1
|
Francesconi W, Olivera-Pasilio V, Berton F, Olson SL, Chudoba R, Monroy LM, Krabichler Q, Grinevich V, Dabrowska J. Like sisters but not twins - vasopressin and oxytocin excite BNST neurons via cell type-specific expression of oxytocin receptor to reduce anxious arousal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611656. [PMID: 39282380 PMCID: PMC11398521 DOI: 10.1101/2024.09.06.611656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Interoceptive signals dynamically interact with the environment to shape appropriate defensive behaviors. Hypothalamic hormones arginine-vasopressin (AVP) and oxytocin (OT) regulate physiological states, including water and electrolyte balance, circadian rhythmicity, and defensive behaviors. Both AVP and OT neurons project to dorsolateral bed nucleus of stria terminalis (BNSTDL), which expresses oxytocin receptors (OTR) and vasopressin receptors and mediates fear responses. However, understanding the integrated role of neurohypophysial hormones is complicated by the cross-reactivity of AVP and OT and their mutual receptor promiscuity. Here, we provide evidence that the effects of neurohypophysial hormones on BNST excitability are driven by input specificity and cell type-specific receptor selectivity. We show that OTR-expressing BNSTDL neurons, excited by hypothalamic OT and AVP inputs via OTR, play a major role in regulating BNSTDL excitability, overcoming threat avoidance, and reducing threat-elicited anxious arousal. Therefore, OTR-BNSTDL neurons are perfectly suited to drive the dynamic interactions balancing external threat risk and physiological needs.
Collapse
Affiliation(s)
- Walter Francesconi
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Valentina Olivera-Pasilio
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611, USA
| | - Fulvia Berton
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Susan L. Olson
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Rachel Chudoba
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Lorena M. Monroy
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Neuroscience Program, Lake Forest College, Lake Forest, IL, 60045, USA
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Joanna Dabrowska
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| |
Collapse
|
2
|
Wang P, Wang SC, Yang H, Lv C, Jia S, Liu X, Wang X, Meng D, Qin D, Zhu H, Wang YF. Therapeutic Potential of Oxytocin in Atherosclerotic Cardiovascular Disease: Mechanisms and Signaling Pathways. Front Neurosci 2019; 13:454. [PMID: 31178679 PMCID: PMC6537480 DOI: 10.3389/fnins.2019.00454] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Coronary artery disease (CAD) is a major cardiovascular disease responsible for high morbidity and mortality worldwide. The major pathophysiological basis of CAD is atherosclerosis in association with varieties of immunometabolic disorders that can suppress oxytocin (OT) receptor (OTR) signaling in the cardiovascular system (CVS). By contrast, OT not only maintains cardiovascular integrity but also has the potential to suppress and even reverse atherosclerotic alterations and CAD. These protective effects of OT are associated with its protection of the heart and blood vessels from immunometabolic injuries and the resultant inflammation and apoptosis through both peripheral and central approaches. As a result, OT can decelerate the progression of atherosclerosis and facilitate the recovery of CVS from these injuries. At the cellular level, the protective effect of OT on CVS involves a broad array of OTR signaling events. These signals mainly belong to the reperfusion injury salvage kinase pathway that is composed of phosphatidylinositol 3-kinase-Akt-endothelial nitric oxide synthase cascades and extracellular signal-regulated protein kinase 1/2. Additionally, AMP-activated protein kinase, Ca2+/calmodulin-dependent protein kinase signaling and many others are also implicated in OTR signaling in the CVS protection. These signaling events interact coordinately at many levels to suppress the production of inflammatory cytokines and the activation of apoptotic pathways. A particular target of these signaling events is endoplasmic reticulum (ER) stress and mitochondrial oxidative stress that interact through mitochondria-associated ER membrane. In contrast to these protective effects and machineries, rare but serious cardiovascular disturbances were also reported in labor induction and animal studies including hypotension, reflexive tachycardia, coronary spasm or thrombosis and allergy. Here, we review our current understanding of the protective effect of OT against varieties of atherosclerotic etiologies as well as the approaches and underlying mechanisms of these effects. Moreover, potential cardiovascular disturbances following OT application are also discussed to avoid unwanted effects in clinical trials of OT usages.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C Wang
- Department of Medicine, Albany Medical Center, Albany, NY, United States
| | - Haipeng Yang
- Department of Pediatrics, The Forth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chunmei Lv
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dexin Meng
- Department of Physiology, Jiamusi University, Jiamusi, China
| | - Danian Qin
- Department of Physiology, Shantou University of Medical College, Shantou, China
| | - Hui Zhu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Meyer M, Berger I, Winter J, Jurek B. Oxytocin alters the morphology of hypothalamic neurons via the transcription factor myocyte enhancer factor 2A (MEF-2A). Mol Cell Endocrinol 2018; 477:156-162. [PMID: 29928931 DOI: 10.1016/j.mce.2018.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/18/2018] [Accepted: 06/16/2018] [Indexed: 01/22/2023]
Abstract
Oxytocin (OT) has gained attention not only as anxiolytic drug and as potential treatment option for autistic children; it also acts as a growth and differentiation factor in neuronal cells. While behavioral effects of OT have been studied in detail, knowledge about the cellular effects of OT is relatively sparse. In this study, we present evidence for three hypotheses: 1) OT leads to neurite retraction in hypothalamic neurons via the OT receptor (OTR) 2) The transcription factor MEF-2A is a central regulator of OT-induced neurite retraction, and 3) The MAPK pathway is critical for OT-induced MEF-2A activation. Incubation of rat hypothalamic H32 cells with 10 nM to 1 μM OT, vasopressin, and the specific OTR agonist TGOT, over the course of 12 h resulted in a time-dependent, significant retraction of neurites. In addition, the size of the nuclear compartment increased, whereas the overall cell size remained unchanged. OT treatment for 10 h increased the cellular viability significantly, and this effect could be blocked by a specific OTR antagonist, providing evidence for a specific and pro-active effect of OT on neurite retraction, and not as an unspecific side effect of apoptosis. The molecular mechanism that controls OT-induced neurite retraction includes a reduced phosphorylation of the transcription factor MEF-2A at Serine 408 (S408). This dephosphorylation is under the control of the OTR-coupled MAPK pathway, as blocking MEK1/2 by U0126 inhibited MEF-2A activation and subsequent neurite retraction. The siRNA-mediated knockdown of MEF-2A prevented the OT-induced neurite retraction, providing direct evidence for a role of MEF-2A in morphological alterations induced by OT treatment. In summary, the present study reveals a previously unknown OTR-coupled MAPK-MEF-2A pathway, which is responsible for OT-induced neurite retraction of hypothalamic neurons.
Collapse
Affiliation(s)
- Magdalena Meyer
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Ilona Berger
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany; Technische Universität Dresden, University Hospital, Department of Internal Medicine III, Dresden, Germany
| | - Julia Winter
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Benjamin Jurek
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Corbani M, Marir R, Trueba M, Chafai M, Vincent A, Borie AM, Desarménien MG, Ueta Y, Tomboly C, Olma A, Manning M, Guillon G. Neuroanatomical distribution and function of the vasopressin V 1B receptor in the rat brain deciphered using specific fluorescent ligands. Gen Comp Endocrinol 2018; 258:15-32. [PMID: 29155265 DOI: 10.1016/j.ygcen.2017.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/14/2017] [Accepted: 10/21/2017] [Indexed: 11/18/2022]
Abstract
It is now accepted that vasopressin, through V1A/V1B receptors, centrally regulates cognitive functions such as memory, affiliation, stress, fear and depression. However, the respective roles of these receptor isoforms and their contribution to stress-related pathologies remain uncertain. The development of new therapeutic treatments requires a precise knowledge of the distribution of these receptors within the brain, which has been so far hampered by the lack of selective V1B markers. In the present study, we have determined the pharmacological properties of three new potent rat V1B fluorescent ligands and demonstrated that they constitute valuable tools for simultaneous visualization and activation of native V1B receptors in living rat brain tissue. Thus, d[Leu4,Lys-Alexa 647)8]VP (analogue 3), the compound with the best affinity-selectivity/fluorescence ratio for the V1B receptor emerged as the most promising. The rat brain regions most concerned by stress such as hippocampus, olfactory bulbs, cortex and amygdala display the highest V1B fluorescent labelling with analogue 3. In the hippocampus CA2, V1B receptors are located on glutamatergic, not GABAergic neurones, and are absent from astrocytes. Using AVP-EGFP rats, we demonstrate the presence of V1B autoreceptors on AVP-secreting neurones not only in the hypothalamus, but also sparsely in the hippocampus. Finally, using both electrophysiology and visualization of ERK phosphorylation, we show analogue 3-induced activation of the V1B receptor in situ. This will help to analyse expression and functionality of V1B receptors in the brain and contribute to further explore the AVPergic circuitry in normal and pathological conditions.
Collapse
Affiliation(s)
- Maithé Corbani
- Institute of Functional Genomics, CNRS UMR5203, INSERM U661, University of Montpellier, 141 rue de la Cardonille, 34094 cedex 05, France.
| | - Rafik Marir
- Institute of Functional Genomics, CNRS UMR5203, INSERM U661, University of Montpellier, 141 rue de la Cardonille, 34094 cedex 05, France
| | - Miguel Trueba
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Basque Country University, Leioa, Spain
| | - Magda Chafai
- Institute of Functional Genomics, CNRS UMR5203, INSERM U661, University of Montpellier, 141 rue de la Cardonille, 34094 cedex 05, France
| | - Anne Vincent
- Institute of Functional Genomics, CNRS UMR5203, INSERM U661, University of Montpellier, 141 rue de la Cardonille, 34094 cedex 05, France
| | - Amélie M Borie
- Institute of Functional Genomics, CNRS UMR5203, INSERM U661, University of Montpellier, 141 rue de la Cardonille, 34094 cedex 05, France
| | - Michel G Desarménien
- Institute of Functional Genomics, CNRS UMR5203, INSERM U661, University of Montpellier, 141 rue de la Cardonille, 34094 cedex 05, France
| | - Yoichi Ueta
- Department of Physiology, School of Medecine, University of Occupational and Environmental Health, 807-8555, Japan
| | - Csaba Tomboly
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Aleksandra Olma
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego Str.116, 90-924 Lodz, Poland; Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Toledo, OH, USA
| | - Maurice Manning
- Department of Biochemistry and Cancer Biology, University of Toledo, College of Medicine, Toledo, OH, USA
| | - Gilles Guillon
- Institute of Functional Genomics, CNRS UMR5203, INSERM U661, University of Montpellier, 141 rue de la Cardonille, 34094 cedex 05, France
| |
Collapse
|
5
|
Taveau C, Chollet C, Bichet DG, Velho G, Guillon G, Corbani M, Roussel R, Bankir L, Melander O, Bouby N. Acute and chronic hyperglycemic effects of vasopressin in normal rats: involvement of V 1A receptors. Am J Physiol Endocrinol Metab 2017; 312:E127-E135. [PMID: 27998960 DOI: 10.1152/ajpendo.00269.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/25/2016] [Accepted: 12/12/2016] [Indexed: 11/22/2022]
Abstract
Recent epidemiological studies have revealed novel relationships between low water intake or high vasopressin (AVP) and the risk of hyperglycemia and diabetes. AVP V1A and V1B receptors (R) are expressed in the liver and pancreatic islets, respectively. The present study was designed to determine the impact of different levels of circulating AVP on glucose homeostasis in normal Sprague-Dawley rats, as well as the respective roles of V1AR and V1BR. We showed that acute injection of AVP induces a dose-dependent increase in glycemia. Pretreatment with a selective V1AR antagonist, but not a V1BR antagonist, dose-dependently prevented the rise in glycemia. V1BR antagonism did not modify the hyperinsulinemic response, resulting from AVP-induced hyperglycemia, but enhanced the fall in glucagonemia. Acute administration of selective V1AR or V1BR agonists confirmed the involvement of V1AR in the hyperglycemic effect of AVP. In chronic experiments, AVP levels were altered in both directions. Sustained AVP infusion through implantable minipumps induced a time-dependent increase in fasting glycemia, whereas lowering endogenous AVP by increasing water intake had no effect. After 4 wk of AVP infusion, the rise in glycemia amounted to 1.1 mmol/l (P < 0.01) without significant change in insulinemia. This effect was attenuated by cotreatment with a V1AR antagonist. Similar results were observed in lean Zucker rats. These findings demonstrate for the first time a causal link between chronic high AVP and hyperglycemia through V1AR activation and, thus, provide a pathophysiological explanation for the relationship observed in human cohorts between the AVP-hydration axis and the risk of diabetes.
Collapse
Affiliation(s)
- Christopher Taveau
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Université Paris Descartes, Paris, France
| | - Catherine Chollet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Université Paris Descartes, Paris, France
| | - Daniel G Bichet
- Department of Physiology and Medicine, Sacré-Coeur Hospital, Montreal, Canada
| | - Gilberto Velho
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers, Paris, France
| | - Gilles Guillon
- INSERM U1191, Institut de Génomique Fonctionnelle, Montpellier, France
- Centre Nationnal de la Recherche Scientifique, UMR 5203, Montpellier France
- Université de Montpellier, Montpellier, France
| | - Maithe Corbani
- INSERM U1191, Institut de Génomique Fonctionnelle, Montpellier, France
- Centre Nationnal de la Recherche Scientifique, UMR 5203, Montpellier France
- Université de Montpellier, Montpellier, France
| | - Ronan Roussel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers, Paris, France
- Université Paris Diderot, Paris, France
- Department of Diabetology-Endocrinology-Nutrition, Departement Hospitalo Universitaire Fibrosis, Inflammation and Remodeling, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lise Bankir
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Université Paris Descartes, Paris, France
| | - Olle Melander
- Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden; and
- Department of Internal Medicine, Malmö, Skåne University Hospital, Malmö, Sweden
| | - Nadine Bouby
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers, Paris, France;
- Université Pierre et Marie Curie, Paris, France
- Université Paris Descartes, Paris, France
| |
Collapse
|
6
|
Colson PH, Virsolvy A, Gaudard P, Charrabi A, Corbani M, Manière MJ, Richard S, Guillon G. Terlipressin, a vasoactive prodrug recommended in hepatorenal syndrome, is an agonist of human V1, V2 and V1B receptors: Implications for its safety profile. Pharmacol Res 2016; 113:257-264. [PMID: 27586252 DOI: 10.1016/j.phrs.2016.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/12/2016] [Accepted: 08/27/2016] [Indexed: 12/13/2022]
Abstract
Terlipressin is recommended as a gold standard to treat hepatorenal syndrome complicating liver cirrhosis. It is presented as a specific V1A receptor agonist, beyond its enzymatic conversion into lysine8-Vasopressin (LVP), able to counteract the splanchnic vasodilation. However, the complete pharmacological characterization of this drug with respect to the different vasopressin receptor subtypes is missing. We studied terlipressin intrinsic properties, focusing not only on V1A, but also on other vasopressin receptor subtypes. The experimental studies were conducted on rat and human cellular models. Binding experiments were performed on rat liver membranes and CHO cells transfected with the different human vasopressin receptor subtypes. Agonist status was assessed from inositol phosphate or cyclic AMP assays, and measurement of intracellular calcium variations, performed on cultured vascular smooth muscle cells from rat aorta and human uterine artery and CHO cells. Terlipressin binds to the rat and human V1A receptors with an affinity in the micromolar range, a value 120 fold lower than that of LVP. It induces a rapid and transient intracellular calcium increase, a robust stimulation of phospholipase C but with reduced maximal efficiencies as compared to LVP, indicating a partial V1A agonist property. In addition, terlipressin is also a full agonist of human V2 and V1B receptors, with also a micromomolar affinity. CONCLUSIONS Terlipressin is a non-selective vasopressin analogue, exhibiting intrinsic agonist properties. Its full V2 receptor agonism may result in renal effects potentially aggravating water retention and hyponatremia of cirrhosis.
Collapse
Affiliation(s)
- Pascal H Colson
- Institut de Génomique Fonctionnelle, Département d'Endocrinologie, CNRS UMR 5203, INSERM U1191, Université de Montpellier, F-34094 Montpellier, France; Département d'Anesthésie Réanimation Arnaud de Villeneuve, Centre Hospitalier Régional et Universitaire, F-34295 Montpellier, France.
| | - Anne Virsolvy
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, F-34295 Montpellier, France.
| | - Philippe Gaudard
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, F-34295 Montpellier, France; Département d'Anesthésie Réanimation Arnaud de Villeneuve, Centre Hospitalier Régional et Universitaire, F-34295 Montpellier, France.
| | - Azzouz Charrabi
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, F-34295 Montpellier, France.
| | - Maithé Corbani
- Institut de Génomique Fonctionnelle, Département d'Endocrinologie, CNRS UMR 5203, INSERM U1191, Université de Montpellier, F-34094 Montpellier, France.
| | - Maxime J Manière
- Institut de Génomique Fonctionnelle, Département d'Endocrinologie, CNRS UMR 5203, INSERM U1191, Université de Montpellier, F-34094 Montpellier, France.
| | - Sylvain Richard
- PhyMedExp, INSERM U1046, CNRS UMR 9214, Université de Montpellier, F-34295 Montpellier, France.
| | - Gilles Guillon
- Institut de Génomique Fonctionnelle, Département d'Endocrinologie, CNRS UMR 5203, INSERM U1191, Université de Montpellier, F-34094 Montpellier, France.
| |
Collapse
|