1
|
Lin J, Gettings SM, Talbi K, Schreiber R, Taggart MJ, Preller M, Kunzelmann K, Althaus M, Gray MA. Pharmacological inhibitors of the cystic fibrosis transmembrane conductance regulator exert off-target effects on epithelial cation channels. Pflugers Arch 2023; 475:167-179. [PMID: 36205782 PMCID: PMC9849171 DOI: 10.1007/s00424-022-02758-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 02/01/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel and the epithelial Na+ channel (ENaC) play essential roles in transepithelial ion and fluid transport in numerous epithelial tissues. Inhibitors of both channels have been important tools for defining their physiological role in vitro. However, two commonly used CFTR inhibitors, CFTRinh-172 and GlyH-101, also inhibit non-CFTR anion channels, indicating they are not CFTR specific. However, the potential off-target effects of these inhibitors on epithelial cation channels has to date not been addressed. Here, we show that both CFTR blockers, at concentrations routinely employed by many researchers, caused a significant inhibition of store-operated calcium entry (SOCE) that was time-dependent, poorly reversible and independent of CFTR. Patch clamp experiments showed that both CFTRinh-172 and GlyH-101 caused a significant block of Orai1-mediated whole cell currents, establishing that they likely reduce SOCE via modulation of this Ca2+ release-activated Ca2+ (CRAC) channel. In addition to off-target effects on calcium channels, both inhibitors significantly reduced human αβγ-ENaC-mediated currents after heterologous expression in Xenopus oocytes, but had differential effects on δβγ-ENaC function. Molecular docking identified two putative binding sites in the extracellular domain of ENaC for both CFTR blockers. Together, our results indicate that caution is needed when using these two CFTR inhibitors to dissect the role of CFTR, and potentially ENaC, in physiological processes.
Collapse
Affiliation(s)
- JinHeng Lin
- grid.1006.70000 0001 0462 7212Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK ,grid.4991.50000 0004 1936 8948Present Address: Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
| | - Sean M. Gettings
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK
| | - Khaoula Talbi
- grid.7727.50000 0001 2190 5763Physiological Institute, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Schreiber
- grid.7727.50000 0001 2190 5763Physiological Institute, University of Regensburg, 93053 Regensburg, Germany
| | - Michael J. Taggart
- grid.1006.70000 0001 0462 7212Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Matthias Preller
- grid.425058.e0000 0004 0473 3519Department of Natural Sciences/Institute for Functional Gene Analytics, Structural Biology Group, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany
| | - Karl Kunzelmann
- grid.7727.50000 0001 2190 5763Physiological Institute, University of Regensburg, 93053 Regensburg, Germany
| | - Mike Althaus
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU UK ,grid.425058.e0000 0004 0473 3519Present Address: Department of Natural Sciences /Institute for Functional Gene Analytics, Ion Transport Physiology Group, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany
| | - Michael A. Gray
- grid.1006.70000 0001 0462 7212Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
2
|
Liu L, Yamamoto A, Yamaguchi M, Taniguchi I, Nomura N, Nakakuki M, Kozawa Y, Fukuyasu T, Higuchi M, Niwa E, Tamada T, Ishiguro H. Bicarbonate transport of airway surface epithelia in luminally perfused mice bronchioles. J Physiol Sci 2022; 72:4. [PMID: 35196991 PMCID: PMC10717372 DOI: 10.1186/s12576-022-00828-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/14/2022] [Indexed: 01/06/2023]
Abstract
HCO3- secretion in distal airways is critical for airway mucosal defense. HCO3-/H+ transport across the apical membrane of airway surface epithelial cells was studied by measuring intracellular pH in luminally microperfused freshly dissected mice bronchioles. Functional studies demonstrated that CFTR, ENaC, Cl--HCO3- exchange, Na+-H+ exchange, and Na+-HCO3- cotransport are involved in apical HCO3-/H+ transport. RT-PCR of isolated bronchioles detected fragments from Cftr, α, β, γ subunits of ENaC, Ae2, Ae3, NBCe1, NBCe2, NBCn1, NDCBE, NBCn2, Nhe1, Nhe2, Nhe4, Nhe5, Slc26a4, Slc26a6, and Slc26a9. We assume that continuous decline of intracellular pH following alkaline load demonstrates time course of HCO3- secretion into the lumen which is perfused with a HCO3--free solution. Forskolin-stimulated HCO3- secretion was substantially inhibited by luminal application of CFTRinh-172 (5 μM), H2DIDS (200 μM), and amiloride (1 μM). In bronchioles from a cystic fibrosis mouse model, basal and acetylcholine-stimulated HCO3- secretion was substantially impaired, but forskolin transiently accelerated HCO3- secretion of which the magnitude was comparable to wild-type bronchioles. In conclusion, we have characterized apical HCO3-/H+ transport in native bronchioles. We have demonstrated that cAMP-mediated and Ca2+-mediated pathways are involved in HCO3- secretion and that apical HCO3- secretion is largely mediated by CFTR and H2DIDS-sensitive Cl--HCO3- exchanger, most likely Slc26a9. The impairment of HCO3- secretion in bronchioles from a cystic fibrosis mouse model may be related to the pathogenesis of early lung disease in cystic fibrosis.
Collapse
Affiliation(s)
- Libin Liu
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiko Yamamoto
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Yamaguchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itsuka Taniguchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nao Nomura
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyuki Nakakuki
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Kozawa
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoya Fukuyasu
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayuko Higuchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Erina Niwa
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Research Center of Health, Physical Fitness, and Sports, Nagoya University, Furo-cho E5-2 (130), Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
3
|
Farinha CM, Gentzsch M. Revisiting CFTR Interactions: Old Partners and New Players. Int J Mol Sci 2021; 22:13196. [PMID: 34947992 PMCID: PMC8703571 DOI: 10.3390/ijms222413196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023] Open
Abstract
Remarkable progress in CFTR research has led to the therapeutic development of modulators that rescue the basic defect in cystic fibrosis. There is continuous interest in studying CFTR molecular disease mechanisms as not all cystic fibrosis patients have a therapeutic option available. Addressing the basis of the problem by comprehensively understanding the critical molecular associations of CFTR interactions remains key. With the availability of CFTR modulators, there is interest in comprehending which interactions are critical to rescue CFTR and which are altered by modulators or CFTR mutations. Here, the current knowledge on interactions that govern CFTR folding, processing, and stability is summarized. Furthermore, we describe protein complexes and signal pathways that modulate the CFTR function. Primary epithelial cells display a spatial control of the CFTR interactions and have become a common system for preclinical and personalized medicine studies. Strikingly, the novel roles of CFTR in development and differentiation have been recently uncovered and it has been revealed that specific CFTR gene interactions also play an important role in transcriptional regulation. For a comprehensive understanding of the molecular environment of CFTR, it is important to consider CFTR mutation-dependent interactions as well as factors affecting the CFTR interactome on the cell type, tissue-specific, and transcriptional levels.
Collapse
Affiliation(s)
- Carlos M. Farinha
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Division of Pediatric Pulmonology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Airway surface liquid acidification initiates host defense abnormalities in Cystic Fibrosis. Sci Rep 2019; 9:6516. [PMID: 31019198 PMCID: PMC6482305 DOI: 10.1038/s41598-019-42751-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Morbidity is mainly due to early airway infection. We hypothesized that S. aureus clearance during the first hours of infection was impaired in CF human Airway Surface Liquid (ASL) because of a lowered pH. The ASL pH of human bronchial epithelial cell lines and primary respiratory cells from healthy controls (WT) and patients with CF was measured with a pH microelectrode. The antimicrobial capacity of airway cells was studied after S. aureus apical infection by counting surviving bacteria. ASL was significantly more acidic in CF than in WT respiratory cells. This was consistent with a defect in bicarbonate secretion involving CFTR and SLC26A4 (pendrin) and a persistent proton secretion by ATP12A. ASL demonstrated a defect in S. aureus clearance which was improved by pH normalization. Pendrin inhibition in WT airways recapitulated the CF airway defect and increased S. aureus proliferation. ATP12A inhibition by ouabain decreased bacterial proliferation. Antimicrobial peptides LL-37 and hBD1 demonstrated a pH-dependent activity. Normalizing ASL pH might improve innate airway defense in newborns with CF during onset of S. aureus infection. Pendrin activation and ATP12A inhibition could represent novel therapeutic strategies to normalize pH in CF airways.
Collapse
|
5
|
Braccia C, Tomati V, Caci E, Pedemonte N, Armirotti A. SWATH label-free proteomics for cystic fibrosis research. J Cyst Fibros 2018; 18:501-506. [PMID: 30348611 DOI: 10.1016/j.jcf.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Label-free proteomics is a powerful tool for biological investigation. The SWATH protocol, relying on the Pan Human ion library, currently represents the state-of-the-art methodology for this kind of analysis. We recently discovered that this tool is not perfectly suitable for proteomics research in the CF field, as it lacks assays for several proteins crucial for the CF biology, including CFTR. METHODS We extensively investigated the proteome of a very popular model for in vitro research on CF, CFBE41o-, and we used the corresponding data to improve the power of SWATH proteomics for CF investigation. We then used this improved tool to explore in depth the proteome of primary bronchial epithelial (BE) cells deriving from four CF individuals compared with that of four corresponding non-CF controls. By means of advanced bioinformatics tools, we outlined the presence of a number of protein networks being significantly altered by CF. RESULTS Our analysis on patients' BE cells identified 154 proteins dysregulated by the CF pathology (94 upregulated and 60 downregulated). Some known CFTR interactors are present among them, but our analysis also revealed the alteration of other proteins not previously known to be related with CF. CONCLUSIONS The present work outlines the power of SWATH label free proteomics applied to CF research.
Collapse
Affiliation(s)
- Clarissa Braccia
- D3Pharmachemistry, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Dipartimento di Chimica, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Valeria Tomati
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Emanuela Caci
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Nicoletta Pedemonte
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
6
|
CK2 is a key regulator of SLC4A2-mediated Cl -/HCO 3- exchange in human airway epithelia. Pflugers Arch 2017; 469:1073-1091. [PMID: 28455748 PMCID: PMC5554290 DOI: 10.1007/s00424-017-1981-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Transepithelial bicarbonate secretion by human airway submucosal glands and surface epithelial cells is crucial to maintain the pH-sensitive innate defence mechanisms of the lung. cAMP agonists stimulate HCO3- secretion via coordinated increases in basolateral HCO3- influx and accumulation, as well as CFTR-dependent HCO3- efflux at the luminal membrane of airway epithelial cells. Here, we investigated the regulation of a basolateral located, DIDS-sensitive, Cl-/HCO3- exchanger, anion exchanger 2 (AE2; SLC4A2) which is postulated to act as an acid loader, and therefore potential regulator of HCO3- secretion, in human airway epithelial cells. Using intracellular pH measurements performed on Calu-3 cells, we demonstrate that the activity of the basolateral Cl-/HCO3- exchanger was significantly downregulated by cAMP agonists, via a PKA-independent mechanism and also required Ca2+ and calmodulin under resting conditions. AE2 contains potential phosphorylation sites by a calmodulin substrate, protein kinase CK2, and we demonstrated that AE2 activity was reduced in the presence of CK2 inhibition. Moreover, CK2 inhibition abolished the activity of AE2 in primary human nasal epithelia. Studies performed on mouse AE2 transfected into HEK-293T cells confirmed almost identical Ca2+/calmodulin and CK2 regulation to that observed in Calu-3 and primary human nasal cells. Furthermore, mouse AE2 activity was reduced by genetic knockout of CK2, an effect which was rescued by exogenous CK2 expression. Together, these findings are the first to demonstrate that CK2 is a key regulator of Cl--dependent HCO3- export at the serosal membrane of human airway epithelial cells.
Collapse
|
7
|
Bertrand CA, Mitra S, Mishra SK, Wang X, Zhao Y, Pilewski JM, Madden DR, Frizzell RA. The CFTR trafficking mutation F508del inhibits the constitutive activity of SLC26A9. Am J Physiol Lung Cell Mol Physiol 2017; 312:L912-L925. [PMID: 28360110 PMCID: PMC5495941 DOI: 10.1152/ajplung.00178.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 11/22/2022] Open
Abstract
Several members of the SLC26A family of anion transporters associate with CFTR, forming complexes in which CFTR and SLC26A functions are reciprocally regulated. These associations are thought to be facilitated by PDZ scaffolding interactions. CFTR has been shown to be positively regulated by NHERF-1, and negatively regulated by CAL in airway epithelia. However, it is unclear which PDZ-domain protein(s) interact with SLC26A9, a SLC26A family member found in airway epithelia. We have previously shown that primary, human bronchial epithelia (HBE) from non-CF donors exhibit constitutive anion secretion attributable to SLC26A9. However, constitutive anion secretion is absent in HBE from CF donors. We examined whether changes in SLC26A9 constitutive activity could be attributed to a loss of CFTR trafficking, and what role PDZ interactions played. HEK293 coexpressing SLC26A9 with the trafficking mutant F508del CFTR exhibited a significant reduction in constitutive current compared with cells coexpressing SLC26A9 and wt CFTR. We found that SLC26A9 exhibits complex glycosylation when coexpressed with F508del CFTR, but its expression at the plasma membrane is decreased. SLC26A9 interacted with both NHERF-1 and CAL, and its interaction with both significantly increased with coexpression of wt CFTR. However, coexpression with F508del CFTR only increased SLC26A9's interaction with CAL. Mutation of SLC26A9's PDZ motif decreased this association with CAL, and restored its constitutive activity. Correcting aberrant F508del CFTR trafficking in CF HBE with corrector VX-809 also restored SLC26A9 activity. We conclude that when SLC26A9 is coexpressed with F508del CFTR, its trafficking defect leads to a PDZ motif-sensitive intracellular retention of SLC26A9.
Collapse
Affiliation(s)
- Carol A Bertrand
- Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;
| | - Shalini Mitra
- Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sanjay K Mishra
- Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiaohui Wang
- Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yu Zhao
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Joseph M Pilewski
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Dean R Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Raymond A Frizzell
- Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Benson EA, Eadon MT, Desta Z, Liu Y, Lin H, Burgess KS, Segar MW, Gaedigk A, Skaar TC. Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes. Front Pharmacol 2016; 7:111. [PMID: 27199754 PMCID: PMC4845040 DOI: 10.3389/fphar.2016.00111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/12/2016] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Membrane drug transporters contribute to the disposition of many drugs. In human liver, drug transport is controlled by two main superfamilies of transporters, the solute carrier transporters (SLC) and the ATP Binding Cassette transporters (ABC). Altered expression of these transporters due to drug-drug interactions can contribute to differences in drug exposure and possibly effect. In this study, we determined the effect of rifampin on gene expression of hundreds of membrane transporters along with all clinically relevant drug transporters. METHODS In this study, primary human hepatocytes (n = 7 donors) were cultured and treated for 24 h with rifampin and vehicle control. RNA was isolated from the hepatocytes, mRNA expression was measured by RNA-seq, and miRNA expression was analyzed by Taqman OpenArray. The effect of rifampin on the expression of selected transporters was also tested in kidney cell lines. The impact of rifampin on the expression of 410 transporter genes from 19 different transporter gene families was compared with vehicle control. RESULTS Expression patterns of 12 clinically relevant drug transporter genes were changed by rifampin (FDR < 0.05). For example, the expressions of ABCC2, ABCB1, and ABCC3 were increased 1.9-, 1.7-, and 1.2-fold, respectively. The effects of rifampin on four uptake drug transporters (SLCO1B3, SLC47A1, SLC29A1, SLC22A9) were negatively correlated with the rifampin effects on specific microRNA expression (SLCO1B3/miR-92a, SLC47A1/miR-95, SLC29A1/miR-30d#, and SLC22A9/miR-20; r < -0.79; p < 0.05). Seven hepatic drug transporter genes (SLC22A1, SLC22A5, SLC15A1, SLC29A1, SLCO4C1, ABCC2, and ABCC4), whose expression was altered by rifampin in hepatocytes, were also present in a renal proximal tubular cell line, but in renal cells rifampin did not alter their gene expression. PXR expression was very low in the kidney cells; this may explain why rifampin induces gene expression in a tissue-specific manner. CONCLUSION Rifampin alters the expression of many of the clinically relevant hepatic drug transporters, which may provide a rational basis for understanding rifampin-induced drug-drug interactions reported in vivo. The relevance of its effect on many other transporters remains to be studied.
Collapse
Affiliation(s)
- Eric A Benson
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine Indianapolis, IN, USA
| | - Michael T Eadon
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine Indianapolis, IN, USA
| | - Zeruesenay Desta
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Hai Lin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Kimberly S Burgess
- Department of Pharmacology and Toxicology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Matthew W Segar
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City and School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | - Todd C Skaar
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine Indianapolis, IN, USA
| |
Collapse
|
9
|
Jia CE, Jiang D, Dai H, Xiao F, Wang C. Pendrin, an anion exchanger on lung epithelial cells, could be a novel target for lipopolysaccharide-induced acute lung injury mice. Am J Transl Res 2016; 8:981-992. [PMID: 27158384 PMCID: PMC4846941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
OBJECTIVE The aim of this study is to evaluate the role of pendrin in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and to explore whether pendrin expression existing on alveolar cells. METHODS ALI C57BL/6 mice model induced by lipopolysaccharide (LPS) was established. The expression of pendrin in lung was analyzed by RT-PCR and western blotting methods, the changes of lung inflammatory parameters and pathology were observed, the cellular distribution of pendrin in the lung was determined using immunofluorescence. Statistical comparisons between groups were made by two-tailed Student's t-test. RESULTS Enhanced expression of the slc26a4 gene and production of pendrin in lungs of LPS-induced ALI mice were confirmed. In comparison with vehicle-control mice, methazolamide treatment mitigated lung inflammatory parameters and pathology. IL-6 and MCP-1 in lung tissues and BALF in methazolamide-treated mice were statistically decreased. Methazolamide treatment had significant effect on the total protein concentration in the BALF and the ratio of lung wet/dry weight. The percentage of macrophages in the BALF was increased. There was a low expression of pendrin in ATII. CONCLUSIONS Pendrin may be involved in pathological process of LPS-induced ALI. Inhibition of the pendrin function could be used to treat ALI. Airway epithelial cell may be a valuable therapeutic target for discovering and developing new drugs and/or new therapeutic strategies for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chun-E Jia
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Graduate School, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing 100730, P. R. China
| | - Dingyuan Jiang
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical UniversityBeijing 100020, P. R. China
| | - Huaping Dai
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical UniversityBeijing 100020, P. R. China
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship HospitalBeijing 100029, P. R. China
| | - Fei Xiao
- National Clinical Research Center of Respiratory DiseasesBeijing 100730, P. R. China
- Department of Cell Biology, Institute of Geriatrics, Beijing HospitalBeijing 100730, P. R. China
| | - Chen Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Graduate School, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing 100730, P. R. China
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical UniversityBeijing 100020, P. R. China
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship HospitalBeijing 100029, P. R. China
- National Clinical Research Center of Respiratory DiseasesBeijing 100730, P. R. China
| |
Collapse
|
10
|
Turner MJ, Saint-Criq V, Patel W, Ibrahim SH, Verdon B, Ward C, Garnett JP, Tarran R, Cann MJ, Gray MA. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator-dependent anion and fluid secretion in airway epithelia. J Physiol 2015; 594:1643-61. [PMID: 26574187 PMCID: PMC4799982 DOI: 10.1113/jp271309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
Abstract
Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist-stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP-regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin-stimulated elevations in intracellular cAMP as well as both adenosine- and forskolin-stimulated increases in CFTR-dependent transepithelial short-circuit current, in polarised cultures of Calu-3 human airway cells. This CO2 -induced reduction in anion secretion was not due to a decrease in HCO3 (-) transport given that neither a change in CFTR-dependent HCO3 (-) efflux nor Na(+) /HCO3 (-) cotransporter-dependent HCO3 (-) influx were CO2 -sensitive. Hypercapnia also reduced the volume of forskolin-stimulated fluid secretion over 24 h, yet had no effect on the HCO3 (-) content of the secreted fluid. Our data reveal that hypercapnia reduces CFTR-dependent, electrogenic Cl(-) and fluid secretion, but not CFTR-dependent HCO3 (-) secretion, which highlights a differential sensitivity of Cl(-) and HCO3 (-) transporters to raised CO2 in Calu-3 cells. Hypercapnia also reduced forskolin-stimulated CFTR-dependent anion secretion in primary human airway epithelia. Based on current models of airways biology, a reduction in fluid secretion, associated with hypercapnia, would be predicted to have important consequences for airways hydration and the innate defence mechanisms of the lungs.
Collapse
Affiliation(s)
- Mark J Turner
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,Department of Physiology, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
| | - Vinciane Saint-Criq
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Waseema Patel
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Salam H Ibrahim
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Bernard Verdon
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Christopher Ward
- Institute for Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - James P Garnett
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Martin J Cann
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Michael A Gray
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
11
|
Epithelial anion transporter pendrin contributes to inflammatory lung pathology in mouse models of Bordetella pertussis infection. Infect Immun 2014; 82:4212-21. [PMID: 25069981 DOI: 10.1128/iai.02222-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pertussis disease, characterized by severe and prolonged coughing episodes, can progress to a critical stage with pulmonary inflammation and death in young infants. However, there are currently no effective treatments for pertussis. We previously studied the role of pertussis toxin (PT), an important Bordetella pertussis virulence factor, in lung transcriptional responses to B. pertussis infection in mouse models. One of the genes most highly upregulated in a PT-dependent manner encodes an epithelial transporter of bicarbonate, chloride, and thiocyanate, named pendrin, that contributes to asthma pathology. In this study, we found that pendrin expression is upregulated at both gene and protein levels in the lungs of B. pertussis-infected mice. Pendrin upregulation is associated with PT production by the bacteria and with interleukin-17A (IL-17A) production by the host. B. pertussis-infected pendrin knockout (KO) mice had higher lung bacterial loads than infected pendrin-expressing mice but had significantly reduced levels of lung inflammatory pathology. However, reduced pathology did not correlate with reduced inflammatory cytokine expression. Infected pendrin KO mice had higher levels of inflammatory cytokines and chemokines than infected pendrin-expressing mice, suggesting that these inflammatory mediators are less active in the airways in the absence of pendrin. In addition, treatment of B. pertussis-infected mice with the carbonic anhydrase inhibitor acetazolamide reduced lung inflammatory pathology without affecting pendrin synthesis or bacterial loads. Together these data suggest that PT contributes to pertussis pathology through the upregulation of pendrin, which promotes conditions favoring inflammatory pathology. Therefore, pendrin may represent a novel therapeutic target for treatment of pertussis disease.
Collapse
|
12
|
Kim D, Kim J, Burghardt B, Best L, Steward MC. Role of anion exchangers in Cl− and HCO3− secretion by the human airway epithelial cell line Calu-3. Am J Physiol Cell Physiol 2014; 307:C208-19. [DOI: 10.1152/ajpcell.00083.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite the importance of airway surface liquid pH in the lung's defenses against infection, the mechanism of airway HCO3− secretion remains unclear. Our aim was to assess the contribution of apical and basolateral Cl−/HCO3− exchangers to Cl− and HCO3− transport in the Calu-3 cell line, derived from human airway submucosal glands. Changes in intracellular pH (pHi) were measured following substitution of Cl− with gluconate. Apical Cl− substitution led to an alkalinization in forskolin-stimulated cells, indicative of Cl−/HCO3− exchange. This was unaffected by the anion exchange inhibitor DIDS but inhibited by the CFTR blocker CFTRinh-172, suggesting that the HCO3− influx might occur via CFTR, rather than a solute carrier family 26 (SLC26) exchanger, as recently proposed. The anion selectivity of the recovery process more closely resembled that of CFTR than an SLC26 exchanger, and quantitative RT-PCR showed only low levels of SLC26 exchanger transcripts relative to CFTR and anion exchanger 2 (AE2). For pHi to rise to observed values (∼7.8) through HCO3− entry via CFTR, the apical membrane potential must reverse to at least +20 mV following Cl− substitution; this was confirmed by perforated-patch recordings. Substitution of basolateral Cl− evoked a DIDS-sensitive alkalinization, attributed to Cl−/HCO3− exchange via AE2. This appeared to be abolished in forskolin-stimulated cells but was unmasked by blocking apical efflux of HCO3− via CFTR. We conclude that Calu-3 cells secrete HCO3− predominantly via CFTR, and, contrary to previous reports, the basolateral anion exchanger AE2 remains active during stimulation, providing an important pathway for basolateral Cl− uptake.
Collapse
Affiliation(s)
- Dusik Kim
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Juyeon Kim
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Beáta Burghardt
- Department of Oral Biology, Semmelweis University, Budapest, Hungary; and
| | - Len Best
- Faculty of Medicine and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Martin C. Steward
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Hong JH, Park S, Shcheynikov N, Muallem S. Mechanism and synergism in epithelial fluid and electrolyte secretion. Pflugers Arch 2013; 466:1487-99. [PMID: 24240699 DOI: 10.1007/s00424-013-1390-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 01/04/2023]
Abstract
A central function of epithelia is the control of the volume and electrolyte composition of bodily fluids through vectorial transport of electrolytes and the obligatory H2O. In exocrine glands, fluid and electrolyte secretion is carried out by both acinar and duct cells, with the portion of fluid secreted by each cell type varying among glands. All acinar cells secrete isotonic, plasma-like fluid, while the duct determines the final electrolyte composition of the fluid by absorbing most of the Cl(-) and secreting HCO3 (-). The key transporters mediating acinar fluid and electrolyte secretion are the basolateral Na(+)/K(+) /2Cl(-) cotransporter, the luminal Ca(2+)-activated Cl(-) channel ANO1 and basolateral and luminal Ca(2+)-activated K(+) channels. Ductal fluid and HCO3 (-) secretion are mediated by the basolateral membrane Na(+)-HCO3 (-) cotransporter NBCe1-B and the luminal membrane Cl(-)/HCO3 (-) exchanger slc26a6 and the Cl(-) channel CFTR. The function of the transporters is regulated by multiple inputs, which in the duct include major regulation by the WNK/SPAK pathway that inhibit secretion and the IRBIT/PP1 pathway that antagonize the effects of the WNK/SPAK pathway to both stimulate and coordinate the secretion. The function of these regulatory pathways in secretory glands acinar cells is yet to be examined. An important concept in biology is synergism among signaling pathways to generate the final physiological response that ensures regulation with high fidelity and guards against cell toxicity. While synergism is observed in all epithelial functions, the molecular mechanism mediating the synergism is not known. Recent work reveals a central role for IRBIT as a third messenger that integrates and synergizes the function of the Ca(2+) and cAMP signaling pathways in activation of epithelial fluid and electrolyte secretion. These concepts are discussed in this review using secretion by the pancreatic and salivary gland ducts as model systems.
Collapse
Affiliation(s)
- Jeong Hee Hong
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|