1
|
Cavusoglu Nalbantoglu I, Sevgi S, Kerimoglu G, Kadıoglu Duman M, Kalyoncu NI. Ursodeoxycholic acid ameliorates erectile dysfunction and corporal fibrosis in diabetic rats by inhibiting the TGF-β1/Smad2 pathway. Int J Impot Res 2024; 36:886-895. [PMID: 38454160 DOI: 10.1038/s41443-024-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Corporal tissue fibrosis is critical in diabetes-associated erectile dysfunction. Transforming growth factor-β1/Small mothers against decapentaplegic-2 (TGF-β1/Smad2) contributes to the induction of fibrosis in corporal tissue. Smad7 is accepted as a general negative regulator of Smad signaling, although its role in corporal fibrosis is unknown. Ursodeoxycholic acid (UDCA) is a hydrophilic bile acid used for biliary and liver related disorders and has antifibrotic effects in the liver. This study investigated the effects of UDCA on diabetic erectile dysfunction. Forty-eight male Spraque Dawley rats were divided into six groups: nondiabetic (n = 6), nondiabetic+20 mg/kg UDCA (n = 6), nondiabetic+80 mg/kg UDCA (n = 6), diabetic (n = 10), diabetic+20 mg/kg UDCA (n = 10), diabetic+80 mg/kg UDCA (n = 10). Diabetes was induced by intraperitoneal injection of 60 mg/kg Streptozocin. UDCA (20 and 80 mg/kg/day) or saline was subsequently administered via oral gavage for 56 days. Erectile function was evaluated as measurement of maximum intracavernosal pressure (m-ICP)/mean arterial pressure (MAP) and total ICP/MAP. Corporal tissues were evaluated by Western blotting and Masson's trichrome staining. Electrical stimulation-induced m-ICP/MAP responses were higher in UDCA-treated diabetic rats compared to untreated diabetic rats, respectively (20 mg/kg; 4 V: 0.77 ± 0.11 vs 0.45 ± 0.09, p = 0.0001 and 80 mg/kg; 4 V: 0.78 ± 0.11 vs 0.45 ± 0.09, p = 0.0001) UDCA prevented the increase in phospho-Smad2 and fibronectin protein expressions in diabetic corporal tissue both at 20 mg/kg (p = 0.0002, p = 0.002 respectively) and 80 mg/kg doses (p < 0.0001 for both). Smad7 protein expressions were significantly increased in the UDCA-treated diabetic groups compared to the untreated diabetic group (20 mg/kg: p = 0.0079; 80 mg/kg: p = 0.004). Furthermore, UDCA significantly prevented diabetes-induced increase in collagen (20 mg/kg: p = 0.0172; 80 mg/kg: p = 0.0003) and smooth muscle loss (20 mg/kg: p = 0.044; 80 mg/kg: p = 0.039). In conclusion, UDCA has a potential protective effect on erectile function in diabetic rats by altering fibrotic pathways via inhibition of TGF-β1/Smad2 and activation of Smad7.
Collapse
Affiliation(s)
- Irem Cavusoglu Nalbantoglu
- Department of Pharmacology, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon, Türkiye.
| | - Serhat Sevgi
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Gokcen Kerimoglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Mine Kadıoglu Duman
- Department of Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Nuri Ihsan Kalyoncu
- Department of Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
2
|
Qin T, Song X, Shao Q, Zhang J, Sui H. Resveratrol ameliorates pathological fibrosis of the myodural bridge by regulating the SIRT3/TGF-β1/Smad pathway. Heliyon 2024; 10:e34974. [PMID: 39145011 PMCID: PMC11320322 DOI: 10.1016/j.heliyon.2024.e34974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Purpose Pathological fibrosis of the myodural bridge (MDB) affects cerebrospinal fluid circulation. However, no optimal drug treatments are available. We aimed to explore the antifibrotic effect of resveratrol on bleomycin-induced pathological fibrosis of the MDB and its underlying mechanisms. Methods Genes common to the potential targets of resveratrol were determined using network pharmacology, genes related to muscle and tendon fibrosis were acquired from the GeneCards database, and genes related to MDB development were determined using Venny. These genes were considered potential resveratrol treatment targets in bleomycin-induced pathological fibrosis of the MDB and were annotated using bioinformatics methods. We validated the intersected genes using quantitative real-time polymerase chain reaction (qRT-PCR) and performed molecular docking analysis to calculate the binding activity between the target gene and resveratrol. Hematoxylin and eosin and Masson staining were used to detect the morphological changes in bleomycin-induced fibrosis of the MDB following resveratrol treatment. We used qRT-PCR and immunohistochemistry to evaluate the expression of the sirtuin 3 (SIRT3)/transforming growth factor-β1 (TGF-β1)/Smad pathway and the profibrotic markers α-smooth muscle actin (α-SMA) and Collagen Ⅰ. Results Through network pharmacology and bioinformatics analyses, we identified four core intersected genes, and SIRT3 expression was validated using qRT-PCR. Molecular docking analysis revealed that resveratrol had good binding affinity for SIRT3. Resveratrol ameliorated morphological abnormalities in bleomycin-induced pathological fibrosis of the MDB by inhibiting fibroblast activation and excessive collagen fiber deposition. Resveratrol exerted its antifibrotic effect by regulating the SIRT3/TGF-β1/Smad pathway. Conclusion Resveratrol has an antifibrotic effect in bleomycin-induced pathological fibrosis of the MDB in vivo and may be considered a novel therapeutic strategy.
Collapse
Affiliation(s)
- Tao Qin
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
- Graduate School, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
| | - Xue Song
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
- Graduate School, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
| | - Qing Shao
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
- Graduate School, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
| | - Jianfei Zhang
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
| | - Hongjin Sui
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
- Dalian Hoffen Preservation Technique Institution, No.36, Guangyuan Street, Lushunkou Economic Development Zone, Dalian, 116052, China
| |
Collapse
|
3
|
Shi HH, Zhang LY, Chen LP, Yang JY, Wang CC, Xue CH, Wang YM, Zhang TT. EPA-Enriched Phospholipids Alleviate Renal Interstitial Fibrosis in Spontaneously Hypertensive Rats by Regulating TGF-β Signaling Pathways. Mar Drugs 2022; 20:md20020152. [PMID: 35200681 PMCID: PMC8879699 DOI: 10.3390/md20020152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Hypertensive nephropathy is a chronic kidney disease caused by hypertension. Eicosapentaenoic acid (EPA) has been reported to possess an antihypertensive effect, and our previous study suggested that EPA-enriched phospholipid (EPA-PL) had more significant bioactivities compared with traditional EPA. However, the effect of dietary EPA-PL on hypertensive nephropathy has not been studied. The current study was designed to examine the protection of EPA-PL against kidney damage in spontaneously hypertensive rats (SHRs). Treatment with EPA-PL for three weeks significantly reduced blood pressure through regulating the renin–angiotensin system in SHRs. Moreover, dietary EPA-PL distinctly alleviated kidney dysfunction in SHRs, evidenced by reduced plasma creatinine, blood urea nitrogen, and 24 h proteinuria. Histology results revealed that treatment of SHRs with EPA-PL alleviated renal injury and reduced tubulointerstitial fibrosis. Further mechanistic studies indicated that dietary EPA-PL remarkably inhibited the activation of TGF-β and Smad 3, elevated the phosphorylation level of PI3K/AKT, suppressed the activation of NF-κB, reduced the expression of pro-inflammatory cytokines, including IL-1β and IL-6, and repressed the oxidative stress and the mitochondria-mediated apoptotic signaling pathway in the kidney. These results indicate that EPA-PL has potential value in the prevention and alleviation of hypertensive nephropathy.
Collapse
Affiliation(s)
- Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (H.-H.S.); (L.-Y.Z.); (L.-P.C.); (J.-Y.Y.); (C.-C.W.); (C.-H.X.); (Y.-M.W.)
| | - Ling-Yu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (H.-H.S.); (L.-Y.Z.); (L.-P.C.); (J.-Y.Y.); (C.-C.W.); (C.-H.X.); (Y.-M.W.)
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Li-Pin Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (H.-H.S.); (L.-Y.Z.); (L.-P.C.); (J.-Y.Y.); (C.-C.W.); (C.-H.X.); (Y.-M.W.)
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (H.-H.S.); (L.-Y.Z.); (L.-P.C.); (J.-Y.Y.); (C.-C.W.); (C.-H.X.); (Y.-M.W.)
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (H.-H.S.); (L.-Y.Z.); (L.-P.C.); (J.-Y.Y.); (C.-C.W.); (C.-H.X.); (Y.-M.W.)
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (H.-H.S.); (L.-Y.Z.); (L.-P.C.); (J.-Y.Y.); (C.-C.W.); (C.-H.X.); (Y.-M.W.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (H.-H.S.); (L.-Y.Z.); (L.-P.C.); (J.-Y.Y.); (C.-C.W.); (C.-H.X.); (Y.-M.W.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (H.-H.S.); (L.-Y.Z.); (L.-P.C.); (J.-Y.Y.); (C.-C.W.); (C.-H.X.); (Y.-M.W.)
- Correspondence: ; Tel.: +86-0532-8203-2597; Fax: +86-0532-8203-2468
| |
Collapse
|
4
|
Ye M, Wang L, Wu Z, Liu W. Metabolomic profiling of ZrO 2 nanoparticles in MC3T3-E1 cells. IET Nanobiotechnol 2021; 15:687-697. [PMID: 34694706 PMCID: PMC8806115 DOI: 10.1049/nbt2.12067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 12/21/2022] Open
Abstract
The authors' previous study showed that zirconium oxide nanoparticles (ZrO2 NPs) induce toxic effects in MC3T3-E1 cells; however, its toxicological mechanism is still unclear. Liquid chromatography-mass spectrometry/time-of-flight mass spectrometry was used to reveal the metabolite profile and toxicological mechanism of MC3T3-E1 cells in response to ZrO2 NPs. The results demonstrated that MC3T3-E1 cells treated with ZrO2 NPs for 24 and 48 h presented different metabolic characteristics. Following ZrO2 NP treatment for 24 h, 96 upregulated and 129 downregulated metabolites in the positive ion mode, as well as 91 upregulated and 326 downregulated metabolites in the negative ion mode were identified. Following ZrO2 NP treatment for 48 h, 33 upregulated and 174 downregulated metabolites were identified in the positive ion mode, whereas 37 upregulated and 302 downregulated metabolites were confirmed in the negative ion mode. Among them, 42 differential metabolites were recognised as potential metabolites contributing to the induced toxic effects of ZrO2 NPs in MC3T3-E1 cells. Most of the differential metabolites were lysophosphatidylcholine and lysophosphatidylethanolamide, indicating that exposure to ZrO2 NPs may have a profound impact on human cellular function by impairing the membrane system. The results also provide new clues for the toxicological mechanism of ZrO2 NP dental materials.
Collapse
Affiliation(s)
- Mingfu Ye
- Department of Oral ImplantologyStomatological Hospital of Xiamen Medical CollegeXiamen Key Laboratory of Stomatological Disease Diagnosis and TreatmentXiamenChina
| | - Linhu Wang
- Department of StomatologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Zhang Wu
- Department of ProsthodonticsStomatological Hospital of Xiamen Medical CollegeXiamen Key Laboratory of Stomatological Disease Diagnosis and TreatmentXiamenChina
| | - Wenjun Liu
- Department of Oral ImplantologyStomatological Hospital of Xiamen Medical CollegeXiamen Key Laboratory of Stomatological Disease Diagnosis and TreatmentXiamenChina
| |
Collapse
|
5
|
Kong F, Saif LJ, Wang Q. Roles of bile acids in enteric virus replication. ANIMAL DISEASES 2021; 1:2. [PMID: 34778876 PMCID: PMC8062211 DOI: 10.1186/s44149-021-00003-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Bile acids (BAs) are evolutionally conserved molecules synthesized in the liver from cholesterol to facilitating the absorption of fat-soluble nutrients. In the intestines, where enteric viruses replicate, BAs also act as signaling molecules that modulate various biological functions via activation of specific receptors and cell signaling pathways. To date, BAs present either pro-viral or anti-viral effects for the replication of enteric viruses in vivo and in vitro. In this review, we summarized current information on biosynthesis, transportation and metabolism of BAs and the role of BAs in replication of enteric caliciviruses, rotaviruses, and coronaviruses. We also discussed the application of BAs for cell culture adaptation of fastidious enteric caliciviruses and control of virus infection, which may provide novel insights into the development of antivirals and/or disinfectants for enteric viruses.
Collapse
Affiliation(s)
- Fanzhi Kong
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA.,College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, China
| | - Linda J Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA
| |
Collapse
|
6
|
Gu J, Zhang T, Guo J, Chen K, Wang G, Li H, Wang J. Ursodeoxycholyl lysophosphatidylethanolamide protects against hepatic ischemia/reperfusion injury via phospholipid metabolism-mediated mitochondrial quality control. FASEB J 2020; 34:6198-6214. [PMID: 32162746 DOI: 10.1096/fj.201902013rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 11/11/2022]
Abstract
Mitochondrial dysfunction is the leading cause of reactive oxygen species (ROS) burst and apoptosis in hepatic ischemia/reperfusion (I/R) injury. Ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE) is a hepatotargeted agent that exerts hepatoprotective roles by regulating lipid metabolism. Our previous studies have shown that UDCA-LPE improves hepatic I/R injury by inhibiting apoptosis and inflammation. However, the role of UDCA-LPE in lipid metabolism and mitochondrial function in hepatic I/R remains unknown. In the present study, we investigated the role of UDCA-LPE in hepatic I/R by focusing on the interface of phospholipid metabolism and mitochondrial homeostasis. Livers from 28-week-old mice, primary hepatocytes and HepG2 cells were subjected to in vivo and in vitro I/R, respectively. Analyses of oxidative stress, imaging, ATP generation, genetics, and lipidomics showed that I/R was associated with mitochondrial dysfunction and a reduction in phospholipids. UDCA-LPE alleviated mitochondria-dependent oxidative stress and apoptosis and prevented the decrease of phospholipid levels. Our study found that cytosolic phospholipase A2 (cPLA2 ), a phospholipase that is activated during I/R, hydrolyzed mitochondrial membrane phospholipids and led to mitochondria-mediated oxidative stress and apoptosis. UDCA-LPE inhibited the interaction between cPLA2 and mitochondria and reduced phospholipid hydrolysis-mediated injury. UDCA-LPE might regulate the crosstalk between the phospholipid metabolism and the mitochondria, restore mitochondrial function and ameliorate I/R injury.
Collapse
Affiliation(s)
- Jian Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianrong Guo
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Guo J, Zhang T, Gu J, Cai K, Deng X, Chen K, Huang K, Wang G, Li H, Wang J. Oleic Acid Protects against Hepatic Ischemia and Reperfusion Injury in Mice by Inhibiting AKT/mTOR Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4842592. [PMID: 31915509 PMCID: PMC6930725 DOI: 10.1155/2019/4842592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/22/2019] [Accepted: 11/18/2019] [Indexed: 01/19/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) injury is a serious complication in patients who have undergone hepatic surgery such as orthotopic liver transplantation and partial hepatectomy. Recently, a new cytoprotective agent, ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE), was reported to protect against hepatic I/R injury. However, the protective mechanism of UDCA-LPE is not fully understood. Therefore, we conducted this study to explore its underlying mechanism. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze the liver lipid metabolism changes in mice during I/R. KEGG enrichment indicated that UDCA-LPE is likely to exert its protective role by regulating fatty acid (FA) metabolism. Further analysis found that UDCA-LPE significantly increased the ratio of oleic acid (OA) to palmitic acid (PA). We found that mice pretreated with OA improved tolerance to hepatic I/R injury. In addition, the phosphorylation level of AKT was markedly upregulated during oxidative stress to promote p65 nuclear translocation, triggering an inflammatory response that exacerbated cell damage and OA treatment significantly inhibited this process. Notably, OA was found to inhibit H2O2-induced oxidative stress, inflammation, and cell death in HepG2 cells. Furthermore, we found that OA supplementation to the medium did not result in a significant increase in intracellular OA, but marked increase in the ratio of OA to PA, which may be an important mechanism for the inflammatory response induced by oxidative stress during I/R. Finally, we demonstrated that OA increased the level of autophagy in HepG2 cells, which may be one of the protective mechanisms against oxidative stress. Collectively, this study revealed that FA metabolism functionally determines the oxidative stress-related inflammation caused by hepatic I/R. We hypothesize that OA treatment may be a promising strategy for preventing and treating I/R-induced liver damage.
Collapse
Affiliation(s)
- Jianrong Guo
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Jian Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Xiuling Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Ke Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| |
Collapse
|
8
|
Stremmel W, Staffer S, Fricker G, Weiskirchen R. The Bile Acid-Phospholipid Conjugate Ursodeoxycholyl-Lysophosphatidylethanolamide (UDCA-LPE) Disintegrates the Lipid Backbone of Raft Plasma Membrane Domains by the Removal of the Membrane Phospholipase A2. Int J Mol Sci 2019; 20:ijms20225631. [PMID: 31717968 PMCID: PMC6888454 DOI: 10.3390/ijms20225631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 01/07/2023] Open
Abstract
The bile acid-phospholipid conjugate ursodeoxycholyl-lysophosphatidylethanolamide (UDCA-LPE) was shown to have anti-inflammatory, antisteatotic, and antifibrotic properties, rendering it as a drug targeting non-alcoholic steatohepatitis (NASH). On a molecular level, it disrupted the heterotetrameric fatty acid uptake complex localized in detergent-resistant membrane domains of the plasma membrane (DRM-PM). However, its mode of action was unclear. Methodologically, UDCA-LPE was incubated with the liver tumor cell line HepG2 as well as their isolated DRM-PM and all other cellular membranes (non-DRM). The membrane cholesterol and phospholipids were quantified as well as the DRM-PM protein composition by Western blotting. The results show a loss of DRM-PM by UDCA-LPE (50 µM) with a 63.13 ± 7.14% reduction of phospholipids and an 81.94 ± 8.30% reduction of cholesterol in relation to mg total protein. The ratio of phospholipids to cholesterol changed from 2:1 to 4:1, resembling those of non-DRM fractions. Among the members of the fatty acid uptake complex, the calcium-independent membrane phospholipase A2 (iPLA2β) abandoned DRM-PM most rapidly. As a consequence, the other members of this transport system disappeared as well as the DRM-PM anchored fibrosis regulating proteins integrin β-1 and lysophospholipid receptor 1 (LPAR-1). It is concluded that UDCA-LPE executes its action by iPLA2β removal from DRM-PM and consequent dissolution of the raft lipid platform.
Collapse
Affiliation(s)
- Wolfgang Stremmel
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-152-34349907
| | - Simone Staffer
- Department of Internal Medicine IV, University Hospital of Heidelberg, 69120 Heidelberg, Germany;
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, 52074 Aachen, Germany;
| |
Collapse
|
9
|
Liu G, Liu J, Pian L, Gui S, Lu B. α‑lipoic acid protects against carbon tetrachloride‑induced liver cirrhosis through the suppression of the TGF‑β/Smad3 pathway and autophagy. Mol Med Rep 2018; 19:841-850. [PMID: 30535447 PMCID: PMC6323260 DOI: 10.3892/mmr.2018.9719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
α-lipoic acid (ALA) is a naturally occurring antioxidant with protective effects against various hepatic injuries. The aim of the present study was to investigate the mechanisms by which ALA protects the liver from carbon tetrachloride (CCl4)-induced liver cirrhosis. The widely used liver cirrhosis rat model was established via an intraperitoneal injection of 2 mg/kg 50% CCl4, three times/week for 8 weeks. Simultaneously, 50 or 100 mg/kg ALA was orally administrated to the rats every day for 8 weeks. The activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was detected in the serum. The pathological liver injuries were analyzed using hematoxylin and eosin and Masson's trichrome staining. The principal factors involved in the transforming growth factor-β (TGF-β)/mothers against decapentaplegic homolog 9 (Smad3) and protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways and in autophagy were examined using reverse transcription-quantitative polymerase chain reaction or western blot analysis. The results demonstrated that the administration of ALA alleviated CCl4-induced liver injury, as demonstrated by decreased ALT and AST activity, improved pathological injuries and reduced collagen deposition. The CCl4-induced increase in TGF-β and phosphorylated-Smad3 expression levels was additionally inhibited by treatment with ALA. Furthermore, the administration of ALA reversed the CCl4-induced upregulation of light chain 3II and Beclin-1, and downregulation of p62. The CCl4-induced suppression of the AKT/mTOR pathway was additionally restored following treatment with ALA. In combination, the results of the present study demonstrated that ALA was able to protect CCl4-induced liver cirrhosis, an effect that may be associated with inactivation of the TGF-β/Smad3 pathway and suppression of autophagy.
Collapse
Affiliation(s)
- Guangwei Liu
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan 450004, P.R. China
| | - Jiangkai Liu
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan 450004, P.R. China
| | - Linping Pian
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan 450004, P.R. China
| | - Songlin Gui
- Department of Emergency Medicine, Zhengzhou Chinese Medicine Hospital, Zhengzhou, Henan 450007, P.R. China
| | - Baoping Lu
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan 450004, P.R. China
| |
Collapse
|
10
|
Bivalent Ligand UDCA-LPE Inhibits Pro-Fibrogenic Integrin Signalling by Inducing Lipid Raft-Mediated Internalization. Int J Mol Sci 2018; 19:ijms19103254. [PMID: 30347788 PMCID: PMC6214129 DOI: 10.3390/ijms19103254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 01/07/2023] Open
Abstract
Ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE) is a synthetic bile acid-phospholipid conjugate with profound hepatoprotective and anti-fibrogenic functions in vitro and in vivo. Herein, we aimed to demonstrate the inhibitory effects of UDCA-LPE on pro-fibrogenic integrin signalling. UDCA-LPE treatment of human embryonic liver cell line CL48 and primary human hepatic stellate cells induced a non-classical internalization of integrin β1 resulting in dephosphorylation and inhibition of SRC and focal adhesion kinase (FAK). Signalling analyses suggested that UDCA-LPE may act as a heterobivalent ligand for integrins and lysophospholipid receptor1 (LPAR1) and co-immunoprecipitation demonstrated the bridging effect of UDCA-LPE on integrin β1 and LPAR1. The disruption of either the UDCA-moiety binding to integrins by RGD-containing peptide GRGDSP or the LPE-moiety binding to LPAR1 by LPAR1 antagonist Ki16425 reversed inhibitory functions of UDCA-LPE. The lack of inhibitory functions of UDCA-PE and UDCA-LPE derivatives (14:0 and 12:0, LPE-moiety containing shorter fatty acid chain) as well as the consistency of the translocation of UDCA-LPE and integrins, which co-fractionated with LPE but not UDCA, suggested that the observed UDCA-LPE-induced translocation of integrins was mediated by LPE endocytic transport pathway.
Collapse
|
11
|
Huang X, Wang X, Shang J, Zhaang Z, Cui B, Lin Y, Yang Y, Song Y, Yu S, Xia J. Estrogen related receptor alpha triggers the migration and invasion of endometrial cancer cells via up regulation of TGFB1. Cell Adh Migr 2018; 12:538-547. [PMID: 29781387 PMCID: PMC6363028 DOI: 10.1080/19336918.2018.1477901] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022] Open
Abstract
Estrogenic signals have been suggested to be important for the tumorigenesis and progression of endometrial cancer (EC) cells. Our present data showed that estrogen related receptor alpha (ERRα), while not ERRβ or ERRγ, was significantly elevated in EC cells and tissues when compared to their controls. Targeted inhibition of ERRα by siRNA or its inverse agonist XCT-790 can suppress the migration and invasion of EC cells. Both si-ERRα and XCT-790 decreased the expression of transforming growth factor-beta (TGF-β). ERRα can directly bind with the promoter of TGFB1 and then increase its transcription. Further, ERRα was involved in the positive self-feedback loop of TGF-β in EC cells. Targeted inhibition of ERRα/TGF-β can synergistically suppress the in vitro invasion of EC cells. Collectively, our data suggested that ERRα can trigger the cell migration and invasion via increasing the positive self-feedback regulation of TGF-β.
Collapse
Affiliation(s)
- Xiumin Huang
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Xuelian Wang
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Jing Shang
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Zhiqin Zhaang
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Binbin Cui
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Yanzhen Lin
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Ying Yang
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Youyi Song
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Shengnan Yu
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Junjie Xia
- Organ Transplantation Institute, Xiamen University, No. 308, Xiang'an South Road, Xiamen City, Fujian Province, China
| |
Collapse
|
12
|
Ludwig JM, Zhang Y, Chamulitrat W, Stremmel W, Pathil A. Anti-inflammatory properties of ursodeoxycholyl lysophosphatidylethanolamide in endotoxin-mediated inflammatory liver injury. PLoS One 2018; 13:e0197836. [PMID: 29795632 PMCID: PMC5967712 DOI: 10.1371/journal.pone.0197836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/09/2018] [Indexed: 01/04/2023] Open
Abstract
AIM Endotoxin-mediated liver inflammation is a key component of many acute and chronic liver diseases contributing to liver damage, fibrosis and eventually organ failure. Here, we investigated ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE), a synthetic bile acid-phospholipid conjugate regarding its anti-inflammatory and anti-fibrogenic properties. METHODS Anti-inflammatory properties of UDCA-LPE were evaluated in a mouse model of D-galactosamine/lipopolysaccharide (GalN/LPS)-induced acute liver injury, LPS treated RAW264.7 macrophages and murine primary Kupffer cells. Furthermore, anti-inflammatory and anti-fibrotic effects of UDCA-LPE were studied on primary hepatic stellate cells (HSC) incubated with supernatant from LPS±UDCA-LPE treated RAW264.7 cells. RESULTS UDCA-LPE ameliorated LPS-induced increase of IL-6, TNF-α, TGF-β, NOX-2 in the GalN/LPS model by up to 80.2% for IL-6. Similarly, UDCA-LPE markedly decreased the expression of inflammatory cytokines IL-6, TNF-α and TGF-β as well as the chemokines MCP1 and RANTES in LPS-stimulated RAW 264.7 cells. Anti-inflammatory effects were also observed in primary murine Kupffer cells. Mechanistic evaluation revealed a reversion of LPS-activated pro-inflammatory TLR4 pathway by UDCA-LPE. Moreover, UDCA-LPE inhibited iNOS and NOX-2 expression while activating eNOS via phosphorylation of AKT and pERK1/2 in RAW264.7 cells. HSC treated with conditioned medium from LPS±UDCA-LPE RAW264.7 cells showed lower fibrogenic activation due to less SMAD2/3 phosphorylation, reduced expression of profibrogenic CTGF and reduced pro-inflammatory chemokine expression. CONCLUSION In the setting of endotoxin-mediated liver inflammation, UDCA-LPE exerts profound anti-inflammatory and anti-fibrotic effect implying a promising potential for the drug candidate as an experimental approach for the treatment of acute and chronic liver diseases.
Collapse
Affiliation(s)
- Johannes Maximilian Ludwig
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Yuling Zhang
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University of Heidelberg, Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University of Heidelberg, Heidelberg, Germany
| | - Anita Pathil
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
13
|
Yu YX, Xiu YL, Chen X, Li YL. Transforming Growth Factor-beta 1 Involved in the Pathogenesis of Endometriosis through Regulating Expression of Vascular Endothelial Growth Factor under Hypoxia. Chin Med J (Engl) 2017; 130:950-956. [PMID: 28397725 PMCID: PMC5407042 DOI: 10.4103/0366-6999.204112] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Endometriosis (EMs) is a common gynecological disorder characterized by endometrial-like tissue outside the uterus. Hypoxia induces the expression of many important downstream genes to regulate the implantation, survival, and maintenance of ectopic endometriotic lesions. Transforming growth factor-beta 1 (TGF-β1) plays a major role in the etiology of EMs. We aimed to determine whether TGF-β1 affects EMs development and progression and its related mechanisms in hypoxic conditions. Methods: Endometrial tissue was obtained from women with or without EMs undergoing surgery from October, 2015 to October, 2016. Endometrial cells were cultured and then exposed to hypoxia and TGF-β1 or TGF-β1 inhibitors. The messenger RNA (mRNA) and protein expression levels of TGF-β1, vascular endothelial growth factor (VEGF), and hypoxia-inducible factor-1α (HIF-1α) were measured. A Dual-Luciferase Reporter Assay was used to examine the effect of TGF-β1 and hypoxia on a VEGF promoter construct. Student's t-test was performed for comparison among groups (one-sided or two-sided) and a value of P < 0.05 was considered statistically significant. Results: TGF-β1, VEGF, HIF-1α mRNA, and protein expression were significantly higher in EMs tissue than that in normal endometrial tissue (t = 2.16, P = 0.042). EMs primary cultured cells exposed to hypoxia expressed 43.8% higher VEGF mRNA and protein (t = 6.84, P = 0.023). VEGF mRNA levels increased 12.5% in response to TGF-β, whereas the combined treatment of hypoxia/TGF-β1 resulted in a much higher production (87.5% increases) of VEGF. The luciferase activity of the VEGF promoter construct was increased in the presence of either TGF-β1 (2.6-fold, t = 6.08, P = 0.032) or hypoxia (11.2-fold, t = 32.70, P < 0.001), whereas the simultaneous presence of both stimuli resulted in a significant cooperative effect (18.5-fold, t = 33.50, P < 0.001). Conclusions: The data support the hypothesis that TGF-β1 is involved in the pathogenesis of EMs through regulating VEGF expression. An additive effect of TGF-β1 and hypoxia is taking place at the transcriptional level.
Collapse
Affiliation(s)
- Yue-Xin Yu
- Department of Obstetrics and Gynecology, Chinese People's Liberation Army General Hospital and Chinese People's Liberation Army Medical School, Beijing 100853; Department of Obstetrics and Gynecology, Chinese People's Liberation Army 202 Hospital, Shenyang, Liaoning 110821, China
| | - Yin-Ling Xiu
- Department of Obstetrics and Gynecology, Chinese People's Liberation Army 202 Hospital, Shenyang, Liaoning 110821, China
| | - Xi Chen
- Department of Obstetrics and Gynecology, Chinese People's Liberation Army 202 Hospital, Shenyang, Liaoning 110821, China
| | - Ya-Li Li
- Department of Obstetrics and Gynecology, Chinese People's Liberation Army General Hospital and Chinese People's Liberation Army Medical School, Beijing 100853, China
| |
Collapse
|
14
|
Zhou C, Yang X, Hua X, Liu J, Fan M, Li G, Song J, Xu T, Li Z, Guan Y, Wang P, Miao C. Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing. Br J Pharmacol 2016; 173:2352-2368. [PMID: 27174364 PMCID: PMC4945761 DOI: 10.1111/bph.13513] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/31/2016] [Accepted: 05/05/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Ageing is an important risk factor of non-alcoholic fatty liver disease (NAFLD). Here, we investigated whether the deficiency of nicotinamide adenine dinucleotide (NAD(+) ), a ubiquitous coenzyme, links ageing with NAFLD. EXPERIMENTAL APPROACH Hepatic concentrations of NAD(+) , protein levels of nicotinamide phosphoribosyltransferase (NAMPT) and several other critical enzymes regulating NAD(+) biosynthesis, were compared in middle-aged and aged mice or patients. The influences of NAD(+) decline on the steatosis and steatohepatitis were evaluated in wild-type and H247A dominant-negative, enzymically-inactive NAMPT transgenic mice (DN-NAMPT) given normal or high-fat diet (HFD). KEY RESULTS Hepatic NAD(+) level decreased in aged mice and humans. NAMPT-controlled NAD(+) salvage, but not de novo biosynthesis pathway, was compromised in liver of elderly mice and humans. Given normal chow, middle-age DN-NAMPT mice displayed systemic NAD(+) reduction and had moderate NAFLD phenotypes, including lipid accumulation, enhanced oxidative stress, triggered inflammation and impaired insulin sensitivity in liver. All these NAFLD phenotypes, especially release of pro-inflammatory factors, Kupffer cell accumulation, monocytes infiltration, NLRP3 inflammasome pathway and hepatic fibrosis (Masson's staining and α-SMA staining), deteriorated further under HFD challenge. Oral administration of nicotinamide riboside, a natural NAD(+) precursor, completely corrected these NAFLD phenotypes induced by NAD(+) deficiency alone or HFD, whereas adenovirus-mediated SIRT1 overexpression only partially rescued these phenotypes. CONCLUSIONS AND IMPLICATIONS These results provide the first evidence that ageing-associated NAD(+) deficiency is a critical risk factor for NAFLD, and suggest that supplementation with NAD(+) substrates may be a promising therapeutic strategy to prevent and treat NAFLD.
Collapse
Affiliation(s)
- Can‐Can Zhou
- Department of PharmacologySecond Military Medical UniversityShanghaiChina
| | - Xi Yang
- Department of PharmacologySecond Military Medical UniversityShanghaiChina
| | - Xia Hua
- Department of PharmacologySecond Military Medical UniversityShanghaiChina
| | - Jian Liu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Mao‐Bing Fan
- Department of PharmacologySecond Military Medical UniversityShanghaiChina
| | - Guo‐Qiang Li
- Department of PharmacologySecond Military Medical UniversityShanghaiChina
| | - Jie Song
- Department of PharmacologySecond Military Medical UniversityShanghaiChina
| | - Tian‐Ying Xu
- Department of PharmacologySecond Military Medical UniversityShanghaiChina
| | - Zhi‐Yong Li
- Department of PharmacologySecond Military Medical UniversityShanghaiChina
| | - Yun‐Feng Guan
- Department of PharmacologySecond Military Medical UniversityShanghaiChina
| | - Pei Wang
- Department of PharmacologySecond Military Medical UniversityShanghaiChina
| | - Chao‐Yu Miao
- Department of PharmacologySecond Military Medical UniversityShanghaiChina
| |
Collapse
|