM cells. Selective pharmacological activation of SK channels attenuates hyperpolarization and the decreased relaxation effect in DSM cells in obesity-induced OAB. However, additional data are needed to confirm the regulatory effect of SK channels on the function of DSM cells in obesity-related OAB. The tested hypothesis was that activation of SK channels decreases modulation of DSM function in a rat model of obesity-related OAB. Female Sprague Dawley rats were fed a normal diet (ND) or a high-fat diet (HFD), weighed after 12 weeks, and subjected to urodynamic study, patch-clamp electrophysiology, and isometric tension recording. The average body weight and incidence of OAB were increased in the HFD group. Patch-clamp studies revealed that pharmacological activation of SK channels with SKA-31 had attenuated hyperpolarization of DSM cells. In addition, isometric tension recordings indicated that SKA-31 decreased relaxation of spontaneous phasic contractions of DSM strips in the HFD group. Attenuated function of SK channels increased the excitability and contractility of DSM cells, which contributed to the occurrence of OAB, suggesting that SK channels are potential therapeutic targets for control of OAB.
Collapse
Affiliation(s)
- Jingyu Li
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Chongshan East Rd, Huanggu District, No. 4, Shenyang, Liaoning, 110032, China
| | - Tiandong Liu
- Department of Urology, Dandong Central Hospital, Dandong, Liaoning, China
| | - Ning Li
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Chongshan East Rd, Huanggu District, No. 4, Shenyang, Liaoning, 110032, China
| | - Fengming Dong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Chongshan East Rd, Huanggu District, No. 4, Shenyang, Liaoning, 110032, China
| | - Ping Wang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Chongshan East Rd, Huanggu District, No. 4, Shenyang, Liaoning, 110032, China.
| |
Collapse
|
3
|
Zhang D, Zhu Q, Xia W, Zhu C, Zhao X, Zhang Y, He C, Ji S, Li X, Zhang J. The role of SK3 in progesterone-induced inhibition of human fallopian tubal contraction. Reprod Biol Endocrinol 2022; 20:73. [PMID: 35488306 PMCID: PMC9052544 DOI: 10.1186/s12958-022-00932-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Normal motor activity of the fallopian tube is critical for human reproduction, and abnormal tubal activity may lead to ectopic pregnancy (EP) or infertility. Progesterone has an inhibitory effect on tubal contraction; however, the underlying mechanisms remain unclear. Small-conductance calcium-activated K+ channel 3 (SK3) is abundantly expressed in platelet-derived growth factor receptor α positive (PDGFRα+) cells and was reported to be important for the relaxation of smooth muscle. The present study aims to explore the expression of SK3 in the human fallopian tube and its role in progesterone-induced inhibition of tubal contraction. METHODS We collected specimens of fallopian tubes from patients treated by salpingectomy for EP (EP group) and other benign gynecological diseases (Non-EP group). The expression of SK3 was detected by quantitative real-time polymerase chain reaction, western blot, immunocytochemistry, and immunohistochemistry analyses. Isometric tension experiments were performed to investigate the role of SK3 in progesterone-induced inhibition of tubal contraction. RESULTS The baseline amplitude and frequency of human fallopian tube contraction were both statistically lower in the EP group compared with the non-EP group. The expression levels of SK3 in different portions of fallopian tubes from the non-EP group were significantly higher than in those from the EP group. Progesterone had an inhibitory effect on tubal contraction, mainly on the amplitude, in both groups, and SK3 as well as other calcium-activated K+ channels may be involved. SK3-expressing PDGFRα (+) cells were detected in the human fallopian tube. CONCLUSIONS The expression of SK3 is lower in the EP group, and SK3 is involved in the progesterone-induced inhibition of human fallopian tube contraction.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Qian Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Wei Xia
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Chenfeng Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xiaoya Zhao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yiqin Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Chuqing He
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Sifan Ji
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xiaocui Li
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| |
Collapse
|
4
|
Joseph S, Maria SA, Peedicayil J. Drugs Currently Undergoing Preclinical or Clinical Trials for the Treatment of Overactive Bladder: A Review. Curr Ther Res Clin Exp 2022; 96:100669. [PMID: 35494662 PMCID: PMC9052038 DOI: 10.1016/j.curtheres.2022.100669] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Overactive bladder (OAB) is a common clinical condition for which current drug treatment comprises drugs blocking the cholinergic nerve supply, or augmenting the adrenergic nerve supply, to the detrusor muscle of the urinary bladder. Current treatments have drawbacks, including lack of efficacy and the development of adverse effects in some patients. Hence, new and better drugs for treating OAB will be clinically useful. Objective This review is meant to provide information on drugs currently undergoing preclinical or clinical trials for the treatment of OAB published in journal articles or elsewhere. Methods The cited articles were retrieved from PubMed and Google Scholar from January 1, 1990, to December 31, 2021. The search terms used were contraction or contractility, detrusor, inhibition, isolated or in vitro, in vivo, overactive bladder, and relaxant effect or relaxation. Results There are 4 classes of new drugs under various stages of development for the treatment of OAB. These are drugs acting on the autonomic nerve supply to the detrusor muscle of the urinary bladder that include the anticholinergics tarafenacin and afacifenacin and the β3 adrenoceptor agonists solabegron and ritobegron; drugs acting on ion channels in the detrusor muscle (eg, potassium channel openers and calcium channel blockers), drugs acting on cellular enzymes like phosphodiesterase-5 inhibitors and Rho kinase inhibitors, and drugs acting on miscellaneous targets (eg, pregabalin and trimetazidine). Conclusions Drugs currently used to treat OAB target only the cholinergic and adrenergic cellular signalling pathways. There are many other drugs under trial targeting other cellular pathways that may be useful for treating OAB. Their approval for clinical use might improve the treatment of patients with OAB. (Curr Ther Res Clin Exp. 2022; 83:XXX–XXX)
Collapse
|
5
|
Malysz J, Petkov GV. Urinary bladder smooth muscle ion channels: expression, function, and regulation in health and disease. Am J Physiol Renal Physiol 2020; 319:F257-F283. [PMID: 32628539 PMCID: PMC7473901 DOI: 10.1152/ajprenal.00048.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, forms the bladder wall and ultimately determines the two main attributes of the organ: urine storage and voiding. The two functions are facilitated by UBSM relaxation and contraction, respectively, which depend on UBSM excitability shaped by multiple ion channels. In this review, we summarize the current understanding of key ion channels establishing and regulating UBSM excitability and contractility. They include excitation-enhancing voltage-gated Ca2+ (Cav) and transient receptor potential channels, excitation-reducing K+ channels, and still poorly understood Cl- channels. Dynamic interplay among UBSM ion channels determines the overall level of Cav channel activity. The net Ca2+ influx via Cav channels increases global intracellular Ca2+ concentration, which subsequently triggers UBSM contractility. Here, for each ion channel type, we describe UBSM tissue/cell expression (mRNA and protein) profiles and their role in regulating excitability and contractility of UBSM in various animal species, including the mouse, rat, and guinea pig, and, most importantly, humans. The currently available data reveal certain interspecies differences, which complicate the translational value of published animal research results to humans. This review highlights recent developments, findings on genetic knockout models, pharmacological data, reports on UBSM ion channel dysfunction in animal bladder disease models, and the very limited human studies currently available. Among all gaps in present-day knowledge, the unknowns on expression and functional roles for ion channels determined directly in human UBSM tissues and cells under both normal and disease conditions remain key hurdles in the field.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
6
|
Attenuated regulatory function of the small-conductance Ca 2+-activated K + channel in detrusor smooth muscle cells excitability in an obese rat model. Int Urol Nephrol 2020; 52:1851-1861. [PMID: 32399771 DOI: 10.1007/s11255-020-02487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Overactive bladder (OAB) is related to detrusor overactivity (DO), which is caused by the increased detrusor smooth muscle (DSM) cells excitability. Small-conductance Ca2+-activated K+ (SK) channels is a fundamental regulator of excitability and contractility in DSM cells. Obesity-related OAB is associated with the decreased expression and regulatory function of SK channels in DSM layer. However, the regulation role of SK channels in obesity-related OAB DSM cell excitability is still unknown. Here, we tested the hypothesis that obesity-related OAB is associated with reduced expression and activity of SK channels in DSM cells. METHODS Female Sprague-Dawley rats were fed a normal diet (ND) or a high-fat diet (HFD) and weighed after 12 weeks. We performed urodynamic study, single-cell quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and patch-clamp electrophysiology. RESULTS Increased average body weights and urodynamically demonstrated OAB were observed in HFD rats. Single-cell qRT-PCR experiments discovered the decreased mRNA expression level of SK channel in DSM cell from HFD rats. Patch-clamp studies revealed that NS309, a SK channel activator, had an attenuated effect on membrane potential hyperpolarization in HFD DSM cells. In addition, the reduced whole cell SK channel currents were recorded in HFD DSM cells. CONCLUSIONS Attenuated SK channels expression and function, which results in the increased DSM cells excitability and contributes to DO, is discovered in obesity-related OAB DSM cells, suggesting that SK channels might be potential therapeutic targets to control OAB.
Collapse
|
7
|
Fry CH, McCloskey KD. Spontaneous Activity and the Urinary Bladder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:121-147. [PMID: 31183825 DOI: 10.1007/978-981-13-5895-1_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The urinary bladder has two functions: to store urine, when it is relaxed and highly compliant; and void its contents, when intravesical pressure rises due to co-ordinated contraction of detrusor smooth muscle in the bladder wall. Superimposed on this description are two observations: (1) the normal, relaxed bladder develops small transient increases of intravesical pressure, mirrored by local bladder wall movements; (2) pathological, larger pressure variations (detrusor overactivity) can occur that may cause involuntary urine loss and/or detrusor overactivity. Characterisation of these spontaneous contractions is important to understand: how normal bladder compliance is maintained during filling; and the pathophysiology of detrusor overactivity. Consideration of how spontaneous contractions originate should include the structural complexity of the bladder wall. Detrusor smooth muscle layer is overlain by a mucosa, itself a complex structure of urothelium and a lamina propria containing sensory nerves, micro-vasculature, interstitial cells and diffuse muscular elements.Several theories, not mutually exclusive, have been advanced for the origin of spontaneous contractions. These include intrinsic rhythmicity of detrusor muscle; modulation by non-muscular pacemaking cells in the bladder wall; motor input to detrusor by autonomic nerves; regulation of detrusor muscle excitability and contractility by the adjacent mucosa and spontaneous contraction of elements of the lamina propria. This chapter will consider evidence for each theory in both normal and overactive bladder and how their significance may vary during ageing and development. Further understanding of these mechanisms may also identify novel drug targets to ameliorate the clinical consequences of large contractions associated with detrusor overactivity.
Collapse
Affiliation(s)
- Christopher H Fry
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
| | - Karen D McCloskey
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
8
|
Li N, Ding H, Li Z, Liu Y, Wang P. Effect of high-fat diet-induced obesity on the small-conductance Ca 2+-activated K + channel function affecting the contractility of rat detrusor smooth muscle. Int Urol Nephrol 2018; 51:61-72. [PMID: 30361965 DOI: 10.1007/s11255-018-2016-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/19/2018] [Indexed: 12/01/2022]
Abstract
PURPOSE Obesity usually induces overactive bladder (OAB) associated with detrusor overactivity, which is related to increased contractility of the detrusor smooth muscle (DSM). Small-conductance Ca2+-activated K+ (SK) channels play a constitutive role in the regulation of DSM contractility. However, the role of SK channels in the DSM changes in obesity-related OAB is still unknown. Here, we tested the hypothesis that obesity-related OAB is associated with reduced expression and activity of SK channels in DSM and that SK channels activation is a potential treatment for OAB. METHODS Female Sprague-Dawley rats were fed a normal diet (ND) or a high-fat diet (HFD) and weighed after 12 weeks. Urodynamic studies, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and isometric tension recording were performed. RESULTS Increased average body weights and urodynamically demonstrated OAB were observed in HFD rats. qRT-PCR experiments revealed a decrease in the mRNA expression level of SK channel in DSM tissue of the HFD rats. Isometric tension recordings indicated an attenuated relaxation effect of NS309 on the spontaneous phasic and electrical field stimulation-induced contractions that occurred via SK channel activation in HFD DSM strips. CONCLUSIONS Reduced expression and activity of SK channels in the DSM contribute to obesity-related OAB, indicating that SK channels are a potential therapeutic target for OAB.
Collapse
Affiliation(s)
- Ning Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Honglin Ding
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China.,Department of Urology, Affiliated Hospital, Chifeng University, 42 Wangfu Street, Chifeng, Neimeng, China
| | - Zizheng Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Yili Liu
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China.
| | - Ping Wang
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Mahapatra C, Brain KL, Manchanda R. A biophysically constrained computational model of the action potential of mouse urinary bladder smooth muscle. PLoS One 2018; 13:e0200712. [PMID: 30048468 PMCID: PMC6061979 DOI: 10.1371/journal.pone.0200712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/02/2018] [Indexed: 11/19/2022] Open
Abstract
Urinary incontinence is associated with enhanced spontaneous phasic contractions of the detrusor smooth muscle (DSM). Although a complete understanding of the etiology of these spontaneous contractions is not yet established, it is suggested that the spontaneously evoked action potentials (sAPs) in DSM cells initiate and modulate the contractions. In order to further our understanding of the ionic mechanisms underlying sAP generation, we present here a biophysically detailed computational model of a single DSM cell. First, we constructed mathematical models for nine ion channels found in DSM cells based on published experimental data: two voltage gated Ca2+ ion channels, an hyperpolarization-activated ion channel, two voltage-gated K+ ion channels, three Ca2+-activated K+ ion channels and a non-specific background leak ion channel. The ion channels' kinetics were characterized in terms of maximal conductances and differential equations based on voltage or calcium-dependent activation and inactivation. All ion channel models were validated by comparing the simulated currents and current-voltage relations with those reported in experimental work. Incorporating these channels, our DSM model is capable of reproducing experimentally recorded spike-type sAPs of varying configurations, ranging from sAPs displaying after-hyperpolarizations to sAPs displaying after-depolarizations. The contributions of the principal ion channels to spike generation and configuration were also investigated as a means of mimicking the effects of selected pharmacological agents on DSM cell excitability. Additionally, the features of propagation of an AP along a length of electrically continuous smooth muscle tissue were investigated. To date, a biophysically detailed computational model does not exist for DSM cells. Our model, constrained heavily by physiological data, provides a powerful tool to investigate the ionic mechanisms underlying the genesis of DSM electrical activity, which can further shed light on certain aspects of urinary bladder function and dysfunction.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Keith L. Brain
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, England, United Kingdom
| | - Rohit Manchanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
10
|
Regulation of Spontaneous Contractions in Intact Rat Bladder Strips and the Effects of Hydrogen Peroxide. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2925985. [PMID: 29511675 PMCID: PMC5817331 DOI: 10.1155/2018/2925985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/01/2017] [Accepted: 12/31/2017] [Indexed: 01/07/2023]
Abstract
Enhanced spontaneous contractions are associated with overactive bladder. Elevated levels of reactive oxygen species might contribute to enhanced spontaneous contractions. We investigated the regulation of spontaneous contractions and the effects of hydrogen peroxide (H2O2) in intact rat bladder strips. The spontaneous contractions were measured using a tissue bath system. The vehicle or the specific activators/blockers were applied and followed by the application of 0.003 g% H2O2. The basal tension, amplitude, and frequency of spontaneous contractions were quantified. Nisoldipine and bisindolylmaleimide 1 had no effects on spontaneous contractions. SKF96365 and Y27632 decreased basal tension and amplitude. Ryanodine slightly increased frequency. Both iberiotoxin and NS-1619 increased amplitude. Apamin reduced frequency but increased amplitude. NS-309 inhibited both the amplitude and frequency. The basal tension and amplitude increased when H2O2 was applied. Pretreatment with NS-309 inhibited H2O2-elicited augmented amplitude and frequency, while pretreatment with Y-27632 inhibited the augmented basal tension. The combined application of NS-309 and Y27632 almost eliminated spontaneous contractions and its augmentation induced by H2O2. In conclusion, Ca2+ influx, Rho kinase activation, and SK channel inactivation play important roles in spontaneous contractions in intact bladder strips, whereas only latter two mechanisms may be involved in H2O2-elicited increased spontaneous contractions.
Collapse
|
11
|
Hunziker M, O'Donnell AM, Puri P. Platelet-derived growth factor receptor alpha-positive cells: a new cell type in the human ureteropelvic junction. Pediatr Res 2017; 82:1080-1087. [PMID: 28902181 DOI: 10.1038/pr.2017.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ureteropelvic junction (UPJ) obstruction is the most common cause of congenital hydronephrosis. Normal ureteral motility requires coordinated interaction between neurons, smooth muscle cells (SMCs), and interstitial Cajal-like cells (IC-LCs). Recently, a new type of interstitial cell, platelet-derived growth factor receptor α-positive (PDGFRα+) cells, was discovered in the gastrointestinal tract and bladder.MethodsWe used immunohistochemistry to study PDGFRα protein distribution in normal human UPJ and congenital UPJ obstruction. Western blot and real-time PCR (RT-PCR) were used to study PDGFRα protein and gene expression levels. In addition, closely associated cells and small conductance Ca2+-activated K+ (SK) channels were investigated.ResultsPDGFRα+ cells were distinct from IC-LCs and SMCs and were in close proximity to nerve fibers. PDGFRα+ cells expressed SK3 channels, which are thought to mediate purinergic inhibitory neurotransmission in SMCs. The distribution of PDGFRα+ cells was similar in UPJ obstruction vs. CONTROLS However, the expression of SK3 channels in PDGFRα+ cells was decreased in UPJ obstruction vs. CONTROLS ConclusionThis study shows, for the first time, the PDGFRα+ cell expression in the human UPJ. Altered SK3 channel expression observed in PDGFRα+ cells in UPJ obstruction suggests that the impairment of SK3 activity across the UPJ may perturb upper urinary tract peristalsis in this urological condition.
Collapse
Affiliation(s)
- Manuela Hunziker
- National Children's Research Centre, Department of Pediatric Surgery, Our Lady's Children's Hospital, Dublin, Ireland
| | - Anne-Marie O'Donnell
- National Children's Research Centre, Department of Pediatric Surgery, Our Lady's Children's Hospital, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Department of Pediatric Surgery, Our Lady's Children's Hospital, Dublin, Ireland
| |
Collapse
|
12
|
Lee K, Isogai A, Antoh M, Kajioka S, Eto M, Hashitani H. Role of K + channels in regulating spontaneous activity in the muscularis mucosae of guinea pig bladder. Eur J Pharmacol 2017; 818:30-37. [PMID: 29050967 DOI: 10.1016/j.ejphar.2017.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/30/2022]
Abstract
To explore the roles of various K+ channels in regulating the spontaneous activity of bladder muscularis mucosae (MM) that is considered to play an important role in maintaining mucosal function. Effects of K+ channel modulators on electrical and contractile activity in the guinea-pig bladder MM were examined using intracellular microelectrode and isometric tension recording. The MM predominately generated bursting spontaneous action potentials (SAPs) and phasic contractions (SPCs) that were blocked by nifedipine (1µM). NS309 (10µM), a small-conductance Ca2+-activated K+ (SK) channel opener, dramatically prolonged after-hyperpolarisation (AHP) and converted bursting SAPs into individually action potentials in an apamin (100nM)-sensitive manner. Apamin alone increased the number of SAPs during bursts. NS1619 (10µM), a large-conductance Ca2+-activated K+ (BK) channel opener, abolished SAPs in a manner reversed by iberiotoxin (IbTX, 100nM), a BK channel blocker. IbTX alone enlarged SAPs and abolished their AHPs. Flupirtine (10µM), a voltage-dependent K+ channel (Kv7) opener, diminished SAPs in a manner reversed by XE991 (10µM), a Kv7 channel blocker. XE991 alone exerted modest excitatory effects on SAPs. These K+ channel modulators had corresponding effects on SPCs. Bursting SAP firing appears to result from a lower level activation of SK channels in MM than that DSM. BK channels play a predominant role in regulating SAP configuration, while Kv7 channels have only a marginal role. The prevention of bursting SAPs and associated reduction in SPCs upon the pharmacological activation of a reserved population of SK channels may well have a considerable therapeutic potential.
Collapse
Affiliation(s)
- Ken Lee
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan; Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Ayu Isogai
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Minori Antoh
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shunichi Kajioka
- Department of Applied Urology and Molecular Medicine, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
13
|
Lee H, Koh BH, Peri LE, Corrigan RD, Lee HT, George NE, Bhetwal BP, Xie Y, Perrino BA, Chai TC, Sanders KM, Koh SD. Premature contractions of the bladder are suppressed by interactions between TRPV4 and SK3 channels in murine detrusor PDGFRα + cells. Sci Rep 2017; 7:12245. [PMID: 28947806 PMCID: PMC5613012 DOI: 10.1038/s41598-017-12561-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 09/11/2017] [Indexed: 11/09/2022] Open
Abstract
During filling, urinary bladder volume increases dramatically with little change in pressure. This is accomplished by suppressing contractions of the detrusor muscle that lines the bladder wall. Mechanisms responsible for regulating detrusor contraction during filling are poorly understood. Here we describe a novel pathway to stabilize detrusor excitability involving platelet-derived growth factor receptor-α positive (PDGFRα+) interstitial cells. PDGFRα+ cells express small conductance Ca2+-activated K+ (SK) and TRPV4 channels. We found that Ca2+ entry through mechanosensitive TRPV4 channels during bladder filling stabilizes detrusor excitability. GSK1016790A (GSK), a TRPV4 channel agonist, activated a non-selective cation conductance that coupled to activation of SK channels. GSK induced hyperpolarization of PDGFRα+ cells and decreased detrusor contractions. Contractions were also inhibited by activation of SK channels. Blockers of TRPV4 or SK channels inhibited currents activated by GSK and increased detrusor contractions. TRPV4 and SK channel blockers also increased contractions of intact bladders during filling. Similar enhancement of contractions occurred in bladders of Trpv4 -/- mice during filling. An SK channel activator (SKA-31) decreased contractions during filling, and rescued the overactivity of Trpv4 -/- bladders. Our findings demonstrate how Ca2+ influx through TRPV4 channels can activate SK channels in PDGFRα+ cells and prevent bladder overactivity during filling.
Collapse
Affiliation(s)
- Haeyeong Lee
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA.
| | - Byoung H Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Lauren E Peri
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Robert D Corrigan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Hyun-Tai Lee
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Nikita E George
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Bhupal P Bhetwal
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Toby C Chai
- Department of Urology, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
14
|
Li N, Ding H, He X, Li Z, Liu Y. Expression and function of the small-conductance Ca 2+-activated K + channel is decreased in urinary bladder smooth muscle cells from female guinea pig with partial bladder outlet obstruction. Int Urol Nephrol 2017; 49:1147-1155. [PMID: 28417339 DOI: 10.1007/s11255-017-1592-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/10/2017] [Indexed: 01/10/2023]
Abstract
PURPOSE Overactive bladder (OAB), usually accompanied by partial bladder outlet obstruction (PBOO), is associated with detrusor overactivity (DO) which is related to the increased urinary bladder smooth muscle (UBSM) cells excitability. Small-conductance Ca2+-activated K+ (SK) channels play a constitutive regulatory role of UBSM excitability and contractility. PBOO is associated with the decreased SK channels mRNA expression and the attenuated regulative effect of SK channels on UBSM contractility. However, the regulation of SK channels in PBOO UBSM cell excitability is less clear. Here, we tested the hypothesis that PBOO is associated with decreased expression and function of SK channels in UBSM cells and that SK channels are a potential target for the treatment of OAB. METHODS Cystometry indicated that DO was achieved 2 weeks after PBOO in female guinea pigs. Using this animal model, we conducted single-cell quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and patch-clamp electrophysiology. RESULTS The single-cell qRT-PCR experiments indicated the reduced SK channel mRNA expression in PBOO UBSM cells. Patch-clamp studies revealed that NS309 had a diminished effect on resting membrane potential hyperpolarization via the activation of SK channels in PBOO UBSM cells. Moreover, attenuated whole-cell SK channel currents were demonstrated in PBOO UBSM cells. CONCLUSIONS The attenuated expression and function of SK channels, which results in the increased UBSM cells excitability and contributes to DO, was discovered in PBOO UBSM cells, suggesting that SK channels might be potential therapeutic targets for the control of OAB.
Collapse
Affiliation(s)
- Ning Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Honglin Ding
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Xiaoning He
- Department of Stomatology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Zizheng Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Yili Liu
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China.
| |
Collapse
|
15
|
Li N, He X, Li Z, Liu Y, Wang P. Partial bladder outlet obstruction is associated with decreased expression and function of the small-conductance Ca2+-activated K+ channel in guinea pig detrusor smooth muscle. Int Urol Nephrol 2016; 49:17-26. [DOI: 10.1007/s11255-016-1455-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/03/2016] [Indexed: 10/24/2022]
|
16
|
Effects of K(+) channel openers on spontaneous action potentials in detrusor smooth muscle of the guinea-pig urinary bladder. Eur J Pharmacol 2016; 789:179-186. [PMID: 27455901 DOI: 10.1016/j.ejphar.2016.07.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 12/18/2022]
Abstract
The modulation of spontaneous excitability in detrusor smooth muscle (DSM) upon the pharmacological activation of different populations of K(+) channels was investigated. Effects of distinct K(+) channel openers on spontaneous action potentials in DSM of the guinea-pig bladder were examined using intracellular microelectrode techniques. NS1619 (10μM), a large conductance Ca(2+)-activated K(+) (BK) channel opener, transiently increased action potential frequency and then prevented their generation without hyperpolarizing the membrane in a manner sensitive to iberiotoxin (IbTX, 100nM). A higher concentration of NS1619 (30μM) hyperpolarized the membrane and abolished action potential firing. NS309 (10μM) and SKA31 (100μM), small conductance Ca(2+)-activated K(+) (SK) channel openers, dramatically increased the duration of the after-hyperpolarization and then abolished action potential firing in an apamin (100nM)-sensitive manner. Flupirtine (10μM), a Kv7 channel opener, inhibited action potential firing without hyperpolarizing the membrane in a manner sensitive to XE991 (10μM), a Kv7 channel blocker. BRL37344 (10μM), a β3-adrenceptor agonist, or rolipram (10nM), a phosphodiesterase 4 inhibitor, also inhibited action potential firing. A higher concentration of rolipram (100nM) hyperpolarized the DSM and abolished the action potentials. IbTX (100nM) prevented the rolipram-induced blockade of action potentials but not the hyperpolarization. BK and Kv7 channels appear to predominantly contribute to the stabilization of DSM excitability. Spare SK channels could be pharmacologically activated to suppress DSM excitability. BK channels appear to be involved in the cyclic AMP-induced inhibition of action potentials but not the membrane hyperpolarization.
Collapse
|
17
|
17Beta-Estradiol Inhibits Calcium-Activated Potassium Channel Expressions in Rat Whole Bladder. Int Neurourol J 2016; 20:18-25. [PMID: 27032553 PMCID: PMC4819160 DOI: 10.5213/inj.1630492.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 11/22/2022] Open
Abstract
Purpose: To investigate the effect of estrogen on the expression of calcium-activated potassium (KCa) channels in an overactive bladder rat model. To this end, mRNA and protein levels of KCa channel subtypes in the bladder of ovariectomized rats were measured by reverse transcription polymerase chain reaction and western blotting, respectively. Methods: Ten-week-old female Sprague-Dawley rats were divided randomly into 3 groups: sham-operated control group (n=11), ovariectomy group (n=11), and the group treated with estrogen after ovariectomy (n=12). Rats in the last group were subcutaneously injected with 17β-estradiol (50 μg/kg) every other day for 2 weeks, whereas rats in the other 2 groups received vehicle (soybean oil) alone. Two weeks after treatment, the whole bladder was excised for mRNA and protein measurements. Results: Protein levels of the large-conductance KCa (BK) channels in the ovariectomy group were 1.5 folds higher than those in the sham-operated control group. However, the protein levels of the other KCa channel subtypes did not change significantly upon bilateral ovariectomy. Treatment with 17β-estradiol after ovariectomy restored BK channel protein levels to the control value. In contrast, BK channel mRNA levels were not significantly affected by either ovariectomy alone or 17β-estradiol treatment. The small-conductance KCa type 3 channel (SK3) mRNA and protein levels decreased to 75% of control levels upon 17β-estradiol treatment. Conclusions: These results suggest that 17β-estradiol may influence urinary bladder function by modulating BK and SK3 channel expression.
Collapse
|
18
|
Hristov KL, Smith AC, Parajuli SP, Malysz J, Rovner ES, Petkov GV. Novel regulatory mechanism in human urinary bladder: central role of transient receptor potential melastatin 4 channels in detrusor smooth muscle function. Am J Physiol Cell Physiol 2016; 310:C600-11. [PMID: 26791488 DOI: 10.1152/ajpcell.00270.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Abstract
Transient receptor potential melastatin 4 (TRPM4) channels are Ca(2+)-activated nonselective cation channels that have been recently identified as regulators of detrusor smooth muscle (DSM) function in rodents. However, their expression and function in human DSM remain unexplored. We provide insights into the functional role of TRPM4 channels in human DSM under physiological conditions. We used a multidisciplinary experimental approach, including RT-PCR, Western blotting, immunohistochemistry and immunocytochemistry, patch-clamp electrophysiology, and functional studies of DSM contractility. DSM samples were obtained from patients without preoperative overactive bladder symptoms. RT-PCR detected mRNA transcripts for TRPM4 channels in human DSM whole tissue and freshly isolated single cells. Western blotting and immunohistochemistry with confocal microscopy revealed TRPM4 protein expression in human DSM. Immunocytochemistry further detected TRPM4 protein expression in DSM single cells. Patch-clamp experiments showed that 9-phenanthrol, a selective TRPM4 channel inhibitor, significantly decreased the transient inward cation currents and voltage step-induced whole cell currents in freshly isolated human DSM cells. In current-clamp mode, 9-phenanthrol hyperpolarized the human DSM cell membrane potential. Furthermore, 9-phenanthrol attenuated the spontaneous phasic, carbachol-induced and nerve-evoked contractions in human DSM isolated strips. Significant species-related differences in TRPM4 channel activity between human, rat, and guinea pig DSM were revealed, suggesting a more prominent physiological role for the TRPM4 channel in the regulation of DSM function in humans than in rodents. In conclusion, TRPM4 channels regulate human DSM excitability and contractility and are critical determinants of human urinary bladder function. Thus, TRPM4 channels could represent promising novel targets for the pharmacological or genetic control of overactive bladder.
Collapse
Affiliation(s)
- Kiril L Hristov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and
| | - Amy C Smith
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and
| | - Shankar P Parajuli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and
| | - John Malysz
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and
| | - Eric S Rovner
- Medical University of South Carolina, Charleston, South Carolina
| | - Georgi V Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina; and Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
19
|
Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 104:233-261. [PMID: 27038376 DOI: 10.1016/bs.apcsb.2015.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases.
Collapse
|
20
|
Mingin GC, Heppner TJ, Tykocki NR, Erickson CS, Vizzard MA, Nelson MT. Social stress in mice induces urinary bladder overactivity and increases TRPV1 channel-dependent afferent nerve activity. Am J Physiol Regul Integr Comp Physiol 2015; 309:R629-38. [PMID: 26224686 PMCID: PMC4591369 DOI: 10.1152/ajpregu.00013.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/23/2015] [Indexed: 01/09/2023]
Abstract
Social stress has been implicated as a cause of urinary bladder hypertrophy and dysfunction in humans. Using a murine model of social stress, we and others have shown that social stress leads to bladder overactivity. Here, we show that social stress leads to bladder overactivity, increased bladder compliance, and increased afferent nerve activity. In the social stress paradigm, 6-wk-old male C57BL/6 mice were exposed for a total of 2 wk, via barrier cage, to a C57BL/6 retired breeder aggressor mouse. We performed conscious cystometry with and without intravesical infusion of the TRPV1 inhibitor capsazepine, and measured pressure-volume relationships and afferent nerve activity during bladder filling using an ex vivo bladder model. Stress leads to a decrease in intermicturition interval and void volume in vivo, which was restored by capsazepine. Ex vivo studies demonstrated that at low pressures, bladder compliance and afferent activity were elevated in stressed bladders compared with unstressed bladders. Capsazepine did not significantly change afferent activity in unstressed mice, but significantly decreased afferent activity at all pressures in stressed bladders. Immunohistochemistry revealed that TRPV1 colocalizes with CGRP to stain nerve fibers in unstressed bladders. Colocalization significantly increased along the same nerve fibers in the stressed bladders. Our results support the concept that social stress induces TRPV1-dependent afferent nerve activity, ultimately leading to the development of overactive bladder symptoms.
Collapse
Affiliation(s)
- Gerald C Mingin
- Department of Surgery (Urology), University of Vermont College of Medicine, Vermont Children's Hospital, Burlington, Vermont;
| | - Thomas J Heppner
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Nathan R Tykocki
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Cuixia Shi Erickson
- Department of Surgery (Urology), University of Vermont College of Medicine, Vermont Children's Hospital, Burlington, Vermont
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont; and
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont; Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Sacco E, Recupero S, Bientinesi R, Palermo G, D’Agostino D, Currò D, Bassi P. Pioneering drugs for overactive bladder and detrusor overactivity: Ongoing research and future directions. World J Obstet Gynecol 2015; 4:24-39. [DOI: 10.5317/wjog.v4.i2.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 01/31/2015] [Accepted: 04/14/2015] [Indexed: 02/05/2023] Open
Abstract
The ongoing research on pioneering drug candidates for the overactive bladder (OAB) aimed to overcome the limitations of currently licensed pharmacotherapies, such as antimuscarinics, β3-adrenergic agents, and botulinum neurotoxin, has been reviewed performing a systematic literature review and web search. The review covers the exploratory agents alternative to available medications for OAB and that may ultimately prove to be therapeutically useful in the future management of OAB patients based on preclinical and early clinical data. It emerges that many alternative pharmacological strategies have been discovered or are under investigation in disease-oriented studies. Several potential therapeutics are known for years but still find obstacles to pass the clinical stages of development, while other completely novel compounds, targeting new pharmacological targets, have been recently discovered and show potential to translate into clinical therapeutic agents for idiopathic and neurogenic OAB syndrome. The global scenario of investigational drugs for OAB gives promise for the development of innovative therapeutics that may ultimately prove effective as first, combined or second-line treatments within a realistic timescale of ten years.
Collapse
|
22
|
Welsh C, Shifrin Y, Pan J, Belik J. Infantile hypertrophic pyloric stenosis (IHPS): a study of its pathophysiology utilizing the newborn hph-1 mouse model of the disease. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1198-206. [PMID: 25359537 DOI: 10.1152/ajpgi.00221.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Infantile hypertrophic pyloric stenosis (IHPS) is a common disease of unknown etiology. The tetrahydrobiopterin (BH4)-deficient hyperphenylalaninemia-1 (hph-1) newborn mouse has a similar phenotype to the human condition. For hph-1 and wild-type control animals, pyloric tissue agonist-induced contractile properties, reactive oxygen species (ROS) generation, cGMP, neuronal nitric oxide synthase (nNOS) content, and Rho-associated protein kinase 2 (ROCK-2) expression and activity were evaluated. Primary pyloric smooth muscle cells from wild-type newborn animals were utilized to evaluate the effect of BH4 deficiency. One-week-old hph-1 mice exhibited a fourfold increase (P < 0.01) in the pyloric sphincter muscle contraction magnitude but similar relaxation values when compared with wild-type animals. The pyloric tissue nNOS expression and cGMP content were decreased, whereas the rate of nNOS uncoupling increased (P < 0.01) in 1-wk-old hph-1 mice when compared with wild-type animals. These changes were associated with increased pyloric tissue ROS generation and elevated ROCK-2 expression/activity (P < 0.05). At 1-3 days of age and during adulthood, the gastric emptying rate of the hph-1 mice was not altered, and there were no genotype differences in pyloric tissue ROS generation, nNOS expression, or ROCK-2 activity. BH4 inhibition in pyloric smooth muscle cells resulted in increased ROS generation (P < 0.01) and ROCK-2 activity (P < 0.05). Oxidative stress upregulated ROCK-2 activity in pyloric tissue, but no changes were observed in newborn fundal tissue in vitro. We conclude that ROS-induced upregulation of ROCK-2 expression accounts for the increased pyloric sphincter tone and nNOS downregulation in the newborn hph-1 mice. The role of ROCK-2 activation in the pathogenesis of IHPS warrants further study.
Collapse
Affiliation(s)
- Christopher Welsh
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Yulia Shifrin
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Jingyi Pan
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Jaques Belik
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Sacco E, Bientinesi R. Innovative pharmacotherapies for women with overactive bladder: where are we now and what is in the pipeline? Int Urogynecol J 2014; 26:629-40. [PMID: 25377296 DOI: 10.1007/s00192-014-2557-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/18/2014] [Indexed: 12/12/2022]
Abstract
INTRODUCTION AND HYPOTHESIS The impressive prevalence of overactive bladder (OAB) and the relevant limitations of current treatments urge the need for novel therapeutic approaches. METHODS A systematic literature and web search was performed to identify investigational drugs that entered the early and late phases of clinical development for women with OAB symptoms. RESULTS Approved pharmacological therapies for OAB (antimuscarinics, beta-3 agonists, and botulinum toxin) are evolving with the development of alternative administration methods, combination strategies, and novel compounds, expected to improve effectiveness, bladder selectivity, and dose flexibility. A wealth of investigational compounds, developed with both public and companies' indoor nonclinical disease-oriented studies, entered the early and late stages of clinical development in the last decade. Most non-anticholinergic compounds in ongoing clinical trials target central and peripheral neurotransmitter receptors involved in neurological modulation of micturition, nonadrenergic-noncholinergic mechanisms, cyclic nucleotide metabolism, different subtypes of ion channels or peripheral receptors of prostaglandins, vanilloids, vitamin D3, and opioids. Fascinating advances are ongoing also in the field of genetic therapy. CONCLUSIONS New pharmaceutical formulations and drug combinations are expected to be available in the next decade in order to overcome the limitations of current drugs for OAB. Although proof-of-concept, patient-oriented studies yielded disappointing results for several tentative drugs, a lot of clinical research is ongoing that is expected to provide clinicians with novel therapeutic agents in the near future.
Collapse
Affiliation(s)
- Emilio Sacco
- Department of Urology, "Agostino Gemelli" Hospital, Catholic University Medical School, Rome, Italy,
| | | |
Collapse
|
24
|
Petkov GV. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am J Physiol Regul Integr Comp Physiol 2014; 307:R571-84. [PMID: 24990859 DOI: 10.1152/ajpregu.00142.2014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The physiological functions of the urinary bladder are to store and periodically expel urine. These tasks are facilitated by the contraction and relaxation of the urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, which comprises the bladder wall. The large-conductance voltage- and Ca(2+)-activated K(+) (BK, BKCa, MaxiK, Slo1, or KCa1.1) channel is highly expressed in UBSM and is arguably the most important physiologically relevant K(+) channel that regulates UBSM function. Its significance arises from the fact that the BK channel is the only K(+) channel that is activated by increases in both voltage and intracellular Ca(2+). The BK channels control UBSM excitability and contractility by maintaining the resting membrane potential and shaping the repolarization phase of the spontaneous action potentials that determine UBSM spontaneous rhythmic contractility. In UBSM, these channels have complex regulatory mechanisms involving integrated intracellular Ca(2+) signals, protein kinases, phosphodiesterases, and close functional interactions with muscarinic and β-adrenergic receptors. BK channel dysfunction is implicated in some forms of bladder pathologies, such as detrusor overactivity, and related overactive bladder. This review article summarizes the current state of knowledge of the functional role of UBSM BK channels under normal and pathophysiological conditions and provides new insight toward the BK channels as targets for pharmacological or genetic control of UBSM function. Modulation of UBSM BK channels can occur by directly or indirectly targeting their regulatory mechanisms, which has the potential to provide novel therapeutic approaches for bladder dysfunction, such as overactive bladder and detrusor underactivity.
Collapse
Affiliation(s)
- Georgi V Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
25
|
Stimulation of large-conductance calcium-activated potassium channels inhibits neurogenic contraction of human bladder from patients with urinary symptoms and reverses acetic acid-induced bladder hyperactivity in rats. Eur J Pharmacol 2014; 735:68-76. [PMID: 24747752 DOI: 10.1016/j.ejphar.2014.03.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/10/2014] [Accepted: 03/30/2014] [Indexed: 11/23/2022]
Abstract
We have analysed the effects of large-conductance calcium-activated potassium channel (BK) stimulation on neurogenic and myogenic contraction of human bladder from healthy subjects and patients with urinary symptoms and evaluated the efficacy of activating BK to relief bladder hyperactivity in rats. Bladder specimens were obtained from organ donors and from men with benign prostatic hyperplasia (BPH). Contractions elicited by electrical field stimulation (EFS) and carbachol (CCh) were evaluated in isolated bladder strips. in vivo cystometric recordings were obtained in anesthetized rats under control and acetic acid-induced hyperactive conditions. Neurogenic contractions of human bladder were potentiated by blockade of BK and small-conductance calcium-activated potassium channels (SK) but were unaffected by the blockade of intermediate calcium-activated potassium channels (IK). EFS-induced contractions were inhibited by BK stimulation with NS-8 or NS1619 or by SK/IK stimulation with NS309 (3µM). CCh-induced contractions were not modified by blockade or stimulation of BK, IK or SK. The anti-cholinergic agent, oxybutynin (0.3µM) inhibited either neurogenic or CCh-induced contractions. Neurogenic contractions of bladders from BPH patients were less sensitive to BK inhibition and more sensitive to BK activation than healthy bladders. The BK activator, NS-8 (5mg/kg; i.v.), reversed bladder hyperactivity induced by acetic acid in rats, while oxybutynin was ineffective. NS-8 did not significantly impact blood pressure or heart rate. BK stimulation specifically inhibits neurogenic contractions in patients with urinary symptoms and relieves bladder hyperactivity in vivo without compromising bladder contractile capacity or cardiovascular safety, supporting its potential therapeutic use for relieving bladder overactivity.
Collapse
|
26
|
Apamin attenuated cerulein-induced acute pancreatitis by inhibition of JNK pathway in mice. Dig Dis Sci 2013; 58:2908-17. [PMID: 23918150 DOI: 10.1007/s10620-013-2800-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/14/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM We have previously reported that bee venom (BV) has a protective role against acute pancreatitis (AP). However, the effects of apamin, the major compound of BV, on AP have not been determined. The aim of this study was to evaluate the effects of apamin on cerulein-induced AP. METHODS AP was induced via intraperitoneal injection of supramaximal concentrations of the stable cholecystokinin analogue cerulein (50 μg/kg) every hour for 6 times. In the apamin treatment group, apamin was administered subcutaneously (10, 50, or 100 μg/kg) at both 18 and 1 h before the first cerulein injection. The mice were sacrificed at 6 h after the final cerulein injection. Blood samples were obtained to determine serum amylase and lipase levels, as well as cytokine production. The pancreas and lung were rapidly removed for morphologic and histological examination, myeloperoxidase (MPO) assay, and real-time reverse transcription-polymerase chain reaction. Furthermore, we isolated the pancreatic acinar cells to specify the role of apamin in AP. RESULTS Pre-treatment with apamin inhibited histological damage, pancreatic weight/body weight ratio, serum level of amylase and lipase, MPO activity, and cytokine production. In addition, apamin treatment significantly inhibited cerulein-induced pancreatic acinar cell death. Furthermore, apamin treatment inhibited the cerulein-induced activation of c-Jun NH2-terminal kinases (JNK). CONCLUSIONS These results could suggest that apamin could protect against AP by inhibition of JNK activation.
Collapse
|