1
|
Antunes FTT, Campos MM, Carvalho VDPR, da Silva Junior CA, Magno LAV, de Souza AH, Gomez MV. Current Drug Development Overview: Targeting Voltage-Gated Calcium Channels for the Treatment of Pain. Int J Mol Sci 2023; 24:ijms24119223. [PMID: 37298174 DOI: 10.3390/ijms24119223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 06/12/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are targeted to treat pain conditions. Since the discovery of their relation to pain processing control, they are investigated to find new strategies for better pain control. This review provides an overview of naturally based and synthetic VGCC blockers, highlighting new evidence on the development of drugs focusing on the VGCC subtypes as well as mixed targets with pre-clinical and clinical analgesic effects.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maria Martha Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | | | | | - Luiz Alexandre Viana Magno
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | - Alessandra Hubner de Souza
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte 30110-005, MG, Brazil
| | | |
Collapse
|
2
|
Systemic, Intrathecal, and Intracerebroventricular Antihyperalgesic Effects of the Calcium Channel Blocker CTK 01512–2 Toxin in Persistent Pain Models. Mol Neurobiol 2022; 59:4436-4452. [DOI: 10.1007/s12035-022-02864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
|
3
|
Phα1β is a Promising Neuroprotective Peptide from the Phoneutria nigriventer ‘Armed’ Spider. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
da Silva JF, Binda NS, Pereira EMR, de Lavor MSL, Vieira LB, de Souza AH, Rigo FK, Ferrer HT, de Castro CJ, Ferreira J, Gomez MV. Analgesic effects of Phα1β toxin: a review of mechanisms of action involving pain pathways. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210001. [PMID: 34868281 PMCID: PMC8610172 DOI: 10.1590/1678-9199-jvatitd-2021-0001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
Phα1β is a neurotoxin purified from spider venom that acts as a high-voltage-activated (HVA) calcium channel blocker. This spider peptide has shown a high selectivity for N-type HVA calcium channels (NVACC) and an analgesic effect in several animal models of pain. Its activity was associated with a reduction in calcium transients, glutamate release, and reactive oxygen species production from the spinal cord tissue and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal (i.t.) administration of Phα1β to treat chronic pain reverted opioid tolerance with a safer profile than ω-conotoxin MVIIA, a highly selective NVACC blocker. Following a recent development of recombinant Phα1β (CTK 01512-2), a new molecular target, TRPA1, the structural arrangement of disulphide bridges, and an effect on glial plasticity have been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin not only after the intrathecal but also after the intravenous administration. Herein, we review the Phα1β antinociceptive activity in the most relevant pain models and its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its potential for multimodal analgesia.
Collapse
Affiliation(s)
- Juliana Figueira da Silva
- Laboratory of Pharmacology, Department of Pharmacy, Federal
University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Nancy Scardua Binda
- Laboratory of Pharmacology, Department of Pharmacy, Federal
University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Elizete Maria Rita Pereira
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | | | - Luciene Bruno Vieira
- Department of Pharmacology, Institute of Biological Sciences (ICB),
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Alessandra Hubner de Souza
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Flávia Karine Rigo
- Graduate Program in Health Sciences, University of the Extreme South
of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Hèlia Tenza Ferrer
- Center of Technology in Molecular Medicine, School of Medicine,
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Célio José de Castro
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Juliano Ferreira
- Department of Pharmacology, Federal University of Santa Catarina,
Florianópolis, SC, Brazil
| | - Marcus Vinicius Gomez
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
- Center of Technology in Molecular Medicine, School of Medicine,
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
c-Jun/p38MAPK/ASIC3 pathways specifically activated by nerve growth factor through TrkA are crucial for mechanical allodynia development. Pain 2021; 161:1109-1123. [PMID: 31977937 DOI: 10.1097/j.pain.0000000000001808] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanical allodynia is a cardinal sign of several inflammatory pain disorders where nerve growth factor, a prototypic neurotrophin, plays a crucial role by binding to TrkA receptors. Here, we took the advantage of our generated knock-in mouse model expressing a chimeric TrkA/TrkC receptor that seems to not specifically develop mechanical allodynia after inflammation, to identify the TrkA downstream pathways involved in this phenomenon. We confirmed and extended that disrupting TrkA-specific pathways leads to a specific deficit in mechanical hypersensitivity development after somatic (systemic nerve growth factor administration and paw incision) and, to a lesser extent, visceral injuries. Despite a deficit in thin, mainly peptidergic, fibre innervation in TrkAC mice, thermal hyperalgesia development was not different from WT mice. Inflammatory reaction (oedema, IL-6 content), pain behaviours after intraplantar capsaicin, as well as TRPV1 calcium imaging response of dorsal root ganglion neurons were similar between TrkAC and WT mice. This deficiency in mechanical allodynia development in TrkAC mice is likely due to the alteration of the expression of different TrkA transduction pathways (ie, Akt, p38 MAPK, and c-Jun) especially p38 MAPK, in the dorsal root ganglion cell bodies, ultimately leading to an alteration of at least, ASIC3 channel overexpression, known to participate in nociceptor mechanosensory function.
Collapse
|
6
|
Pedron C, Antunes FTT, Rebelo IN, Campos MM, Correa ÁP, Klein CP, de Oliveira IB, do Nascimento Cordeiro M, Gomez MV, de Souza AH. Phoneutria nigriventer Tx3-3 peptide toxin reduces fibromyalgia symptoms in mice. Neuropeptides 2021; 85:102094. [PMID: 33171335 DOI: 10.1016/j.npep.2020.102094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022]
Abstract
Fibromyalgia is characterized by the amplification of central nervous system pain with concomitant fatigue, sleep, mood disorders, depression, and anxiety. It needs extensive pharmacological therapy. In the present study, Swiss mice were treated with reserpine (0.25 mg/kg, s.c.) over three consecutive days, in order to reproduce the pathogenic process of fibromyalgia. On day 4, the administrations of the Tx3-3 toxin produced significant antinociception in the mechanical allodynia (87.16% ±12.7%) and thermal hyperalgesia (49.46% ± 10.6%) tests when compared with the PBS group. The effects produced by the classical analgesics (duloxetine 30 mg/kg, pramipexole 1 mg/kg, and pregabalin 30 mg/kg, p.o., respectively) in both of the tests also demonstrated antinociception. The administrations were able to increase the levels of the biogenic amines (5-HTP and DE) in the brain. The treatments with pramipexole and pregabalin, but not duloxetine, decreased the immobility time in the FM-induced animals that were submitted to the forced swimming test; however, the Tx3-3 toxin (87.45% ± 4.3%) showed better results. Taken together, the data has provided novel evidence of the ability of the Tx3-3 toxin to reduce painful and depressive symptoms, indicating that it may have significant potential in the treatment of FM.
Collapse
Affiliation(s)
- Claudia Pedron
- Graduate Program in Cellular and Molecular Biology for the Health Sciences, Lutheran University of Brazil, Canoas, Rio Grande do Sul 92425-900, Brazil
| | - Flavia Tasmin Techera Antunes
- Graduate Program in Cellular and Molecular Biology for the Health Sciences, Lutheran University of Brazil, Canoas, Rio Grande do Sul 92425-900, Brazil
| | - Isadora Nunes Rebelo
- Department of Pharmacy, Lutheran University of Brazil, Canoas, Rio Grande do Sul 92425-900, Brazil
| | - Maria Martha Campos
- Toxicology and Pharmacology Research Center, School of Health Sciences, PUCRS, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Áurea Pandolfo Correa
- Department of Pharmacy, Lutheran University of Brazil, Canoas, Rio Grande do Sul 92425-900, Brazil
| | - Caroline Peres Klein
- Toxicology and Pharmacology Research Center, School of Health Sciences, PUCRS, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | | | | | - Marcus Vinícius Gomez
- Grupo Santa Casa de Belo Horizonte, Núcleo de Pós-Graduação, Belo Horizonte, Minas Gerais 30150-240, Brazil
| | - Alessandra Hubner de Souza
- Graduate Program in Cellular and Molecular Biology for the Health Sciences, Lutheran University of Brazil, Canoas, Rio Grande do Sul 92425-900, Brazil; Department of Pharmacy, Lutheran University of Brazil, Canoas, Rio Grande do Sul 92425-900, Brazil.
| |
Collapse
|
7
|
Antunes FTT, Angelo SG, Dallegrave E, Picada JN, Marroni NP, Schemitt E, Ferraz AG, Gomez MV, de Souza AH. Recombinant peptide derived from the venom the Phoneutria nigriventer spider relieves nociception by nerve deafferentation. Neuropeptides 2020; 79:101980. [PMID: 31711615 DOI: 10.1016/j.npep.2019.101980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
Abstract
The avulsion of nerve roots of the brachial plexus that is commonly seen in motorcycle accidents is a type of neuropathy due to deafferentation. This type of pain is clinically challenging since therapeutical protocols fail or have severe side effects. Thus, it is proposed to evaluate the antinociceptive activity of the recombinant CTK 01512-2 peptide that is derived from the venom of the Phoneutria nigriventer spider, as a future new therapeutical option. The neuropathic pain was surgically induced by avulsion of the upper brachial plexus trunk in groups of male Wistar rats and after 17 days, they were treated intrathecally with morphine, ziconotide, and CTK 01512-2. Behavioral tests were performed to evaluate mechanical and thermal hyperalgesia, cold allodynia, the functional activity of the front paw, and exploratory locomotion after the treatments. The peripheral blood samples were collected 6 h after the treatments and a comet assay was performed. The spinal cord was removed for the lipoperoxidation dosing of the membranes. The cerebrospinal fluid was analyzed for the dosage of glutamate. The recombinant peptide showed an antinociceptive effect when compared to the other drugs, without affecting the locomotor activity of the animals. Mechanical and thermal hyperalgesia, as well as cold allodynia, were reduced in the first hours of treatment. The levels of glutamate and the damage by membrane lipoperoxidation were shown to be improved, and genotoxicity was not demonstrated. In a scenario of therapeutical failures in the treatment of this type of pain, CTK 01512-2 was shown as a new effective alternative protocol. However, further testing is required to determine pharmacokinetics.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Program of Postgraduation in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | | | - Eliane Dallegrave
- Department of Pharmacoscience, University Federal of Science of Health of Porto Alegre (UFCSPA), Rio Grande do Sul, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Norma Possa Marroni
- Laboratory of Oxidative Stress and Antioxidants, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Elizangela Schemitt
- Laboratory of Oxidative Stress and Antioxidants, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Alice Gomes Ferraz
- Laboratory of Pharmacology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Marcus Vinicius Gomez
- Nucleus of Postgraduation, Institute of Teaching and Research of Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Alessandra Hubner de Souza
- Program of Postgraduation in Cellular and Molecular Biology Applied to Health (PPGBioSaúde), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.
| |
Collapse
|
8
|
The inhibitory effect of Phα1β toxin on diabetic neuropathic pain involves the CXCR4 chemokine receptor. Pharmacol Rep 2020; 72:47-54. [DOI: 10.1007/s43440-019-00002-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 08/01/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
|
9
|
Alavi MS, Shamsizadeh A, Karimi G, Roohbakhsh A. Transient receptor potential ankyrin 1 (TRPA1)-mediated toxicity: friend or foe? Toxicol Mech Methods 2019; 30:1-18. [PMID: 31409172 DOI: 10.1080/15376516.2019.1652872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been widely studied during the last decade. New studies uncover new features and potential applications for these channels. TRPA1 has a huge distribution all over the human body and has been reported to be involved in different physiological and pathological conditions including cold, pain, and damage sensation. Considering its role, many studies have been devoted to evaluating the role of this channel in the initiation and progression of different toxicities. Accordingly, we reviewed the most recent studies and divided the role of TRPA1 in toxicology into the following sections: neurotoxicity, cardiotoxicity, dermatotoxicity, and pulmonary toxicity. Acetaminophen, heavy metals, tear gases, various chemotherapeutic agents, acrolein, wood smoke particulate materials, particulate air pollution materials, diesel exhaust particles, cigarette smoke extracts, air born irritants, sulfur mustard, and plasticizers are selected compounds and materials with toxic effects that are, at least in part, mediated by TRPA1. Considering the high safety of TRPA1 antagonists and their efficacy to resolve selected toxic or adverse drug reactions, the future of these drugs looks promising.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Giorgi S, Nikolaeva-Koleva M, Alarcón-Alarcón D, Butrón L, González-Rodríguez S. Is TRPA1 Burning Down TRPV1 as Druggable Target for the Treatment of Chronic Pain? Int J Mol Sci 2019; 20:ijms20122906. [PMID: 31197115 PMCID: PMC6627658 DOI: 10.3390/ijms20122906] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, a great array of molecular mediators have been identified as potential targets for the treatment of chronic pain. Among these mediators, transient receptor potential (TRP) channel superfamily members have been thoroughly studied. Namely, the nonselective cationic channel, transient receptor potential ankyrin subtype 1 (TRPA1), has been described as a chemical nocisensor involved in noxious cold and mechanical sensation and as rivalling TRPV1, which traditionally has been considered as the most important TRP channel involved in nociceptive transduction. However, few TRPA1-related drugs have succeeded in clinical trials. In the present review, we attempt to discuss the latest data on the topic and future directions for pharmacological intervention.
Collapse
Affiliation(s)
- Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
- AntalGenics, SL. Ed. Quorum III, Parque Científico Universidad Miguel Hernández, Avda de la Universidad s/n, 03202 Elche, Spain.
| | - David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Laura Butrón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Sara González-Rodríguez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
11
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
12
|
de Souza AH, da Rosa LG, Uliano MR, da Silva Prado L, Ferraz AG, Conter LU, Grivicich I, Dallegrave E, Gomez MV, Picada JN. Evaluation of DNA damage in spinal cord and mutagenic effect of a Phα1β recombinant toxin with analgesic properties from the Phoneutria nigriventer spider. Basic Clin Pharmacol Toxicol 2018; 124:615-620. [PMID: 30449066 DOI: 10.1111/bcpt.13171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022]
Abstract
Phα1β peptide isolated from the venom of the Phoneutria nigriventer spider has shown higher analgesic action in pre-clinical studies than ω-conotoxin MVIIA peptide used to treat severe chronic pain. In view of the great potential for the development of a new Phα1β-based drug, a Phα1β recombinant form (CTK 01512-2) has been studied for efficacy and safety. The aim of this study was to evaluate cytotoxic, genotoxic and mutagenic effects of a Phα1β recombinant form and compare it with native Phα1β and ω-conotoxin MVIIA. Cytotoxicity was evaluated using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) colourimetric assay in L929 mouse fibroblast cells (0.5-10.0 μmol/L). Genotoxic and mutagenic activities were analysed using the alkaline comet assay in peripheral blood and spinal cord, and the micronucleus test in bone marrow from Wistar rats treated by intrathecal injection of CTK 01512-2 (200, 500 and 1000 pmol/site), native Phα1β (500 pmol/site) and ω-conotoxin MVIIA (200 pmol/site). CTK 01512-2 decreased the cell viability of the L929, showing IC50 of 3.3 ± 0.1 µmol/L, while the Phα1β and ω-conotoxin MVIIA did not show cytotoxicity (IC50 > 5.0 µmol/L). Native and recombinant Phα1β forms induced DNA damage in the spinal cord, but not in peripheral blood. CTK 01512-2 at 1000 pmol/site increased the micronucleus frequency suggesting mutagenic effects. In conclusion, the recombinant form has cytotoxic, genotoxic and mutagenic effects, evidenced in doses five times above the therapeutic dose.
Collapse
Affiliation(s)
| | - Luiza Gabriela da Rosa
- Laboratory of Pharmacology and Toxicology, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Michel Rossi Uliano
- Laboratory of Pharmacology and Toxicology, Lutheran University of Brazil (ULBRA), Canoas, Brazil.,Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Lismare da Silva Prado
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Alice Gomes Ferraz
- Laboratory of Pharmacology and Toxicology, Lutheran University of Brazil (ULBRA), Canoas, Brazil.,Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | - Ivana Grivicich
- Laboratory of Cancer Biology, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Eliane Dallegrave
- Department of Pharmacosciences. Federal, University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Marcus Vinícius Gomez
- Laboratory of Toxins, Institute of Education and Research Santa Casa Belo Horizonte, Belo Horizonte, Brazil
| | | |
Collapse
|
13
|
Dallegrave E, Taschetto E, Bainy Leal M, Techera Antunes FT, Gomez MV, Hubner de Souza A. Acute Toxicity of the Recombinant and Native Phα1β Toxin: New Analgesic from Phoneutria nigriventer Spider Venom. Toxins (Basel) 2018; 10:toxins10120531. [PMID: 30545036 PMCID: PMC6315920 DOI: 10.3390/toxins10120531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
Phα1β, a purified peptide from the venom of the spider Phoneutria nigriventer, and its recombinant form CTK 01512-2 are voltage-dependent calcium channel (CaV) blockers of types N, R, P/Q, and L with a preference for type N. These peptides show analgesic action in different pain models in rats. The aim of this study was to evaluate the acute intrathecal toxicity of the native and recombinant Phα1β toxin in Wistar rats. Clinical signs, serum biochemistry, organ weight, and histopathological alterations were evaluated in male and/or female rats. Dyspnea was observed in males, hyporesponsiveness in females, and Straub tail and tremors in both genders. There were no significant differences in male organ weight, although significant differences in the female relative weight of the adrenal glands and spleen have been observed; these values are within the normal range. Serum biochemical data revealed a significant reduction within the physiological limits of species related to urea, ALT, AST, and FA. Hepatic and renal congestion were observed for toxin groups. In renal tissue, glomerular infiltrates were observed with increased glomerular space. These histological alterations were presented in focal areas and in mild degree. Therefore, Phα1β and CTK 01512-2 presented a good safety profile with transient toxicity clinical signals in doses higher than used to obtain the analgesic effect.
Collapse
Affiliation(s)
- Eliane Dallegrave
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170 Brazil.
| | - Eliane Taschetto
- Postgraduate Program in Genetics and Applied Toxicology, Lutheran University of Brazil, Canoas, RS 92425⁻900, Brazil.
| | - Mirna Bainy Leal
- Department of Pharmacology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-17, Brazil.
| | - Flavia Tasmim Techera Antunes
- Postgraduate Program in Cellular and Molecular Biology Applied of Health, Lutheran University of Brazil, Canoas, RS 92425⁻900, Brazil.
| | - Marcus Vinicius Gomez
- Postgraduate Program in Health Sciences: Medicine and Biomedicine, Institute of Education and Research, Grupo Santa Casa de Belo Horizonte, Belo Horizonte, MG 30150-240, Brazil.
| | - Alessandra Hubner de Souza
- Postgraduate Program in Genetics and Applied Toxicology, Lutheran University of Brazil, Canoas, RS 92425⁻900, Brazil.
- Postgraduate Program in Cellular and Molecular Biology Applied of Health, Lutheran University of Brazil, Canoas, RS 92425⁻900, Brazil.
| |
Collapse
|
14
|
Saez NJ, Herzig V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 2018; 158:109-126. [PMID: 30543821 DOI: 10.1016/j.toxicon.2018.11.298] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Spiders have been evolving complex and diverse repertoires of peptides in their venoms with vast pharmacological activities for more than 300 million years. Spiders use their venoms for prey capture and defense, hence they contain peptides that target both prey (mainly arthropods) and predators (other arthropods or vertebrates). This includes peptides that potently and selectively modulate a range of targets such as ion channels, receptors and signaling pathways involved in physiological processes. The contribution of these targets in particular disease pathophysiologies makes spider venoms a valuable source of peptides with potential therapeutic use. In addition, peptides with insecticidal activities, used for prey capture, can be exploited for the development of novel bioinsecticides for agricultural use. Although we have already reviewed potential applications of spider venom peptides as therapeutics (in 2010) and as bioinsecticides (in 2012), a considerable number of research articles on both topics have been published since, warranting an updated review. Here we explore the most recent research on the use of spider venom peptides for both medical and agricultural applications.
Collapse
Affiliation(s)
- Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
15
|
Peigneur S, de Lima ME, Tytgat J. Phoneutria nigriventer venom: A pharmacological treasure. Toxicon 2018; 151:96-110. [DOI: 10.1016/j.toxicon.2018.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/27/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
|
16
|
Denizalti M, Durlu-Kandilci NT, Simsek G, Bozkurt TE, Sahin-Erdemli I. Rho Kinase and Protein Kinase C Pathways are Responsible for Enhanced Carbachol Contraction in Permeabilized Detrusor in a Rat Model of Cystitis. Basic Clin Pharmacol Toxicol 2018; 123:567-576. [PMID: 29786956 DOI: 10.1111/bcpt.13045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/08/2018] [Indexed: 12/25/2022]
Abstract
Interstitial cystitis is a syndrome characterized by detrusor overactivity and chronic inflammation of the bladder. The mechanisms responsible for the altered smooth muscle contractility remain poorly understood. The aim of the study was to investigate the role of intracellular signalling pathways in carbachol-induced detrusor contraction in a rat model of interstitial cystitis. Cyclophosphamide (150 mg/kg, dissolved in saline) was injected to rats (Sprague-Dawley, female, 200-250 g) intraperitoneally once a day on days 1, 4 and 7 to induce interstitial cystitis. Control groups were injected with saline (0.9% NaCl). Detrusor smooth muscle strips were mounted in 1-ml organ baths containing HEPES-buffered modified Krebs' solution and permeabilized with 40 μM β-escin for 30 min. Carbachol-induced contractions were significantly increased from 21.2 ± 1.6% (saline-treated) to 44 ± 4.4% in cyclophosphamide-treated group. The Rho kinase inhibitor Y-27632 (8.8 ± 2%) and the protein kinase C inhibitor GF-109203X (11.7 ± 2.8%) inhibited the increased contractile response (44 ± 4.4%) in rats with cystitis. The increased carbachol-induced contraction (44 ± 4.4%) was also significantly inhibited by the sarcoplasmic reticulum ryanodine channel blocker ryanodine (25.8 ± 3.2%) and the sarcoplasmic reticulum IP3 receptor blocker heparin (17.2 ± 2.2%) in cystitis. RhoA protein levels in the bladder of cyclophosphamide-treated rats were significantly increased while pan-protein kinase C (α, β and γ isoforms) protein expression was unaltered between experimental groups. Carbachol-induced calcium sensitization at constant and clamped calcium (pCa 6) was also increased in cystitis (from 15.8 ± 2.2% to 24.7 ± 2.8%). This increased response (24.7 ± 2.8%) was significantly inhibited by both Y-27632 (7.9 ± 0.7%) and GF-109203X (4.4 ± 1.5%). We conclude that interstitial cystitis is characterized by an enhanced carbachol contractile response as well as by calcium sensitization of the detrusor smooth muscle. Activation of Rho kinase and protein kinase C pathways may be the molecular culprits responsible for the augmented muscarinic response observed in cystitis.
Collapse
Affiliation(s)
- Merve Denizalti
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | - Gul Simsek
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Turgut Emrah Bozkurt
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Inci Sahin-Erdemli
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
17
|
Silva RBM, Greggio S, Venturin GT, da Costa JC, Gomez MV, Campos MM. Beneficial Effects of the Calcium Channel Blocker CTK 01512-2 in a Mouse Model of Multiple Sclerosis. Mol Neurobiol 2018; 55:9307-9327. [PMID: 29667130 DOI: 10.1007/s12035-018-1049-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Abstract
Voltage-gated calcium channels (VGCCs) play a critical role in neuroinflammatory diseases, such as multiple sclerosis (MS). CTK 01512-2 is a recombinant version of the peptide Phα1β derived from the spider Phoneutria nigriventer, which inhibits N-type VGCC/TRPA1-mediated calcium influx. We investigated the effects of this molecule in the mouse model of experimental autoimmune encephalomyelitis (EAE). The effects of CTK 01512-2 were compared to those displayed by ziconotide-a selective N-type VGCC blocker clinically used for chronic pain-and fingolimod-a drug employed for MS treatment. The intrathecal (i.t.) treatment with CTK 01512-2 displayed beneficial effects, by preventing nociception, body weight loss, splenomegaly, MS-like clinical and neurological scores, impaired motor coordination, and memory deficits, with an efficacy comparable to that observed for ziconotide and fingolimod. This molecule displayed a favorable profile on EAE-induced neuroinflammatory changes, including inflammatory infiltrate, demyelination, pro-inflammatory cytokine production, glial activation, and glucose metabolism in the brain and spinal cord. The recovery of spatial memory, besides a reduction of serum leptin levels, allied to central and peripheral elevation of the anti-inflammatory cytokine IL-10, was solely modulated by CTK 01512-2, dosed intrathecally. The intravenous (i.v.) administration of CTK 01512-2 also reduced the EAE-elicited MS-like symptoms, similarly to that seen in animals that received fingolimod orally. Ziconotide lacked any significant effect when dosed by i.v. route. Our results indicate that CTK 01512-2 greatly improved the neuroinflammatory responses in a mouse model of MS, with a higher efficacy when compared to ziconotide, pointing out this molecule as a promising adjuvant for MS management.
Collapse
Affiliation(s)
- Rodrigo B M Silva
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.,Escola de Ciências da Saúde, Centro de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Samuel Greggio
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul - Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil.,Escola de Ciências da Saúde, Curso de Graduação em Biomedicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil
| | - Gianina T Venturin
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul - Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil
| | - Jaderson C da Costa
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul - Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil
| | - Marcus V Gomez
- Núcleo de Pós-Graduação, Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte, 30150-240, Brazil
| | - Maria M Campos
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil. .,Escola de Ciências da Saúde, Centro de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil. .,Escola de Ciências da Saúde, Curso de Graduação em Odontologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil. .,Escola de Ciências da Saúde, Programa de Pós-Graduação em Odontologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.
| |
Collapse
|
18
|
Tsubota M, Okawa Y, Irie Y, Maeda M, Ozaki T, Sekiguchi F, Ishikura H, Kawabata A. Involvement of the cystathionine-γ-lyase/Ca v3.2 pathway in substance P-induced bladder pain in the mouse, a model for nonulcerative bladder pain syndrome. Neuropharmacology 2018; 133:254-263. [PMID: 29407215 DOI: 10.1016/j.neuropharm.2018.01.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 11/29/2017] [Accepted: 01/25/2018] [Indexed: 11/28/2022]
Abstract
Hydrogen sulfide (H2S) formed by cystathionine-γ-lyase (CSE) enhances the activity of Cav3.2 T-type Ca2+ channels, contributing to the bladder pain accompanying hemorrhagic cystitis caused by systemic administration of cyclophosphamide (CPA) in mice. Given clinical and fundamental evidence for the involvement of the substance P/NK1 receptor systems in bladder pain syndrome (BPS)/interstitial cystitis (IC), we created an intravesical substance P-induced bladder pain model in mice and analyzed the possible involvement of the CSE/Cav3.2 pathway. Bladder pain/cystitis was induced by i.p. CPA or intravesical substance P in female mice. Bladder pain was evaluated by counting nociceptive behavior and by detecting referred hyperalgesia in the lower abdomen and hindpaw. The isolated bladder tissue was weighed to estimate bladder swelling and subjected to histological observation and Western blotting. Intravesical substance P caused profound referred hyperalgesia accompanied by little bladder swelling or edema 6-24 h after the administration, in contrast to i.p. CPA-induced nociceptive behavior/referred hyperalgesia with remarkable bladder swelling/edema and urothelial damage. The bladder pain and/or cystitis symptoms caused by substance P or CPA were prevented by the NK1 receptor antagonist. CSE in the bladder was upregulated by substance P or CPA, and the NK1 antagonist prevented the CPA-induced CSE upregulation. A CSE inhibitor, a T-type Ca2+ channel blocker and gene silencing of Cav3.2 abolished the intravesical substance P-induced referred hyperalgesia. The intravesical substance P-induced pain in mice is useful as a model for nonulcerative BPS, and involves the activation of the NK1 receptor/CSE/H2S/Cav3.2 cascade.
Collapse
Affiliation(s)
- Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Yasumasa Okawa
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Yuhei Irie
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan; Division of Emergency and Critical Care Medicine, Fukuoka University, Hospital, Fukuoka 814-0180, Japan
| | - Mariko Maeda
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Tomoka Ozaki
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Hiroyasu Ishikura
- Division of Emergency and Critical Care Medicine, Fukuoka University, Hospital, Fukuoka 814-0180, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
19
|
Nicoletti NF, Erig TC, Zanin RF, Roxo MR, Ferreira NP, Gomez MV, Morrone FB, Campos MM. Pre-clinical evaluation of voltage-gated calcium channel blockers derived from the spider P. nigriventer in glioma progression. Toxicon 2017; 129:58-67. [PMID: 28202361 DOI: 10.1016/j.toxicon.2017.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/30/2023]
Abstract
This study investigated the effects of P/Q- and N-type voltage-gated calcium channel (VGCC) blockers derived from P. nigriventer in glioma progression, by means of in vitro and in vivo experiments. Glioma cells M059J, U-138MG and U-251MG were used to evaluate the antiproliferative effects of P/Q- and N-type VGCC inhibitors PhTx3-3 and Phα1β from P. nigriventer (0.3-100 pM), in comparison to MVIIC and MVIIA from C. magus (0.3-100 pM), respectively. The toxins were also analyzed in a glioma model induced by implantation of GL261 mouse cells. PhTx3-3, Phα1β and MVIIA displayed significant inhibitory effects on the proliferation and viability of all tested glioma cell lines, and evoked cell death mainly with apoptosis characteristics, as indicated by Annexin V/propidium iodide (PI) positivity. The antiproliferative effects of toxins were confirmed by flow cytometry using Ki67 staining. None of the tested toxins altered the proliferation rates of the N9 non-tumor glial cell line. Noteworthy, the administration of the preferential N-type VGCC inhibitors, Phα1β (50 pmol/site; i.c.v.), its recombinant form CTK 01512-2 (50 pmol/site; i.c.v. and i.t.), or MVIIA (10 pmol/site; i.c.v.) caused significant reductions of tumor areas in vivo. N-type VGCC inhibition by Phα1β, CTK 01512-2, and MVIIA led to a marked increase of GFAP-activated astrocytes, and Iba-1-positive microglia, in the peritumoral region, which might explain, at least in part, the inhibitory effects of the toxins in tumor development. This study provides novel evidence on the potential effects of P. nigriventer-derived P/Q-, and mainly, N-type VGCC inhibitors, in glioma progression.
Collapse
Affiliation(s)
- Natália Fontana Nicoletti
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil; PUCRS, Instituto de Toxicologia e Farmacologia, Porto Alegre, RS, Brazil
| | | | - Rafael Fernandes Zanin
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Marcelo Ricardo Roxo
- Serviço de Neurocirurgia, Hospital São José, Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil; UCS, Faculdade de Medicina, Departamento de Neurocirurgia, Caxias do Sul, RS, Brazil
| | - Nelson Pires Ferreira
- Serviço de Neurocirurgia, Hospital São José, Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marcus Vinicius Gomez
- UFMG, Faculdade de Medicina, Laboratório de Neurociências, Belo Horizonte, MG, Brazil
| | - Fernanda Bueno Morrone
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil; PUCRS, Instituto de Toxicologia e Farmacologia, Porto Alegre, RS, Brazil; PUCRS, Faculdade de Farmácia, Porto Alegre, RS, Brazil
| | - Maria Martha Campos
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil; PUCRS, Instituto de Toxicologia e Farmacologia, Porto Alegre, RS, Brazil; PUCRS, Faculdade de Odontologia, Laboratório de Patologia, Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Chen Z, Du S, Kong C, Zhang Z, Mokhtar AD. Intrathecal administration of TRPA1 antagonists attenuate cyclophosphamide-induced cystitis in rats with hyper-reflexia micturition. BMC Urol 2016; 16:33. [PMID: 27315798 PMCID: PMC4912737 DOI: 10.1186/s12894-016-0150-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/03/2016] [Indexed: 11/17/2022] Open
Abstract
Background The activation of TRPA1 channel is implicated in hyper-reflexic micturition similar to overactive bladder. In this study, we aimed to investigate the effects of blocking TRPA1 via intrathecal administration of antagonists on the afferent pathways of micturition in rats with cystitis. Methods The cystitis was induced by intraperitoneal cyclophosphamide administration. Cystometry was performed in control and cystitis rats, following the intrathecal injection of the TRPA1 antagonists HC-030031 and A-967079. Real-time PCR, agarose gel electrophoresis, western blotting and immunohistochemistry were used to investigate the levels of TRPA1 mRNA or protein in the bladder mucosa and L6-S1 dorsal root ganglia (DRG). Results Edema, submucosal hemorrhaging, stiffness and adhesion were noted during removal of the inflamed bladder. The expression of TRPA1 mRNA and protein was higher in the cystitis group in both the mucosa and DRG, but the difference was significant in the DRG (P < 0.05). Intrathecal administration of HC-030031 and A-967079 decreased the micturition reflex in the cystitis group. A 50 μg dose of HC-030031 increased the intercontraction interval (ICI) to 183 % of the no-treatment value (P < 0.05) and decreased the non-voiding contraction (N-VC) to 60 % of control (P < 0.01). Similarly, the treatment with 3 μg A-967079 increased the ICI to 142 % of the control value (P < 0.05) and decreased the N-VC to 77 % of control (P < 0.05). The effects of both antagonists weakened approximately 2 h after injection. Conclusions The TRPA1 had a pronounced upregulation in DRG but more slight in mucosa in rat cystitis. The blockade of neuronal activation of TRPA1 by intrathecal administration of antagonists could decrease afferent nerve activities and attenuated detrusor overactivity induced by inflammation.
Collapse
Affiliation(s)
- Zhipeng Chen
- China Medical University, No. 77 Puhe Road, Shenyang North New Area 110122, Shenyang, Liaoning Province, People's Republic of China
| | - Shuqi Du
- China Medical University, No. 77 Puhe Road, Shenyang North New Area 110122, Shenyang, Liaoning Province, People's Republic of China. .,Department of Urology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District 110001, Shenyang, Liaoning Province, People's Republic of China.
| | - Chuize Kong
- Department of Urology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District 110001, Shenyang, Liaoning Province, People's Republic of China
| | - Zhe Zhang
- Department of Urology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District 110001, Shenyang, Liaoning Province, People's Republic of China
| | - Al-Dhabi Mokhtar
- China Medical University, No. 77 Puhe Road, Shenyang North New Area 110122, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
21
|
Harnessing the knowledge of animal toxins to generate drugs. Pharmacol Res 2016; 112:30-36. [PMID: 26826284 DOI: 10.1016/j.phrs.2016.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 11/20/2022]
Abstract
Animal toxins present high selectivity and specificity for their molecular targets, and have long been considered as prototypes for developing novel drugs, with some successful cases. In this regard, the variety of molecules found in animal venoms, which can be capable of affecting vital physiological systems, have providing the development of studies focusing on turning those molecules (toxins) into therapeutics to treat several diseases, such as chronic pain, hypertension, thrombosis, cancer, and so on. However, some important issues have been responsible for disrupting the toxin-based drug discovery projects. In this review, we have briefly highlighted the development of drugs based on animal toxins, discussing some successful cases as well as the main causes of failure, pointing out the recent strategies applied to overcome the difficulties related to the translational process in this kind of development scenario.
Collapse
|