1
|
Fraser SD, Klaassen RV, Villmann C, Smit AB, Harvey RJ. Milestone Review: Unlocking the Proteomics of Glycine Receptor Complexes. J Neurochem 2025; 169:e70061. [PMID: 40285371 PMCID: PMC12032442 DOI: 10.1111/jnc.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025]
Abstract
Glycine receptors (GlyRs) are typically known for mediating inhibitory synaptic transmission within the spinal cord and brainstem, but they also have key roles in embryonic brain development, learning/memory, inflammatory pain sensitization, and rhythmic breathing. GlyR dysfunction has been implicated in multiple neurological disease states, including startle disease (GlyR α1β) and neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD), intellectual disability (ID), developmental delay (DD) and epilepsy (GlyR α2). However, GlyRs do not operate in isolation but depend upon stable and transient protein-protein interactions (PPIs) that influence synaptic localization, homeostasis, signaling pathways, and receptor function. Despite the affinity purification of GlyRs using the antagonist strychnine over four decades ago, we still have much to learn about native GlyR stoichiometry and accessory proteins. In contrast to other neurotransmitter receptors, < 20 potential GlyR interactors have been identified to date. These include some well-known proteins that are vital to inhibitory synapse function, such as the postsynaptic scaffolding protein gephyrin and the RhoGEF collybistin. However, the majority of known interactors either bind to the GlyR α1 and β subunits, or the binding partner in the GlyR complex is unknown. Several potential GlyR interactors are not found at inhibitory synapses and/or have no clear functional role. Moreover, other GlyR interactors are secondary interactors that bind indirectly, for example, via gephyrin. In this review, we provide a critical evaluation of known GlyR interacting proteins and methodological limitations to date. We also provide a road map for the use of innovative and emerging interaction proteomic techniques that will unlock the GlyR interactome. With the emergence of disease-associated missense mutations in the α1, α2 and β subunit intracellular domains in startle disease and NDDs, understanding the identity and roles of GlyR accessory proteins is vital in understanding GlyR function and dysfunction in health and disease.
Collapse
Affiliation(s)
- Sean D. Fraser
- School of HealthUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- National PTSD Research CentreThompson Institute, University of the Sunshine CoastBirtinyaQueenslandAustralia
| | - Remco V. Klaassen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive ResearchAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Carmen Villmann
- Institute of Clinical NeurobiologyUniversity Hospital, Julius‐Maximilians‐University of WürzburgWürzburgGermany
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive ResearchAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Robert J. Harvey
- School of HealthUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- National PTSD Research CentreThompson Institute, University of the Sunshine CoastBirtinyaQueenslandAustralia
| |
Collapse
|
2
|
Ceder MM, Magnusson KA, Weman HM, Henriksson K, Andréasson L, Lindström T, Wiggins O, Lagerström MC. The mRNA expression profile of glycine receptor subunits alpha 1, alpha 2, alpha 4 and beta in female and male mice. Mol Cell Neurosci 2024; 131:103976. [PMID: 39580061 DOI: 10.1016/j.mcn.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 11/25/2024] Open
Abstract
Glycine receptors are ligand-gated chloride-selective channels that control excitability in the central nervous system (CNS). Herein, we have investigated the mRNA expression of the glycine receptor alpha 1 (Glra1), alpha 2 (Glra2), alpha 4 (Glra4) and the beta (Glrb) subunits, in adult female and male mice. Single-cell RNA sequencing data re-analysis of the Zeisel et al. (2018) dataset indicated widespread expression of Glra1, Glra2 and Glrb in the CNS, while only a few cells in the cortex, striatum, thalamus, midbrain and the spinal cord expressed Glra4. Highest occurrence of Glra1, Glra2 and Glrb were found in the brainstem. Moreover, Glra1 and Glrb were revealed to have the highest occurrences in the spinal cord of the investigated subunits. However, both Glra2 and Glrb had a more widespread expression in the CNS compared with Glra1 and Glra4. Bulk quantitative real-time-PCR (qRT-PCR) analysis revealed Glra1 expression in the hypothalamus, thalamus, brainstem and the spinal cord, and widespread, but low, Glra2 and Glrb expression in the CNS. Moreover, Glrb could be detected in a few visceral organs. Additionally, females and males were found to express Glra1, Glra2 and Glrb differently in certain brain areas such as the brainstem. Expression levels of Glra4 were too low to be detected using qRT-PCR. Lastly, RNAscope spatially validated the expression of Glra1, Glra2 and Glrb in the areas indicated by the single-cell and bulk analyses, and further revealed that Glra4 can be detected in the cortex, amygdala, hypothalamus, thalamus, brainstem, especially the cochlear nucleus, and in the spinal cord.
Collapse
Affiliation(s)
- Mikaela M Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kajsa A Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hannah M Weman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katharina Henriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Linn Andréasson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Teresa Lindström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oskar Wiggins
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Malin C Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Bossi S, Pizzamiglio L, Paoletti P. Excitatory GluN1/GluN3A glycine receptors (eGlyRs) in brain signaling. Trends Neurosci 2023:S0166-2236(23)00127-3. [PMID: 37248111 DOI: 10.1016/j.tins.2023.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
GluN3A is a glycine-binding subunit belonging to the NMDA receptor (NMDAR) family that can assemble with GluN1 subunits to form unconventional NMDARs insensitive to glutamate and activated by glycine only. The existence of such excitatory glycine receptors (eGlyRs) in the central nervous system (CNS) has long remained elusive. Recently, eGlyRs have been identified in specific brain regions, where they represent a novel neuronal signaling modality by which extracellular glycine tunes neuronal excitability, circuit function, and behavior. In this review, we summarize the emerging knowledge regarding these underappreciated receptors. The existence of eGlyRs reshapes current understanding of NMDAR diversity and of glycinergic signaling, previously thought to be primarily inhibitory. Given that GluN3A expression is concentrated in brain regions regulating emotional responses, eGlyRs are potential new targets of therapeutic interest in neuropsychiatry.
Collapse
Affiliation(s)
- Simon Bossi
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | - Lara Pizzamiglio
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| |
Collapse
|
4
|
Kumar A, Kindig K, Rao S, Zaki AM, Basak S, Sansom MSP, Biggin PC, Chakrapani S. Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs. Nat Commun 2022; 13:4862. [PMID: 35982060 PMCID: PMC9388682 DOI: 10.1038/s41467-022-32594-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Nociception and motor coordination are critically governed by glycine receptor (GlyR) function at inhibitory synapses. Consequentially, GlyRs are attractive targets in the management of chronic pain and in the treatment of several neurological disorders. High-resolution mechanistic details of GlyR function and its modulation are just emerging. While it has been known that cannabinoids such as Δ9-tetrahydrocannabinol (THC), the principal psychoactive constituent in marijuana, potentiate GlyR in the therapeutically relevant concentration range, the molecular mechanism underlying this effect is still not understood. Here, we present Cryo-EM structures of full-length GlyR reconstituted into lipid nanodisc in complex with THC under varying concentrations of glycine. The GlyR-THC complexes are captured in multiple conformational states that reveal the basis for THC-mediated potentiation, manifested as different extents of opening at the level of the channel pore. Taken together, these structural findings, combined with molecular dynamics simulations and functional analysis, provide insights into the potential THC binding site and the allosteric coupling to the channel pore.
Collapse
Affiliation(s)
- Arvind Kumar
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kayla Kindig
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Sandip Basak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Hereditary Hyperekplexia: A New Family and a Systematic Review of GLRA1 Gene-Related Phenotypes. Pediatr Neurol 2022; 132:45-49. [PMID: 35636282 DOI: 10.1016/j.pediatrneurol.2022.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/20/2022]
Abstract
Hereditary hyperekplexia (HPX) is a genetic neurodevelopmental disorder recently defined by the triad of (1) neonatal hypertonia, (2) excessive startle reflexes, and (3) generalized stiffness following the startle. Defects in GLRA1 are the most common cause of HPX, inherited both in an autosomal dominant and autosomal recessive manner. GLRA1 mutations can also cause milder phenotypes in the startle syndromes spectrum, but the prevalence is uncertain and no clear genotype-phenotype correlation has emerged yet. Moreover, the prevalence of neurodevelopmental outcomes has not been clearly defined. Here we report a new family of patients with a typical HPX phenotype, linked to a novel GLRA1 mutation, inherited with a recessive pattern. We then perform a systematic review of the literature of GLRA1-related HPX, describing the main epidemiological features of 210 patients. We found that GLRA1-related phenotypes do not necessarily fulfill the current criteria for HPX, including also milder and later-onset phenotypes. Among clinical features of the disease, neurodevelopmental issues were reported in a third of the sample; interestingly, we found that these problems, particularly when severe, were more common in homozygous than in heterozygous patients. Additional clinical and preclinical studies are needed to define predictors of adverse neurodevelopmental outcomes and underlying mechanisms.
Collapse
|
6
|
San Martín VP, Sazo A, Utreras E, Moraga-Cid G, Yévenes GE. Glycine Receptor Subtypes and Their Roles in Nociception and Chronic Pain. Front Mol Neurosci 2022; 15:848642. [PMID: 35401105 PMCID: PMC8984470 DOI: 10.3389/fnmol.2022.848642] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 01/23/2023] Open
Abstract
Disruption of the inhibitory control provided by the glycinergic system is one of the major mechanisms underlying chronic pain. In line with this concept, recent studies have provided robust proof that pharmacological intervention of glycine receptors (GlyRs) restores the inhibitory function and exerts anti-nociceptive effects on preclinical models of chronic pain. A targeted regulation of the glycinergic system requires the identification of the GlyR subtypes involved in chronic pain states. Nevertheless, the roles of individual GlyR subunits in nociception and in chronic pain are yet not well defined. This review aims to provide a systematic outline on the contribution of GlyR subtypes in chronic pain mechanisms, with a particular focus on molecular pathways of spinal glycinergic dis-inhibition mediated by post-translational modifications at the receptor level. The current experimental evidence has shown that phosphorylation of synaptic α1β and α3β GlyRs are involved in processes of spinal glycinergic dis-inhibition triggered by chronic inflammatory pain. On the other hand, the participation of α2-containing GlyRs and of β subunits in pain signaling have been less studied and remain undefined. Although many questions in the field are still unresolved, future progress in GlyR research may soon open new exciting avenues into understanding and controlling chronic pain.
Collapse
Affiliation(s)
- Victoria P. San Martín
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Anggelo Sazo
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Elías Utreras
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Gonzalo E. Yévenes
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
- *Correspondence: Gonzalo E. Yévenes,
| |
Collapse
|
7
|
Maynard S, Rostaing P, Schaefer N, Gemin O, Candat A, Dumoulin A, Villmann C, Triller A, Specht CG. Identification of a stereotypic molecular arrangement of endogenous glycine receptors at spinal cord synapses. eLife 2021; 10:74441. [PMID: 34878402 PMCID: PMC8752092 DOI: 10.7554/elife.74441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
Precise quantitative information about the molecular architecture of synapses is essential to understanding the functional specificity and downstream signaling processes at specific populations of synapses. Glycine receptors (GlyRs) are the primary fast inhibitory neurotransmitter receptors in the spinal cord and brainstem. These inhibitory glycinergic networks crucially regulate motor and sensory processes. Thus far, the nanoscale organization of GlyRs underlying the different network specificities has not been defined. Here, we have quantitatively characterized the molecular arrangement and ultra-structure of glycinergic synapses in spinal cord tissue using quantitative super-resolution correlative light and electron microscopy. We show that endogenous GlyRs exhibit equal receptor-scaffold occupancy and constant packing densities of about 2000 GlyRs µm-2 at synapses across the spinal cord and throughout adulthood, even though ventral horn synapses have twice the total copy numbers, larger postsynaptic domains, and more convoluted morphologies than dorsal horn synapses. We demonstrate that this stereotypic molecular arrangement is maintained at glycinergic synapses in the oscillator mouse model of the neuromotor disease hyperekplexia despite a decrease in synapse size, indicating that the molecular organization of GlyRs is preserved in this hypomorph. We thus conclude that the morphology and size of inhibitory postsynaptic specializations rather than differences in GlyR packing determine the postsynaptic strength of glycinergic neurotransmission in motor and sensory spinal cord networks.
Collapse
Affiliation(s)
- Stephanie Maynard
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Philippe Rostaing
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Olivier Gemin
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Adrien Candat
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Andréa Dumoulin
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Antoine Triller
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Christian G Specht
- Diseases and Hormones of the Nervous System (DHNS), Inserm U1195, Université Paris-Saclay, Paris, France
| |
Collapse
|
8
|
The presynaptic glycine transporter GlyT2 is regulated by the Hedgehog pathway in vitro and in vivo. Commun Biol 2021; 4:1197. [PMID: 34663888 PMCID: PMC8523746 DOI: 10.1038/s42003-021-02718-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
The identity of a glycinergic synapse is maintained presynaptically by the activity of a surface glycine transporter, GlyT2, which recaptures glycine back to presynaptic terminals to preserve vesicular glycine content. GlyT2 loss-of-function mutations cause Hyperekplexia, a rare neurological disease in which loss of glycinergic neurotransmission causes generalized stiffness and strong motor alterations. However, the molecular underpinnings controlling GlyT2 activity remain poorly understood. In this work, we identify the Hedgehog pathway as a robust controller of GlyT2 expression and transport activity. Modulating the activation state of the Hedgehog pathway in vitro in rodent primary spinal cord neurons or in vivo in zebrafish embryos induced a selective control in GlyT2 expression, regulating GlyT2 transport activity. Our results indicate that activation of Hedgehog reduces GlyT2 expression by increasing its ubiquitination and degradation. This work describes a new molecular link between the Hedgehog signaling pathway and presynaptic glycine availability. By modulating the activation state of the Hedgehog pathway, de la Rocha-Muñoz et al demonstrate that Hedgehog signaling controls the expression and transport activity of the neuronal glycine transporter GlyT2. This work begins to reveal a potential link between the Hedgehog signaling pathway and presynaptic glycine availability.
Collapse
|
9
|
Araya A, Gallegos S, Viveros R, San Martin L, Muñoz B, Harvey RJ, Zeilhofer HU, Aguayo LG. Presence of ethanol sensitive and insensitive glycine receptors in the ventral tegmental area and prefrontal cortex in mice. Br J Pharmacol 2021; 178:4691-4707. [PMID: 34378188 PMCID: PMC9293192 DOI: 10.1111/bph.15649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/22/2021] [Accepted: 07/10/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous studies showed that glycine receptors (GlyRs) composed of α1 and β subunits are primarily found in spinal cord and brainstem and are potentiated by ethanol (10-100 mM). However, much less is known about the presence, composition, and ethanol sensitivity of GlyRs in higher CNS regions. In the present study, we examined two regions of the brain reward system, the ventral tegmental area (VTA) and the prefrontal cortex (PFC), to determine their GlyR subunit composition and sensitivity to ethanol. EXPERIMENTAL APPROACH To achieve these aims, we used Western blot, immunohistochemistry and electrophysiological techniques in three different models: Wild-type C57BL/6, GlyR α1 knock-in and GlyR α2 knockout mice. KEY RESULTS Similar levels of α and β GlyR subunits were detected in both brain regions, and electrophysiological recordings demonstrated the presence of glycine-activated currents in both areas. The sensitivity of GlyRs to glycine was lower in the PFC compared to VTA. Picrotoxin blocked the glycine-activated current in the PFC and VTA only partially, indicating that both regions express heteromeric αβ receptors. Interestingly, GlyRs in VTA neurons, but not in PFC neurons, were potentiated by ethanol. CONCLUSION AND IMPLICATIONS GlyRs in VTA neurons from WT and α2 KO mice were potentiated by ethanol, but not in neurons from the α1 KI mice, supporting the conclusion that α1 GlyRs are predominantly expressed in the VTA. By contrast, GlyRs in PFC neurons were not potentiated in any of the mouse models studied, suggesting the presence of either α2/α3/α4 rather than α1 GlyR subunits.
Collapse
Affiliation(s)
- Anibal Araya
- Department of Physiology, Universidad de Concepción, Concepción, Chile.,PhD Program in Pharmacology, Universidad de Chile, Santiago, Chile
| | - Scarlet Gallegos
- Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Viveros
- Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Loreto San Martin
- Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Hanns U Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Luis G Aguayo
- Department of Physiology, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
10
|
Ion channelopathies to bridge molecular lesions, channel function, and clinical therapies. Pflugers Arch 2021; 472:733-738. [PMID: 32607810 DOI: 10.1007/s00424-020-02424-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Han L, Shan Q. Pair of Residue Substitutions at the Outer Mouth of the Channel Pore Act as Inputs for a Boolean Logic "OR" Gate Based on the Glycine Receptor. ACS Chem Neurosci 2020; 11:3409-3417. [PMID: 32970400 DOI: 10.1021/acschemneuro.0c00522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glycine receptor (GlyR) is a ligand-activated chloride channel, whose mutations are the major cause of hereditary hyperekplexia. The hyperekplexia-causing R271Q mutation, which is located at the extracellular outer mouth of the channel pore, dramatically impairs the GlyR function manifesting a reduced sensitivity toward glycine. This study reports that a second mutation, S273D, rescues the function of the R271Q GlyR to that of the wild-type (WT) GlyR. Surprisingly, the S273D mutation, when introduced to the WT GlyR, does not further increase the receptor function. In other words, the compromised function of the 271Q 273S GlyR (i.e., the R271Q GlyR) can be rescued to WT levels by the introduction of either, or both, of the Q271R and S273D substitutions. From the perspective of Boolean logic gates, the Q271R and S273D substitutions act as inputs for an OR gate based on the GlyR. Further experiments revealed that the negative-charge carried by the 273 residue is essential for the expression of the OR gate and that the expression of the OR gate is residue-position-specific. In addition, mechanistic investigation implied that the 273 residue influences the 271 residue, which might underpin the unique nonadditive OR gate relationship between these two residues. Such an ion-channel-based OR gate, expressing output in the form of electrical current, could potentially be developed to digitally manipulate neuronal activity.
Collapse
Affiliation(s)
- Lu Han
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
12
|
Hülsmann S, Oke Y, Mesuret G, Latal AT, Fortuna MG, Niebert M, Hirrlinger J, Fischer J, Hammerschmidt K. The postnatal development of ultrasonic vocalization-associated breathing is altered in glycine transporter 2-deficient mice. J Physiol 2018; 597:173-191. [PMID: 30296333 DOI: 10.1113/jp276976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/01/2018] [Indexed: 01/03/2023] Open
Abstract
KEY POINTS Newborn mice produce ultrasonic vocalization to communicate with their mother. The neuronal glycine transporter (GlyT2) is required for efficient loading of synaptic vesicles in glycinergic neurons. Mice lacking GlyT2 develop a phenotype that resembles human hyperekplexia and the mice die in the second postnatal week. In the present study, we show that GlyT2-knockout mice do not acquire adult ultrasonic vocalization-associated breathing patterns. Despite the strong impairment of glycinergic inhibition, they can produce sufficient expiratory airflow to produce ultrasonic vocalization. Because mouse ultrasonic vocalization is a valuable read-out in translational research, these data are highly relevant for a broad range of research fields. ABSTRACT Mouse models are instrumental with respect to determining the genetic basis and neural foundations of breathing regulation. To test the hypothesis that glycinergic synaptic inhibition is required for normal breathing and proper post-inspiratory activity, we analysed breathing and ultrasonic vocalization (USV) patterns in neonatal mice lacking the neuronal glycine transporter (GlyT2). GlyT2-knockout (KO) mice have a profound reduction of glycinergic synaptic currents already at birth, develop a severe motor phenotype and survive only until the second postnatal week. At this stage, GlyT2-KO mice are smaller, have a reduced respiratory rate and still display a neonatal breathing pattern with active expiration for the production of USV. By contrast, wild-type mice acquire different USV-associated breathing patterns that depend on post-inspiratory control of air flow. Nonetheless, USVs per se remain largely indistinguishable between both genotypes. We conclude that GlyT2-KO mice, despite the strong impairment of glycinergic inhibition, can produce sufficient expiratory airflow to produce ultrasonic vocalization.
Collapse
Affiliation(s)
- Swen Hülsmann
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Yoshihiko Oke
- Division of Physiome, Department of Physiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Guillaume Mesuret
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - A Tobias Latal
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Michal G Fortuna
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Marcus Niebert
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Julia Fischer
- German Primate Center - Leibniz Institute for Primate Research, Cognitive Ethology Laboratory, Göttingen, Germany
| | - Kurt Hammerschmidt
- German Primate Center - Leibniz Institute for Primate Research, Cognitive Ethology Laboratory, Göttingen, Germany
| |
Collapse
|
13
|
GLRB allelic variation associated with agoraphobic cognitions, increased startle response and fear network activation: a potential neurogenetic pathway to panic disorder. Mol Psychiatry 2017; 22:1431-1439. [PMID: 28167838 DOI: 10.1038/mp.2017.2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/13/2023]
Abstract
The molecular genetics of panic disorder (PD) with and without agoraphobia (AG) are still largely unknown and progress is hampered by small sample sizes. We therefore performed a genome-wide association study with a dimensional, PD/AG-related anxiety phenotype based on the Agoraphobia Cognition Questionnaire (ACQ) in a sample of 1370 healthy German volunteers of the CRC TRR58 MEGA study wave 1. A genome-wide significant association was found between ACQ and single non-coding nucleotide variants of the GLRB gene (rs78726293, P=3.3 × 10-8; rs191260602, P=3.9 × 10-8). We followed up on this finding in a larger dimensional ACQ sample (N=2547) and in independent samples with a dichotomous AG phenotype based on the Symptoms Checklist (SCL-90; N=3845) and a case-control sample with the categorical phenotype PD/AG (Ncombined =1012) obtaining highly significant P-values also for GLRB single-nucleotide variants rs17035816 (P=3.8 × 10-4) and rs7688285 (P=7.6 × 10-5). GLRB gene expression was found to be modulated by rs7688285 in brain tissue, as well as cell culture. Analyses of intermediate PD/AG phenotypes demonstrated increased startle reflex and increased fear network, as well as general sensory activation by GLRB risk gene variants rs78726293, rs191260602, rs17035816 and rs7688285. Partial Glrb knockout mice demonstrated an agoraphobic phenotype. In conjunction with the clinical observation that rare coding GLRB gene mutations are associated with the neurological disorder hyperekplexia characterized by a generalized startle reaction and agoraphobic behavior, our data provide evidence that non-coding, although functional GLRB gene polymorphisms may predispose to PD by increasing startle response and agoraphobic cognitions.
Collapse
|
14
|
Lueken U, Kuhn M, Yang Y, Straube B, Kircher T, Wittchen HU, Pfleiderer B, Arolt V, Wittmann A, Ströhle A, Weber H, Reif A, Domschke K, Deckert J, Lonsdorf TB. Modulation of defensive reactivity by GLRB allelic variation: converging evidence from an intermediate phenotype approach. Transl Psychiatry 2017; 7:e1227. [PMID: 28872638 PMCID: PMC5639239 DOI: 10.1038/tp.2017.186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/07/2017] [Accepted: 07/04/2017] [Indexed: 01/20/2023] Open
Abstract
Representing a phylogenetically old and very basic mechanism of inhibitory neurotransmission, glycine receptors have been implicated in the modulation of behavioral components underlying defensive responding toward threat. As one of the first findings being confirmed by genome-wide association studies for the phenotype of panic disorder and agoraphobia, allelic variation in a gene coding for the glycine receptor beta subunit (GLRB) has recently been associated with increased neural fear network activation and enhanced acoustic startle reflexes. On the basis of two independent healthy control samples, we here aimed to further explore the functional significance of the GLRB genotype (rs7688285) by employing an intermediate phenotype approach. We focused on the phenotype of defensive system reactivity across the levels of brain function, structure, and physiology. Converging evidence across both samples was found for increased neurofunctional activation in the (anterior) insular cortex in GLRB risk allele carriers and altered fear conditioning as a function of genotype. The robustness of GLRB effects is demonstrated by consistent findings across different experimental fear conditioning paradigms and recording sites. Altogether, findings provide translational evidence for glycine neurotransmission as a modulator of the brain's evolutionary old dynamic defensive system and provide further support for a strong, biologically plausible candidate intermediate phenotype of defensive reactivity. As such, glycine-dependent neurotransmission may open up new avenues for mechanistic research on the etiopathogenesis of fear and anxiety disorders.
Collapse
Affiliation(s)
- U Lueken
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - M Kuhn
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Y Yang
- Department of Psychiatry and Psychotherapy, Phillips-University Marburg, Marburg, Germany
| | - B Straube
- Department of Psychiatry and Psychotherapy, Phillips-University Marburg, Marburg, Germany
| | - T Kircher
- Department of Psychiatry and Psychotherapy, Phillips-University Marburg, Marburg, Germany
| | - H-U Wittchen
- Department of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - B Pfleiderer
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - V Arolt
- Department of Psychiatry, University Hospital Münster, Münster, Germany
| | - A Wittmann
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - A Ströhle
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - H Weber
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - A Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - K Domschke
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - T B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Schaefer N, Berger A, van Brederode J, Zheng F, Zhang Y, Leacock S, Littau L, Jablonka S, Malhotra S, Topf M, Winter F, Davydova D, Lynch JW, Paige CJ, Alzheimer C, Harvey RJ, Villmann C. Disruption of a Structurally Important Extracellular Element in the Glycine Receptor Leads to Decreased Synaptic Integration and Signaling Resulting in Severe Startle Disease. J Neurosci 2017; 37:7948-7961. [PMID: 28724750 PMCID: PMC5559766 DOI: 10.1523/jneurosci.0009-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/15/2017] [Accepted: 06/24/2017] [Indexed: 01/09/2023] Open
Abstract
Functional impairments or trafficking defects of inhibitory glycine receptors (GlyRs) have been linked to human hyperekplexia/startle disease and autism spectrum disorders. We found that a lack of synaptic integration of GlyRs, together with disrupted receptor function, is responsible for a lethal startle phenotype in a novel spontaneous mouse mutant shaky, caused by a missense mutation, Q177K, located in the extracellular β8-β9 loop of the GlyR α1 subunit. Recently, structural data provided evidence that the flexibility of the β8-β9 loop is crucial for conformational transitions during opening and closing of the ion channel and represents a novel allosteric binding site in Cys-loop receptors. We identified the underlying neuropathological mechanisms in male and female shaky mice through a combination of protein biochemistry, immunocytochemistry, and both in vivo and in vitro electrophysiology. Increased expression of the mutant GlyR α1Q177K subunit in vivo was not sufficient to compensate for a decrease in synaptic integration of α1Q177Kβ GlyRs. The remaining synaptic heteromeric α1Q177Kβ GlyRs had decreased current amplitudes with significantly faster decay times. This functional disruption reveals an important role for the GlyR α1 subunit β8-β9 loop in initiating rearrangements within the extracellular-transmembrane GlyR interface and that this structural element is vital for inhibitory GlyR function, signaling, and synaptic clustering.SIGNIFICANCE STATEMENT GlyR dysfunction underlies neuromotor deficits in startle disease and autism spectrum disorders. We describe an extracellular GlyR α1 subunit mutation (Q177K) in a novel mouse startle disease mutant shaky Structural data suggest that during signal transduction, large transitions of the β8-β9 loop occur in response to neurotransmitter binding. Disruption of the β8-β9 loop by the Q177K mutation results in a disruption of hydrogen bonds between Q177 and the ligand-binding residue R65. Functionally, the Q177K change resulted in decreased current amplitudes, altered desensitization decay time constants, and reduced GlyR clustering and synaptic strength. The GlyR β8-β9 loop is therefore an essential regulator of conformational rearrangements during ion channel opening and closing.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute of Clinical Neurobiology, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | - Fang Zheng
- Institute of Physiology and Pathophysiology, and
| | - Yan Zhang
- Queensland Brain Institute, University of Queensland, Brisbane 4072, Australia
| | - Sophie Leacock
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Laura Littau
- Institute of Clinical Neurobiology, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Sony Malhotra
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom, and
| | - Maya Topf
- Institute of Structural and Molecular Biology, UCL Birkbeck College, London WC1E 7HX, United Kingdom
| | - Friederike Winter
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen-Nürnberg, Germany
| | - Daria Davydova
- Institute of Clinical Neurobiology, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Joseph W Lynch
- Queensland Brain Institute, University of Queensland, Brisbane 4072, Australia
| | - Christopher J Paige
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | - Robert J Harvey
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Carmen Villmann
- Institute of Clinical Neurobiology, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany,
| |
Collapse
|
16
|
Degani-Katzav N, Gortler R, Weissman M, Paas Y. Mutational Analysis at Intersubunit Interfaces of an Anionic Glutamate Receptor Reveals a Key Interaction Important for Channel Gating by Ivermectin. Front Mol Neurosci 2017; 10:92. [PMID: 28428744 PMCID: PMC5382172 DOI: 10.3389/fnmol.2017.00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/17/2017] [Indexed: 11/13/2022] Open
Abstract
The broad-spectrum anthelmintic drug ivermectin (IVM) activates and stabilizes an open-channel conformation of invertebrate chloride-selective glutamate receptors (GluClRs), thereby causing a continuous inflow of chloride ions and sustained membrane hyperpolarization. These effects suppress nervous impulses and vital physiological processes in parasitic nematodes. The GluClRs are pentamers. Homopentameric receptors assembled from the Caenorhabditis elegans (C. elegans) GluClα (GLC-1) subunit can inherently respond to IVM but not to glutamate (the neurotransmitter). In contrast, heteromeric GluClα/β (GLC-1/GLC-2) assemblies respond to both ligands, independently of each other. Glutamate and IVM bind at the interface between adjacent subunits, far away from each other; glutamate in the extracellular ligand-binding domain, and IVM in the ion-channel pore periphery. To understand the importance of putative intersubunit contacts located outside the glutamate and IVM binding sites, we introduced mutations at intersubunit interfaces, between these two binding-site types. Then, we determined the effect of these mutations on the activation of the heteromeric mutant receptors by glutamate and IVM. Amongst these mutations, we characterized an α-subunit point mutation located close to the putative IVM-binding pocket, in the extracellular end of the first transmembrane helix (M1). This mutation (αF276A) moderately reduced the sensitivity of the heteromeric GluClαF276A/βWT receptor to glutamate, and slightly decreased the receptor subunits’ cooperativity in response to glutamate. In contrast, the αF276A mutation drastically reduced the sensitivity of the receptor to IVM and significantly increased the receptor subunits’ cooperativity in response to IVM. We suggest that this mutation reduces the efficacy of channel gating, and impairs the integrity of the IVM-binding pocket, likely by disrupting important interactions between the tip of M1 and the M2-M3 loop of an adjacent subunit. We hypothesize that this physical contact between M1 and the M2-M3 loop tunes the relative orientation of the ion-channel transmembrane helices M1, M2 and M3 to optimize pore opening. Interestingly, pre-exposure of the GluClαF276A/βWT mutant receptor to subthreshold IVM concentration recovered the receptor sensitivity to glutamate. We infer that IVM likely retained its positive modulation activity by constraining the transmembrane helices in a preopen orientation sensitive to glutamate, with no need for the aforementioned disrupted interactions between M1 and the M2-M3 loop.
Collapse
Affiliation(s)
- Nurit Degani-Katzav
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan UniversityRamat Gan, Israel
| | - Revital Gortler
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan UniversityRamat Gan, Israel
| | - Marina Weissman
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan UniversityRamat Gan, Israel
| | - Yoav Paas
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan UniversityRamat Gan, Israel
| |
Collapse
|
17
|
Degani-Katzav N, Klein M, Har-Even M, Gortler R, Tobi R, Paas Y. Trapping of ivermectin by a pentameric ligand-gated ion channel upon open-to-closed isomerization. Sci Rep 2017; 7:42481. [PMID: 28218274 PMCID: PMC5317004 DOI: 10.1038/srep42481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/11/2017] [Indexed: 11/09/2022] Open
Abstract
Ivermectin (IVM) is a broad-spectrum anthelmintic drug used to treat human parasitic diseases like river blindness and lymphatic filariasis. By activating invertebrate pentameric glutamate-gated chloride channels (GluCl receptors; GluClRs), IVM induces sustained chloride influx and long-lasting membrane hyperpolarization that inhibit neural excitation in nematodes. Although IVM activates the C. elegans heteromeric GluClα/β receptor, it cannot activate a homomeric receptor composed of the C. elegans GluClβ subunits. To understand this incapability, we generated a homopentameric α7-GluClβ chimeric receptor that consists of an extracellular ligand-binding domain of an α7 nicotinic acetylcholine receptor known to be potentiated by IVM, and a chloride-selective channel domain assembled from GluClβ subunits. Application of IVM prior to acetylcholine inhibited the responses of the chimeric α7-GluClβR. Adding IVM to activated α7-GluClβRs, considerably accelerated the decline of ACh-elicited currents and stabilized the receptors in a non-conducting state. Determination of IVM association and dissociation rate constants and recovery experiments suggest that, following initial IVM binding to open α7-GluClβRs, the drug induces a conformational change and locks the ion channel in a closed state for a long duration. We further found that IVM also inhibits the activation by glutamate of a homomeric receptor assembled from the C. elegans full-length GluClβ subunits.
Collapse
Affiliation(s)
- Nurit Degani-Katzav
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Moshe Klein
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Moran Har-Even
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Revital Gortler
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ruthi Tobi
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yoav Paas
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
18
|
Mohsen AMY, Mandour YM, Sarukhanyan E, Breitinger U, Villmann C, Banoub MM, Breitinger HG, Dandekar T, Holzgrabe U, Sotriffer C, Jensen AA, Zlotos DP. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists. JOURNAL OF NATURAL PRODUCTS 2016; 79:2997-3005. [PMID: 27966945 DOI: 10.1021/acs.jnatprod.6b00479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A series of (E)-11-isonitrosostrychnine oxime ethers, 2-aminostrychnine, (strychnine-2-yl)propionamide, 18-oxostrychnine, and N-propylstrychnine bromide were synthesized and evaluated pharmacologically at human α1 and α1β glycine receptors in a functional fluorescence-based and a whole-cell patch-clamp assay and in [3H]strychnine binding studies. 2-Aminostrychnine and the methyl, allyl, and propargyl oxime ethers were the most potent α1 and α1β antagonists in the series, displaying IC50 values similar to those of strychnine at the two receptors. Docking experiments to the strychnine binding site of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment point for linking two strychnine pharmacophores by a polymethylene spacer and are, therefore, important for the design of bivalent ligands targeting glycine receptors.
Collapse
Affiliation(s)
- Amal M Y Mohsen
- Faculty of Pharmacy and Biotechnology, The German University in Cairo , New Cairo City, 11835 Cairo, Egypt
| | - Yasmine M Mandour
- Faculty of Pharmacy and Biotechnology, The German University in Cairo , New Cairo City, 11835 Cairo, Egypt
| | | | - Ulrike Breitinger
- Faculty of Pharmacy and Biotechnology, The German University in Cairo , New Cairo City, 11835 Cairo, Egypt
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University of Würzburg , 97078 Würzburg, Germany
| | - Maha M Banoub
- Faculty of Pharmacy and Biotechnology, The German University in Cairo , New Cairo City, 11835 Cairo, Egypt
| | - Hans-Georg Breitinger
- Faculty of Pharmacy and Biotechnology, The German University in Cairo , New Cairo City, 11835 Cairo, Egypt
| | | | | | | | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , DK-2100 Copenhagen, Denmark
| | - Darius P Zlotos
- Faculty of Pharmacy and Biotechnology, The German University in Cairo , New Cairo City, 11835 Cairo, Egypt
| |
Collapse
|
19
|
Alvarez FJ. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 2016; 129:50-65. [PMID: 27612963 DOI: 10.1016/j.brainresbull.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABAA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABAA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.
| |
Collapse
|
20
|
Germann AL, Shin DJ, Manion BD, Edge CJ, Smith EH, Franks NP, Evers AS, Akk G. Activation and modulation of recombinant glycine and GABA A receptors by 4-halogenated analogues of propofol. Br J Pharmacol 2016; 173:3110-3120. [PMID: 27459129 DOI: 10.1111/bph.13566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/11/2016] [Accepted: 07/20/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Glycine receptors are important players in pain perception and movement disorders and therefore important therapeutic targets. Glycine receptors can be modulated by the intravenous anaesthetic propofol (2,6-diisopropylphenol). However, the drug is more potent, by at least one order of magnitude, on GABAA receptors. It has been proposed that halogenation of the propofol molecule generates compounds with selective enhancement of glycinergic modulatory properties. EXPERIMENTAL APPROACH We synthesized 4-bromopropofol, 4-chloropropofol and 4-fluoropropofol. The direct activating and modulatory effects of these drugs and propofol were compared on recombinant rat glycine and human GABAA receptors expressed in oocytes. Behavioural effects of the compounds were compared in the tadpole loss-of-righting assay. KEY RESULTS Concentration-response curves for potentiation of homomeric α1, α2 and α3 glycine receptors were shifted to lower drug concentrations, by 2-10-fold, for the halogenated compounds. Direct activation by all compounds was minimal with all subtypes of the glycine receptor. The four compounds were essentially equally potent modulators of the α1β3γ2L GABAA receptor with EC50 between 4 and 7 μM. The EC50 for loss-of-righting in Xenopus tadpoles, a proxy for loss of consciousness and considered to be mediated by actions on GABAA receptors, ranged from 0.35 to 0.87 μM. CONCLUSIONS AND IMPLICATIONS We confirm that halogenation of propofol more strongly affects modulation of homomeric glycine receptors than α1β3γ2L GABAA receptors. However, the effective concentrations of all tested halogenated compounds remained lower for GABAA receptors. We infer that 4-bromopropofol, 4-chloropropofol and 4-fluoropropofol are not selective homomeric glycine receptor modulators.
Collapse
Affiliation(s)
- Allison L Germann
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel J Shin
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brad D Manion
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher J Edge
- Department of Life Sciences, Imperial College London, South Kensington, UK.,Department of Anaesthetics, Royal Berkshire NHS Foundation Trust, Reading, UK
| | - Edward H Smith
- Department of Life Sciences, Imperial College London, South Kensington, UK
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, South Kensington, UK
| | - Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Gustav Akk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA. .,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Langlhofer G, Villmann C. The Intracellular Loop of the Glycine Receptor: It's not all about the Size. Front Mol Neurosci 2016; 9:41. [PMID: 27330534 PMCID: PMC4891346 DOI: 10.3389/fnmol.2016.00041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/17/2016] [Indexed: 11/15/2022] Open
Abstract
The family of Cys-loop receptors (CLRs) shares a high degree of homology and sequence identity. The overall structural elements are highly conserved with a large extracellular domain (ECD) harboring an α-helix and 10 β-sheets. Following the ECD, four transmembrane domains (TMD) are connected by intracellular and extracellular loop structures. Except the TM3–4 loop, their length comprises 7–14 residues. The TM3–4 loop forms the largest part of the intracellular domain (ICD) and exhibits the most variable region between all CLRs. The ICD is defined by the TM3–4 loop together with the TM1–2 loop preceding the ion channel pore. During the last decade, crystallization approaches were successful for some members of the CLR family. To allow crystallization, the intracellular loop was in most structures replaced by a short linker present in prokaryotic CLRs. Therefore, no structural information about the large TM3–4 loop of CLRs including the glycine receptors (GlyRs) is available except for some basic stretches close to TM3 and TM4. The intracellular loop has been intensively studied with regard to functional aspects including desensitization, modulation of channel physiology by pharmacological substances, posttranslational modifications, and motifs important for trafficking. Furthermore, the ICD interacts with scaffold proteins enabling inhibitory synapse formation. This review focuses on attempts to define structural and functional elements within the ICD of GlyRs discussed with the background of protein-protein interactions and functional channel formation in the absence of the TM3–4 loop.
Collapse
Affiliation(s)
- Georg Langlhofer
- Institute of Clinical Neurobiology, University of Würzburg Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
22
|
Wilkins ME, Caley A, Gielen MC, Harvey RJ, Smart TG. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation. J Physiol 2016; 594:3589-607. [PMID: 27028707 PMCID: PMC4929309 DOI: 10.1113/jp272122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/21/2016] [Indexed: 11/10/2022] Open
Abstract
Key points Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission. Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem. A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs. These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact. Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease.
Abstract Dysfunctional glycinergic inhibitory transmission underlies the debilitating neurological condition, hyperekplexia, which is characterised by exaggerated startle reflexes, muscle hypertonia and apnoea. Here we investigated the N46K missense mutation in the GlyR α1 subunit gene found in the ethylnitrosourea (ENU) murine mutant, Nmf11, which causes reduced body size, evoked tremor, seizures, muscle stiffness, and morbidity by postnatal day 21. Introducing the N46K mutation into recombinant GlyR α1 homomeric receptors, expressed in HEK cells, reduced the potencies of glycine, β‐alanine and taurine by 9‐, 6‐ and 3‐fold respectively, and that of the competitive antagonist strychnine by 15‐fold. Replacing N46 with hydrophobic, charged or polar residues revealed that the amide moiety of asparagine was crucial for GlyR activation. Co‐mutating N61, located on a neighbouring β loop to N46, rescued the wild‐type phenotype depending on the amino acid charge. Single‐channel recording identified that burst length for the N46K mutant was reduced and fast agonist application revealed faster glycine deactivation times for the N46K mutant compared with the WT receptor. Overall, these data are consistent with N46 ensuring correct alignment of the α1 subunit interface by interaction with juxtaposed residues to preserve the structural integrity of the glycine binding site. This represents a new mechanism by which GlyR dysfunction induces startle disease. Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission. Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem. A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs. These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact. Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease.
Collapse
Affiliation(s)
- Megan E Wilkins
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alex Caley
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marc C Gielen
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Robert J Harvey
- Department of Pharmacology, UCL School of Pharmacy, 29-39, Brunswick Square, London, WC1N 1AX, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
23
|
Atak S, Langlhofer G, Schaefer N, Kessler D, Meiselbach H, Delto C, Schindelin H, Villmann C. Disturbances of Ligand Potency and Enhanced Degradation of the Human Glycine Receptor at Affected Positions G160 and T162 Originally Identified in Patients Suffering from Hyperekplexia. Front Mol Neurosci 2015; 8:79. [PMID: 26733802 PMCID: PMC4686643 DOI: 10.3389/fnmol.2015.00079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/04/2015] [Indexed: 11/13/2022] Open
Abstract
Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GlyR) undergoes direct interaction with the incoming ligand via a cation-π interaction. Recently, we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GlyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GlyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER toward the ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is delivered to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, T162 affects primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof.
Collapse
Affiliation(s)
- Sinem Atak
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg Würzburg, Germany
| | - Georg Langlhofer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg Würzburg, Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg Würzburg, Germany
| | - Denise Kessler
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg Würzburg, Germany
| | - Heike Meiselbach
- Bioinformatics Department, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg Erlangen, Germany
| | - Carolyn Delto
- Rudolf Virchow Center for Experimental Biomedicine Würzburg, Germany
| | | | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg Würzburg, Germany
| |
Collapse
|
24
|
Glycine plays a crucial role as a co-agonist of NMDA receptors in the neuronal circuit generating body movements in rat fetuses. Neurosci Res 2015; 97:13-9. [DOI: 10.1016/j.neures.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/01/2015] [Accepted: 03/10/2015] [Indexed: 12/15/2022]
|
25
|
Disturbed neuronal ER-Golgi sorting of unassembled glycine receptors suggests altered subcellular processing is a cause of human hyperekplexia. J Neurosci 2015; 35:422-37. [PMID: 25568133 DOI: 10.1523/jneurosci.1509-14.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent studies on the pathogenic mechanisms of recessive hyperekplexia indicate disturbances in glycine receptor (GlyR) α1 biogenesis. Here, we examine the properties of a range of novel glycine receptor mutants identified in human hyperekplexia patients using expression in transfected cell lines and primary neurons. All of the novel mutants localized in the large extracellular domain of the GlyR α1 have reduced cell surface expression with a high proportion of receptors being retained in the ER, although there is forward trafficking of glycosylated subpopulations into the ER-Golgi intermediate compartment and cis-Golgi compartment. CD spectroscopy revealed that the mutant receptors have proportions of secondary structural elements similar to wild-type receptors. Two mutants in loop B (G160R, T162M) were functional, but none of those in loop D/β2-3 were. One nonfunctional truncated mutant (R316X) could be rescued by coexpression with the lacking C-terminal domain. We conclude that a proportion of GlyR α1 mutants can be transported to the plasma membrane but do not necessarily form functional ion channels. We suggest that loop D/β2-3 is an important determinant for GlyR trafficking and functionality, whereas alterations to loop B alter agonist potencies, indicating that residues here are critical elements in ligand binding.
Collapse
|
26
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ligand-gated ion channels. Br J Pharmacol 2014; 170:1582-606. [PMID: 24528238 PMCID: PMC3892288 DOI: 10.1111/bph.12446] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ligand-gated ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Meiselbach H, Vogel N, Langlhofer G, Stangl S, Schleyer B, Bahnassawy L, Sticht H, Breitinger HG, Becker CM, Villmann C. Single expressed glycine receptor domains reconstitute functional ion channels without subunit-specific desensitization behavior. J Biol Chem 2014; 289:29135-47. [PMID: 25143388 DOI: 10.1074/jbc.m114.559138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cys loop receptors are pentameric arrangements of independent subunits that assemble into functional ion channels. Each subunit shows a domain architecture. Functional ion channels can be reconstituted even from independent, nonfunctional subunit domains, as shown previously for GlyRα1 receptors. Here, we demonstrate that this reconstitution is not restricted to α1 but can be transferred to other members of the Cys loop receptor family. A nonfunctional GlyR subunit, truncated at the intracellular TM3-4 loop by a premature stop codon, can be complemented by co-expression of the missing tail portion of the receptor. Compared with α1 subunits, rescue by domain complementation was less efficient when GlyRα3 or the GABAA/C subunit ρ1 was used. If truncation disrupted an alternative splicing cassette within the intracellular TM3-4 loop of α3 subunits, which also regulates receptor desensitization, functional rescue was not possible. When α3 receptors were restored by complementation using domains with and without the spliced insert, no difference in desensitization was found. In contrast, desensitization properties could even be transferred between α1/α3 receptor chimeras harboring or lacking the α3 splice cassette proving that functional rescue depends on the integrity of the alternative splicing cassette in α3. Thus, an intact α3 splicing cassette in the TM3-4 loop environment is indispensable for functional rescue, and the quality of receptor restoration can be assessed from desensitization properties.
Collapse
Affiliation(s)
| | - Nico Vogel
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Georg Langlhofer
- the Institute for Clinical Neurobiology, University of Würzburg, Versbacherstrasse 5, 97078 Würzburg, Germany, and
| | - Sabine Stangl
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Barbara Schleyer
- the Institute for Clinical Neurobiology, University of Würzburg, Versbacherstrasse 5, 97078 Würzburg, Germany, and
| | - Lamia'a Bahnassawy
- the Biochemistry Department, German University Cairo, New Cairo City, Cairo 11835, Egypt
| | | | - Hans-Georg Breitinger
- the Biochemistry Department, German University Cairo, New Cairo City, Cairo 11835, Egypt
| | - Cord-Michael Becker
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Carmen Villmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany, the Institute for Clinical Neurobiology, University of Würzburg, Versbacherstrasse 5, 97078 Würzburg, Germany, and
| |
Collapse
|
28
|
Bode A, Lynch JW. The impact of human hyperekplexia mutations on glycine receptor structure and function. Mol Brain 2014; 7:2. [PMID: 24405574 PMCID: PMC3895786 DOI: 10.1186/1756-6606-7-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/07/2014] [Indexed: 01/11/2023] Open
Abstract
Hyperekplexia is a rare neurological disorder characterized by neonatal hypertonia, exaggerated startle responses to unexpected stimuli and a variable incidence of apnoea, intellectual disability and delays in speech acquisition. The majority of motor defects are successfully treated by clonazepam. Hyperekplexia is caused by hereditary mutations that disrupt the functioning of inhibitory glycinergic synapses in neuromotor pathways of the spinal cord and brainstem. The human glycine receptor α1 and β subunits, which predominate at these synapses, are the major targets of mutations. International genetic screening programs, that together have analysed several hundred probands, have recently generated a clear picture of genotype-phenotype correlations and the prevalence of different categories of hyperekplexia mutations. Focusing largely on this new information, this review seeks to summarise the effects of mutations on glycine receptor structure and function and how these functional alterations lead to hyperekplexia.
Collapse
Affiliation(s)
| | - Joseph W Lynch
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|