1
|
Pan Y, Xue Y, Fei X, Zhao L, Han L, Su H, Lin Y, Zhou Y, Zhang Y, Xie G, Kong D, Bao W, Zhang M. PLK1 Mediates the Proliferation and Contraction of Airway Smooth Muscle Cells and Has a Role in T2-High Asthma with Neutrophilic Inflammation Model. J Inflamm Res 2025; 18:4381-4394. [PMID: 40162075 PMCID: PMC11954474 DOI: 10.2147/jir.s501645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
Background Type 2 (T2)-high asthma with neutrophilic inflammation is characterized by airway eosinophilic and neutrophilic infiltration, hyperresponsiveness, remodeling, and insensitivity to steroid treatment. Sphingosine-1-phosphate (S1P), which has a crucial role in the development of asthma, promotes the proliferation and contraction of airway smooth muscle cells (ASMCs), contributing to the pathophysiological processes of asthma. However, the downstream mediator of S1P remains unclear, as does its role in T2-high asthma with neutrophilic inflammation. Methods Ovalbumin- and ozone-induced murine models were used to replicate T2-high asthma with neutrophilic inflammation and primary ASMCs were applied to explore the underlying effects. Through transcriptomic analysis, PLK1 was identified as a potential key molecule associated with S1P-induced proliferation and contraction. Functional studies were performed both in vitro and in vivo by pharmacological inhibition to validate the role of PLK1 and to evaluate the therapeutic effects of PLK1 inhibition. Results S1P level was elevated in the bronchoalveolar lavage fluid (BALF) of T2-high asthma with neutrophilic inflammation model, and promoted ASMCs proliferation and contraction. PLK1 expression increased in S1P-stimulated ASMCs and asthmatic lung tissues. Inhibition of PLK1 blocked S1P-induced ASMCs proliferation and contraction. In vivo, PLK1 inhibition reduced airway inflammation (particularly neutrophilic infiltration), airway remodeling (airway smooth muscle proliferation and collagen deposition), and airway hyperresponsiveness and resistance, improving lung function (of both large and small airways), with superior therapeutic effects to those of dexamethasone. In addition, PLK1 inhibition markedly reduced the BALF levels of IL-17A, IL-21 and IL-6, suggesting that PLK1 might exert its effects mainly through the regulation of Th17 pathway. Conclusion PLK1 mediates S1P-induced ASMC proliferation and contraction, and plays an important part in T2-high asthma with neutrophilic inflammation model, making it a potential therapeutic target for treating T2-high asthma with neutrophilic inflammation.
Collapse
Affiliation(s)
- Yilin Pan
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xia Fei
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Lei Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hang Su
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yanmei Lin
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yingying Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Guogang Xie
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Deping Kong
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Wuping Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Kume H, Kazama K, Sato R, Sato Y. Possible Involvement of Lysophospholipids in Severe Asthma as Novel Lipid Mediators. Biomolecules 2025; 15:182. [PMID: 40001485 PMCID: PMC11852450 DOI: 10.3390/biom15020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 02/27/2025] Open
Abstract
In severe asthma, symptoms are unstable despite intensive treatment based on high doses of inhaled corticosteroids and on-demand use of oral corticosteroids. Although, recently, various biological agents related to Th2 cytokines have been added to intensive controller medications for severe asthma, a significant progress has not been observed in the management for symptoms (dyspnea, wheezing and cough). Medical treatment focused on Type 2 inflammation is probably insufficient to maintain good long-term management for severe asthma. Airway eosinophilia and decreased reversibility in forced expiratory volume in 1 second (FEV1) are listed as major predictors for exacerbation-prone asthma. However, it is generally considered that asthma is complex and heterogeneous. It is necessary to establish precision medicine using treatable traits based on a multidimensional approach related to asthma. Since phospholipids generate lysophospholipids and arachidonic acid by phospholipases, lysophospholipids can be associated with the pathogenesis of this disease via action on smooth muscle, endothelium, and epithelium in the airways. Lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), and sphingosine 1-phosphate (S1P) are increased in bronchoalveolar fluid after allergen challenge. LPA, LPC, and S1P recruit eosinophils to the lungs and cause β2-adrenergic desensitization. LAP and S1P cause contraction and hyperresponsiveness in airway smooth muscle. Moreover, lysophosphatidylserine and S1P are associated with the allergic reaction related to IgE/FcεRI in mast cells. Lysophospholipid action is probably comprised of corticosteroid resistance and is independent of Type 2 inflammation, and may be corelated with oxidative stress. Lysophospholipids may be a novel molecular target in advancing the management and treatment of asthma. This review discusses the clinical relevance of lysophospholipids in asthma.
Collapse
Affiliation(s)
- Hiroaki Kume
- Department of Infectious Diseases and Respiratory Medicine, Fukushima Medical University Aizu Medical Center, 21-2 Maeda, Tanisawa, Kawahigashi, Aizuwakamatsu 969-3492, Japan; (K.K.); (R.S.); (Y.S.)
| | | | | | | |
Collapse
|
3
|
Delgado Dolset MI, Pablo-Torres C, Contreras N, Couto-Rodríguez A, Escolar-Peña A, Graña-Castro O, Izquierdo E, López-Rodríguez JC, Macías-Camero A, Pérez-Gordo M, Villaseñor A, Zubeldia-Varela E, Barber D, Escribese MM. Severe Allergy as a Chronic Inflammatory Condition From a Systems Biology Perspective. Clin Exp Allergy 2024; 54:550-584. [PMID: 38938054 DOI: 10.1111/cea.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Persistent and unresolved inflammation is a common underlying factor observed in several and seemingly unrelated human diseases, including cardiovascular and neurodegenerative diseases. Particularly, in atopic conditions, acute inflammatory responses such as those triggered by insect venom, food or drug allergies possess also a life-threatening potential. However, respiratory allergies predominantly exhibit late immune responses associated with chronic inflammation, that can eventually progress into a severe phenotype displaying similar features as those observed in other chronic inflammatory diseases, as is the case of uncontrolled severe asthma. This review aims to explore the different facets and systems involved in chronic allergic inflammation, including processes such as tissue remodelling and immune cell dysregulation, as well as genetic, metabolic and microbiota alterations, which are common to other inflammatory conditions. Our goal here was to deepen on the understanding of an entangled disease as is chronic allergic inflammation and expose potential avenues for the development of better diagnostic and intervention strategies.
Collapse
Affiliation(s)
- M I Delgado Dolset
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - C Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - N Contreras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Couto-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Escolar-Peña
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - O Graña-Castro
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Izquierdo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - J C López-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Macías-Camero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Villaseñor
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Zubeldia-Varela
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - D Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M M Escribese
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
4
|
Terlizzi M, Colarusso C, Falanga A, Somma P, De Rosa I, Panico L, Pinto A, Maiolino P, Sorrentino R. Induction of Inflammation Disrupts the Negative Interplay between STING and S1P Axis That Is Observed during Physiological Conditions in the Lung. Int J Mol Sci 2023; 24:ijms24098303. [PMID: 37176007 PMCID: PMC10179278 DOI: 10.3390/ijms24098303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The stimulator of interferon genes (STING) is a master regulator of innate immunity, involved in several inflammatory diseases. Our previous data showed that sphingosine-1-phosphate (S1P) is released during inflammatory conditions in the lung. The aim of this study was to understand the interplay between S1P and STING during both physiological and pathological conditions. The mRNA levels of ceramidase (ASAH1), S1P precursor enzyme, and STING were inversely correlated in healthy lung tissues, but positively correlated in tumor tissues. The activation of STING induced higher expression of ASAH1 and was accompanied by IFN-β and IL-6 release. ASAH1 and sphingosine kinases (SPHK I/II) blockade significantly reduced IL-6, but not IFNβ, after STING activation. In support of this, taking advantage of a mouse model, we found that inflamed lungs had higher levels of inactive ASAH1 when STING was inhibited. This confirmed the human data, where higher levels of STING promoted the activation of ASAH1. Lung cancer patients positive to STING and ASAH1 mRNA levels had a dismal prognosis in that the overall survival was reduced compared to STING/ASAH1 negative patients. These data highlight that during physiological conditions, STING and the S1P axis do not interfere, whereas in lung cancer patients their interplay is associated to poor prognosis.
Collapse
Affiliation(s)
- Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Salerno, Italy
| | - Chiara Colarusso
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Salerno, Italy
| | - Anna Falanga
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Salerno, Italy
| | - Pasquale Somma
- Anatomy and Pathology Unit, Ospedale dei Colli, AORN, "Monaldi", 84131 Naples, Italy
| | - Ilaria De Rosa
- Anatomy and Pathology Unit, Ospedale dei Colli, AORN, "Monaldi", 84131 Naples, Italy
| | - Luigi Panico
- Anatomy and Pathology Unit, Ospedale dei Colli, AORN, "Monaldi", 84131 Naples, Italy
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Salerno, Italy
| | - Piera Maiolino
- "Fondazione Pascale", National Institute of Tumor, 80131 Naples, Italy
| | | |
Collapse
|
5
|
Han Y, Guo W, Li X, Xu X, Yang J, Xie S, Liu Y, Zhang H, Wang Y, Xu Y. LC-MS-based metabolomics reveals the in vivo effect of Shegan Mahuang Decoction in an OVA-induced rat model of airway hyperresponsiveness. Mol Omics 2022; 18:957-966. [PMID: 36278797 DOI: 10.1039/d2mo00216g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The traditional Chinese medicine (TCM) formula Shegan Mahuang Decoction (SMD) has been used for treating asthma with significant clinical efficacy, but its mechanism of action has not been well investigated. This study aimed to investigate the anti-asthma effects of SMD on ovalbumin (OVA)-induced airway hyperresponsiveness (AHR) in rats and its potential mechanisms using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics combined with Gene Expression Omnibus (GEO) data mining. The results showed that the administration of SMD significantly attenuated OVA-induced lung histopathological changes. OVA-induced elevation of the immunoglobulin (IgE) and interleukin-4 (IL-4) levels was also inhibited by SMD. A total of 28 significantly changed metabolites in plasma were selected from metabolomics analysis. After treatment with SMD, 24 of them were negatively regulated and the related metabolisms were involved in multiple metabolic pathways such as sphingolipid metabolism and arachidonic acid metabolism. The differentially expressed genes (DEGs) were obtained by GEO data mining. The integrated pathway analysis highlighted 11 signaling pathways that were associated with the anti-asthma effect of SMD. Among them, the metabolite-gene-pathway network showed that the peroxisome proliferator-activated receptors (PPAR) signaling pathway might be the most significant one. This study revealed that SMD exerted an anti-asthma effect against OVA-induced AHR via comprehensively modulating the sphingolipid metabolism, arachidonic acid metabolism, and PPAR signaling, which indicated the synergistic effect of multi-component, multi-target, and multi-pathway of TCM in the treatment of the disease. This study expands our understanding of SMD in the treatment of asthma from a metabolomics perspective.
Collapse
Affiliation(s)
- Yuqing Han
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.,Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Wenjun Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.,Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Xingxing Li
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Xiaohang Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.,Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Jingxuan Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.,Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Shengxu Xie
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Yue Liu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Hongming Zhang
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China.
| |
Collapse
|
6
|
Jo H, Shim K, Jeoung D. The Crosstalk between FcεRI and Sphingosine Signaling in Allergic Inflammation. Int J Mol Sci 2022; 23:ijms232213892. [PMID: 36430378 PMCID: PMC9695510 DOI: 10.3390/ijms232213892] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Sphingolipid molecules have recently attracted attention as signaling molecules in allergic inflammation diseases. Sphingosine-1-phosphate (S1P) is synthesized by two isoforms of sphingosine kinases (SPHK 1 and SPHK2) and is known to be involved in various cellular processes. S1P levels reportedly increase in allergic inflammatory diseases, such as asthma and anaphylaxis. FcεRI signaling is necessary for allergic inflammation as it can activate the SPHKs and increase the S1P level; once S1P is secreted, it can bind to the S1P receptors (S1PRs). The role of S1P signaling in various allergic diseases is discussed. Increased levels of S1P are positively associated with asthma and anaphylaxis. S1P can either induce or suppress allergic skin diseases in a context-dependent manner. The crosstalk between FcεRI and S1P/SPHK/S1PRs is discussed. The roles of the microRNAs that regulate the expression of the components of S1P signaling in allergic inflammatory diseases are also discussed. Various reports suggest the role of S1P in FcεRI-mediated mast cell (MC) activation. Thus, S1P/SPHK/S1PRs signaling can be the target for developing anti-allergy drugs.
Collapse
|
7
|
Mirra D, Cione E, Spaziano G, Esposito R, Sorgenti M, Granato E, Cerqua I, Muraca L, Iovino P, Gallelli L, D’Agostino B. Circulating MicroRNAs Expression Profile in Lung Inflammation: A Preliminary Study. J Clin Med 2022; 11:jcm11185446. [PMID: 36143090 PMCID: PMC9500709 DOI: 10.3390/jcm11185446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Bronchial asthma is an inflammatory airway disease with an ever-increasing incidence. Therefore, innovative management strategies are urgently needed. MicroRNAs are small molecules that play a key role in lungs cellular functions and are involved in chronic inflammatory diseases, such as bronchial asthma. This study aims to compare microRNA serum expression between subjects with asthma, obesity, the most common co-morbidity in asthma, and healthy controls to obtain a specific expression profile specifically related to lung inflammation. Methods: We collected serum samples from a prospective cohort of 25 sex-matched subjects to determine circulating miRNAs through a quantitative RT-PCR. Moreover, we performed an in silico prediction of microRNA target genes linked to lung inflammation. Results: Asthmatic patients had a significant lower expression of hsa-miR-34a-5p, 181a-5p and 146a-5p compared to both obese and healthy ones suggesting microRNAs’ specific involvement in the regulation of lungs inflammatory response. Indeed, using in silico analysis, we identified microRNAs novel target genes as GATA family, linked to the inflammatory-related pathway. Conclusions: This study identifies a novel circulating miRNAs expression profile with promising potentials for asthma clinical evaluations and management. Further and larger investigations will be needed to confirm the potential role of microRNA as a clinical marker of bronchial asthma and eventually of pharmacological treatment response.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018–2022, University of Calabria, 87036 Rende, CS, Italy
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Mario Sorgenti
- Respiratory Diseases in Primary Care, ASP Catanzaro, 88100 Catanzaro, Italy
| | - Elisabetta Granato
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Lucia Muraca
- Department of Primary Care, ASP Catanzaro, 88100 Catanzaro, Italy
| | - Pasquale Iovino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, Mater Domini Hospital, University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| |
Collapse
|
8
|
Díaz-Perales A, Escribese MM, Garrido-Arandia M, Obeso D, Izquierdo-Alvarez E, Tome-Amat J, Barber D. The Role of Sphingolipids in Allergic Disorders. FRONTIERS IN ALLERGY 2022; 2:675557. [PMID: 35386967 PMCID: PMC8974723 DOI: 10.3389/falgy.2021.675557] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Allergy is defined as a complex chronic inflammatory condition in which genetic and environmental factors are implicated. Sphingolipids are involved in multiple biological functions, from cell membrane components to critical signaling molecules. To date, sphingolipids have been studied in different human pathologies such as neurological disorders, cancer, autoimmunity, and infections. Sphingolipid metabolites, in particular, ceramide and sphingosine-1-phosphate (S1P), regulate a diverse range of cellular processes that are important in immunity and inflammation. Moreover, variations in the sphingolipid concentrations have been strongly associated with allergic diseases. This review will focus on the role of sphingolipids in the development of allergic sensitization and allergic inflammation through the activation of immune cells resident in tissues, as well as their role in barrier remodeling and anaphylaxis. The knowledge gained in this emerging field will help to develop new therapeutic options for allergic disorders.
Collapse
Affiliation(s)
- Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Maria M Escribese
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - David Obeso
- Centro de Excelencia en Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Elena Izquierdo-Alvarez
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Domingo Barber
- Basic Medical Sciences Department, Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
9
|
Riemma MA, Cerqua I, Romano B, Irollo E, Bertolino A, Camerlingo R, Granato E, Rea G, Scala S, Terlizzi M, Spaziano G, Sorrentino R, D'Agostino B, Roviezzo F, Cirino G. Sphingosine-1-phosphate/TGF-β axis drives epithelial mesenchymal transition in asthma-like disease. Br J Pharmacol 2022; 179:1753-1768. [PMID: 34825370 PMCID: PMC9306821 DOI: 10.1111/bph.15754] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Airway remodelling is a critical feature of chronic lung diseases. Epithelial-mesenchymal transition (EMT) represents an important source of myofibroblasts, contributing to airway remodelling. Here, we investigated the sphingosine-1-phosphate (S1P) role in EMT and its involvement in asthma-related airway dysfunction. EXPERIMENTAL APPROACH A549 cells were used to assess the S1P effect on EMT and its interaction with TGF-β signalling. To assess the S1P role in vivo and its impact on lung function, two experimental models of asthma were used by exposing BALB/c mice to subcutaneous administration of either S1P or ovalbumin (OVA). KEY RESULTS Following incubation with TGF-β or S1P, A549 acquire a fibroblast-like morphology associated with an increase of mesenchymal markers and down-regulation of the epithelial. These effects are reversed by treatment with the TGF-β receptor antagonist LY2109761. Systemic administration of S1P to BALB/c mice induces asthma-like disease characterized by mucous cell metaplasia and increased levels of TGF-β, IL-33 and FGF-2 within the lung. The bronchi harvested from S1P-treated mice display bronchial hyperresponsiveness associated with overexpression of the mesenchymal and fibrosis markers and reduction of the epithelial.The S1P-induced switch from the epithelial toward the mesenchymal pattern correlates to a significant increase of lung resistance and fibroblast activation. TGF-β blockade, in S1P-treated mice, abrogates these effects. Finally, inhibition of sphingosine kinases by SK1-II in OVA-sensitized mice, abrogates EMT, pulmonary TGF-β up-regulation, fibroblasts recruitment and airway hyperresponsiveness. CONCLUSION AND IMPLICATIONS Targeting S1P/TGF-β axis may hold promise as a feasible therapeutic target to control airway dysfunction in asthma.
Collapse
Affiliation(s)
- Maria A. Riemma
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Elena Irollo
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPennsylvaniaUSA
| | - Antonio Bertolino
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Rosa Camerlingo
- RCCS INT Cellular Biology and Bioterapy‐ Research DepartmentNational Cancer Institute G. Pascale FoundationNaplesItaly
| | - Elisabetta Granato
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Giuseppina Rea
- IRCCS INT Microenvironment Molecular TargetsNational Cancer Institute G. Pascale FoundationNaplesItaly
| | - Stefania Scala
- IRCCS INT Microenvironment Molecular TargetsNational Cancer Institute G. Pascale FoundationNaplesItaly
| | - Michela Terlizzi
- Department of Pharmacy (DIFARMA)University of SalernoSalernoItaly
| | - Giuseppe Spaziano
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of MedicineUniversity of Campania Luigi VanvitelliNaplesItaly
| | | | - Bruno D'Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of MedicineUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
10
|
Wu Q, Xu X, Miao X, Bao X, Li X, Xiang L, Wang W, Du S, Lu Y, Wang X, Yang D, Zhang J, Shen X, Li F, Lu S, Fan Y, Xu S, Chen Z, Wang Y, Teng H, Huang Z. YAP signaling in horizontal basal cells promotes the regeneration of olfactory epithelium after injury. Stem Cell Reports 2022; 17:664-677. [PMID: 35148842 PMCID: PMC9039758 DOI: 10.1016/j.stemcr.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 10/29/2022] Open
Abstract
The horizontal basal cells (HBCs) of olfactory epithelium (OE) serve as reservoirs for stem cells during OE regeneration, through proliferation and differentiation, which is important in recovery of olfactory function. However, the molecular mechanism of regulation of HBC proliferation and differentiation after injury remains unclear. Here, we found that yes-associated protein (YAP) was upregulated and activated in HBCs after OE injury. Deletion of YAP in HBCs led to impairment in OE regeneration and functional recovery of olfaction after injury. Mechanically, YAP was activated by S1P/S1PR2 signaling, thereby promoting the proliferation of HBCs and OE regeneration after injury. Finally, activation of YAP signaling enhanced the proliferation of HBCs and improved functional recovery of olfaction after OE injury or in Alzheimer's disease model mice. Taken together, these results reveal an S1P/S1PR2/YAP pathway in OE regeneration in response to injury, providing a promising therapeutic strategy for OE injury.
Collapse
Affiliation(s)
- Qian Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuemeng Miao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaomei Bao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiuchun Li
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ludan Xiang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Siyu Du
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiwu Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Danlu Yang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiya Shen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fayi Li
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sheng Lu
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yiren Fan
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shujie Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zihao Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ying Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Department of Transfusion Medicine, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310053, China.
| | - Honglin Teng
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
11
|
Dai P, Tang Z, Qi M, Liu D, Bajinka O, Tan Y. Dispersion and utilization of lipid droplets mediates respiratory syncytial virus-induced airway hyperresponsiveness. Pediatr Allergy Immunol 2022; 33:e13651. [PMID: 34383332 DOI: 10.1111/pai.13651] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Respiratory viral infections (RSV) can induce acute asthma attacks, thereby destroying lung function and accelerating the progression of the disease. However, medications in the stable phase of asthma are often not effective for acute attacks induced by viral infections. We aimed to clarify the possible mechanism of viral infection-induced asthma through fatty acid metabolism. METHODS AND RESULTS The airway resistances, inflammatory injuries, and oxidative stress in the RSV-induced animal models were significantly higher than those in the control group at acute phase (7 days) and chronic phase (28 days). Moreover, the concentrations of the medium- and long-chain fatty acids in lung tissue at (28 days) were significantly increased, including 14:0 (myristic acid), 16:0 (palmitic acid, PA), 18:1 (oleic acid, OA), and 18:2 (linoleic acid, LA) using non-targeted metabonomics. Airway epithelial cells treated with RSV showed the reduced expression of FSP27, RAB8A, and PLIN5, which caused the fusion and growth of lipid droplet (LD), and increased expression of the LD dispersion gene perilipin 2. There was also a decrease in PPARγ expression and an increase in the fatty acid catabolism gene PPARα, causing lipid oxidation, free fatty acid releases, and an upsurge in IL-1, IL-2, IL-4, and IL-6 expression, which could be abrogated by GPR40 inhibitor. Treated mice or epithelial cells with C18 fatty acid exhibited inhibition of epithelial proliferation, increases of inflammation, and oxidative damage. CONCLUSIONS RSV promoted lipid dispersion and utilization, causing enlarged oxidative injuries and an upsurge in the pro-inflammatory cytokines, leading to the progression of airway hyperresponsiveness (AHR).
Collapse
Affiliation(s)
- Pei Dai
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingming Qi
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Hunan, China
| | - Dan Liu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
12
|
Choi Y, Kim M, Kim SJ, Yoo H, Kim S, Park H. Metabolic shift favoring C18:0 ceramide accumulation in obese asthma. Allergy 2020; 75:2858-2866. [PMID: 32416622 DOI: 10.1111/all.14366] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Obesity associated with various complications has increased worldwide. Body weight gain alters lipid metabolites (especially sphingolipids) contributing to obesity-induced inflammation. However, the significance of the metabolites in the development of obese asthma is not yet clear. METHODS The serum levels of sphingolipids were measured using liquid chromatography-tandem mass spectrometry in obese controls (n = 7) and patients with asthma: the obese group (BMI > 25 kg/m2 , n = 13) vs the nonobese (n = 28) group. To examine the relationship between metabolic changes in sphingolipids and macrophage polarization, public microarray data were analyzed. In addition, the alteration in sphingolipid metabolism was investigated in wild-type BALB/c mice fed a high-fat diet. RESULTS The obese asthma had higher levels of serum C18:0 and C20:0 ceramides than the nonobese asthma group (P = .028 and P = .040, respectively). The value of the serum C18:0 ceramide (184.3 ng/mL) for discriminating the obese asthma from the nonobese asthma group showed 53.9% sensitivity and 85.7% specificity (AUC = 0.721, P = .024). The microarray data showed significantly increased ceramide synthesis and metabolic shift to ceramide accumulation during M1 macrophage polarization in humans. Increased airway hyperresponsiveness, M1 macrophage polarization, and C18:0 ceramide levels were noted in obese mice, but not in nonobese mice. Increased expression of ceramide synthase (CerS) 1 and CerS6 (not CerS2) was noted in lung tissues of obese mice. CONCLUSION Alteration in sphingolipid metabolism favoring ceramide accumulation (especially long-chain ceramides) may contribute to developing obese asthma.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Minji Kim
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
| | - Su Jung Kim
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hyun‐Ju Yoo
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Seung‐Hyun Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| |
Collapse
|
13
|
Cerqua I, Terlizzi M, Bilancia R, Riemma MA, Citi V, Martelli A, Pace S, Spaziano G, D'Agostino B, Werz O, Ialenti A, Sorrentino R, Cirino G, Rossi A, Roviezzo F. 5α-dihydrotestosterone abrogates sex bias in asthma like features in the mouse. Pharmacol Res 2020; 158:104905. [PMID: 32416213 DOI: 10.1016/j.phrs.2020.104905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Androgen levels inversely correlate with the incidence, susceptibility and severity of asthma. However, whether male sex hormones such as 5α-dihydrotestosterone (DHT) have beneficial effects on asthma symptoms and/or could affect asthma susceptibility have not been investigated. DHT administration to female mice, during the sensitization phase, abrogates the sex bias in bronchial hyperreactivity. This effect correlates with inhibition of leukotriene biosynthesis in the lung. DHT significantly inhibits also other asthma-like features such as airway hyperplasia and mucus production in sensitized female mice. Conversely, DHT does not affect plasma IgE levels as well as CD3+CD4+ IL-4+ cell and IgE+c-Kit+ cell infiltration within the lung but prevents pulmonary mast cell activation. The in vitro study on RBL-2H3 cells confirms that DHT inhibits mast cell degranulation. In conclusion, our data demonstrate that immunomodulatory effects of DHT on mast cell activation prevent the translation of allergen sensitization into clinical manifestation of asthma.
Collapse
Affiliation(s)
- Ida Cerqua
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, Via Giovanni Paolo II 132 Fisciano, I-84084 Salerno, Italy.
| | - Rossella Bilancia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Maria A Riemma
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno, 6, Pisa, I-56100, Italy.
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, 6, Pisa, I-56100, Italy.
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany.
| | - Giuseppe Spaziano
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, Via Costantinopoli 16, I-80131 Naples, Italy.
| | - Bruno D'Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, Via Costantinopoli 16, I-80131 Naples, Italy.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany.
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Rosalinda Sorrentino
- Department of Pharmacy (DIFARMA), University of Salerno, Via Giovanni Paolo II 132 Fisciano, I-84084 Salerno, Italy.
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| |
Collapse
|
14
|
De Cunto G, Brancaleone V, Riemma MA, Cerqua I, Vellecco V, Spaziano G, Cavarra E, Bartalesi B, D'Agostino B, Lungarella G, Cirino G, Lucattelli M, Roviezzo F. Functional contribution of sphingosine-1-phosphate to airway pathology in cigarette smoke-exposed mice. Br J Pharmacol 2019; 177:267-281. [PMID: 31499592 DOI: 10.1111/bph.14861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/16/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE A critical role for sphingosine kinase/sphingosine-1-phosphate (S1P) pathway in the control of airway function has been demonstrated in respiratory diseases. Here, we address S1P contribution in a mouse model of mild chronic obstructive pulmonary disease (COPD). EXPERIMENTAL APPROACH C57BL/6J mice have been exposed to room air or cigarette smoke up to 11 months and killed at different time points. Functional and molecular studies have been performed. KEY RESULTS Cigarette smoke caused emphysematous changes throughout the lung parenchyma coupled to a progressive collagen deposition in both peribronchiolar and peribronchial areas. The high and low airways showed an increased reactivity to cholinergic stimulation and α-smooth muscle actin overexpression. Similarly, an increase in airway reactivity and lung resistances following S1P challenge occurred in smoking mice. A high expression of S1P, Sph-K2 , and S1P receptors (S1P2 and S1P3 ) has been detected in the lung of smoking mice. Sphingosine kinases inhibition reversed the increased cholinergic response in airways of smoking mice. CONCLUSIONS AND IMPLICATIONS S1P signalling up-regulation follows the disease progression in smoking mice and is involved in the development of airway hyperresponsiveness. Our study defines a therapeutic potential for S1P inhibitors in management of airways hyperresponsiveness associated to emphysema in smokers with both asthma and COPD.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | | | - Ida Cerqua
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Giuseppe Spaziano
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Bruno D'Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | |
Collapse
|
15
|
Esposito R, Spaziano G, Giannattasio D, Ferrigno F, Liparulo A, Rossi A, Roviezzo F, Sessa M, Falciani M, Berrino L, Polverino M, Polverino F, D'Agostino B. Montelukast Improves Symptoms and Lung Function in Asthmatic Women Compared With Men. Front Pharmacol 2019; 10:1094. [PMID: 31611790 PMCID: PMC6769077 DOI: 10.3389/fphar.2019.01094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: Gender differences exist in the prevalence of asthma and allergic diseases, partially due to the effects of sex hormones on the development of allergic manifestations. Women, compared with men, are more prone to suffer allergic asthma, experience difficulties in controlling asthma symptoms, and show adverse responses to drugs. However, there are knowledge gaps on the effectiveness of anti-leukotrienes drugs on lung function, symptoms, and pulmonary and systemic inflammation in adult asthmatic women compared with men. We conducted a prospective cohort study to characterize the effectiveness of an anti-leukotrienes drug, montelukast (MS), in asthmatic adult women and men. Methods: Twenty-one asthmatic subjects (11 women and 10 men), who were on low-dose inhaled corticosteroids (ICS), were treated with MS. The optimal control of the symptoms was achieved in both groups according to the Global Initiative for Asthma guidelines. At enrollment, and after 13 weeks from the beginning of MS, pulmonary function tests and asthma control tests were performed, and the fraction of exhaled nitric oxide and blood eosinophils levels were measured. Results: From baseline until the end of the study, women treated with MS + ICS had better control of the asthmatic symptoms, defined as higher asthma control test (ACT) score (17.00 ± 1.07 to 23.36 ± 0.45; p < 0.0015), improved pulmonary function [with higher forced expiratory volume in 1 s (from 77.25 ± 6.79 to 103.88 ± 6.24; p < 0.0077)], and forced vital capacity (from 91.95 ± 6.81 to 113.17 ± 4.79; p < 0.0183) compared with men. Interestingly, MS + ICS-treated women had significantly lower levels of blood eosinophils (from 5.27 ± 0.30 to 3.30 ± 0.31; p < 0.0449) and exhaled nitric oxide (from 44.70 ± 7.30 to 25.20 ± 3.90; p < 0.0294) compared with men. Conclusion: The treatment with MS, added to ICS, in women leads to better control of symptoms, better management of lung function, and decreased inflammation levels compared with ICS + MS treatment in men.
Collapse
Affiliation(s)
- Renata Esposito
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | | | | | - Angela Liparulo
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maurizio Sessa
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | - Mario Polverino
- Pulmonary and Critical Care Medicine, Ospedale Scarlato, Scafati, Italy
| | - Francesca Polverino
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Bruno D'Agostino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
16
|
Ebenezer DL, Berdyshev EV, Bronova IA, Liu Y, Tiruppathi C, Komarova Y, Benevolenskaya EV, Suryadevara V, Ha AW, Harijith A, tuder RM, Natarajan V, Fu P. Pseudomonas aeruginosa stimulates nuclear sphingosine-1-phosphate generation and epigenetic regulation of lung inflammatory injury. Thorax 2019; 74:579-591. [PMID: 30723184 PMCID: PMC6834354 DOI: 10.1136/thoraxjnl-2018-212378] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Dysregulated sphingolipid metabolism has been implicated in the pathogenesis of various pulmonary disorders. Nuclear sphingosine-1-phosphate (S1P) has been shown to regulate histone acetylation, and therefore could mediate pro-inflammatory genes expression. METHODS Profile of sphingolipid species in bronchoalveolar lavage fluids and lung tissue of mice challenged with Pseudomonas aeruginosa (PA) was investigated. The role of nuclear sphingosine kinase (SPHK)2 and S1P in lung inflammatory injury by PA using genetically engineered mice was determined. RESULTS Genetic deletion of Sphk2, but not Sphk1, in mice conferred protection from PA-mediated lung inflammation. PA infection stimulated phosphorylation of SPHK2 and its localisation in epithelial cell nucleus, which was mediated by protein kinase C (PKC) δ. Inhibition of PKC δ or SPHK2 activity reduced PA-mediated acetylation of histone H3 and H4, which was necessary for the secretion of pro-inflammatory cytokines, interleukin-6 and tumour necrosis factor-α. The clinical significance of the findings is supported by enhanced nuclear localisation of p-SPHK2 in the epithelium of lung specimens from patients with cystic fibrosis (CF). CONCLUSIONS Our studies define a critical role for nuclear SPHK2/S1P signalling in epigenetic regulation of bacterial-mediated inflammatory lung injury. Targeting SPHK2 may represent a potential strategy to reduce lung inflammatory pulmonary disorders such as pneumonia and CF.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois, USA
| | | | - Irina A Bronova
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Yuru Liu
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | | | - Yulia Komarova
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | | | | | - Alison W Ha
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois, USA
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | - Rubin M tuder
- Department of Medicine, University of Colorado, Denver, Colorado, USA
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
17
|
Understanding Platelets in Infectious and Allergic Lung Diseases. Int J Mol Sci 2019; 20:ijms20071730. [PMID: 30965568 PMCID: PMC6480134 DOI: 10.3390/ijms20071730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence suggests that platelets, cytoplasmic fragments derived from megakaryocytes, can no longer be considered just as mediators in hemostasis and coagulation processes, but as key modulators of immunity. Platelets have received increasing attention as the emergence of new methodologies has allowed the characterization of their components and functions in the immune continuum. Platelet activation in infectious and allergic lung diseases has been well documented and associated with bacterial infections reproduced in several animal models of pulmonary bacterial infections. Direct interactions between platelets and bacteria have been associated with increased pulmonary platelet accumulation, whereas bacterial-derived toxins have also been reported to modulate platelet function. Recently, platelets have been found extravascular in the lungs of patients with asthma, and in animal models of allergic lung inflammation. Their ability to interact with immune and endothelial cells and secrete immune mediators makes them one attractive target for biomarker identification that will help characterize their contribution to lung diseases. Here, we present an original review of the last advances in the platelet field with a focus on the contribution of platelets to respiratory infections and allergic-mediated diseases.
Collapse
|
18
|
Kowal K, Żebrowska E, Chabowski A. Altered Sphingolipid Metabolism Is Associated With Asthma Phenotype in House Dust Mite-Allergic Patients. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:330-342. [PMID: 30912323 PMCID: PMC6439195 DOI: 10.4168/aair.2019.11.3.330] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/18/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
Abstract
Purpose Sphingolipids play an important role in cell growth, survival, inflammation and tissue remodeling. House dust mite (HDM) allergy is a major risk factor for asthma. The aim of the study was to evaluate if allergic asthma phenotype is associated with altered sphingolipid metabolism. Methods Twenty-two HDM-allergic asthmatic patients and 11 HDM-allergic rhinitis patients were challenged intrabronchially with biologically standardized Dermatophagoides pteronyssinus extract. Whole blood and platelet-poor plasma samples were collected before, during early asthmatic response (EAR), late asthmatic response (LAR) and 24 hours after the challenge. Concentrations of sphinganine (SFA), sphinganine-1-phosphate (SFA1P), ceramide, sphingosine (SFO) and sphingosine-1-phosphate (S1P) were measured using high performance liquid chromatography. Results In all house dust mite-allergic patients (HDM-APs), baseline lung function and severity of airway hyperreactivity (AHR) correlated significantly with plasma S1P and SFA1P concentrations. Exhaled nitric oxide concentration, however, correlated with SFA and ceramide, but not with S1P or SFA1P concentration. Allergen challenge increased plasma S1P concentration during EAR, but only in patients who developed both EAR and LAR. The magnitude of the increase determined during EAR correlated with the severity of subsequently developed LAR. Platelet and eosinophil counts were independent predictors of plasma S1P concentration. A significant increase in plasma SFA concentration in response to allergen challenge was seen only in patients who did not develop asthmatic response. Conclusions Altered sphingolipid metabolism, with augmented synthesis of S1P and impaired de novo sphingolipid synthesis in response to allergen challenge, may participate in the development of asthma phenotype in HDM-APs.
Collapse
Affiliation(s)
- Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland.,Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland.
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
19
|
Kim SH, Uuganbayar U, Trinh HKT, Pham DL, Kim N, Kim M, Sohn H, Park HS. Evaluation of Neutrophil Activation Status According to the Phenotypes of Adult Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:381-393. [PMID: 30912327 PMCID: PMC6439190 DOI: 10.4168/aair.2019.11.3.381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 12/14/2022]
Abstract
Purpose Neutrophils are considered key effector cells in the pathogenic mechanisms of airway inflammation in asthma. This study assessed the activation status of neutrophils in adult asthmatics, and the therapeutic potential of FTY720, a synthetic sphingosine-1-phosphate analog, on activated neutrophils using an in vitro stimulation model. Methods We isolated peripheral blood neutrophils (PBNs) from 59 asthmatic patients (including 20 aspirin-exacerbated respiratory disease [AERD] and 39 aspirin-tolerant asthma [ATA] groups). PBNs were stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) or lipopolysaccharide (LPS) and their activation status was determined based on reactive oxygen species (ROS) production, cell surface expression of CD11b, interleukin (IL)-8 and matrix metallopeptidase (MMP)-9 release. PBNs were primed with FTY720 to evaluate its anti-inflammatory action. Results In vitro PBN stimulation with fMLP or LPS induced a significant increase in ROS/CD11b/IL-8/MMP-9 levels (P < 0.05 for all). In asthmatics, fMLP-induced ROS level was significantly correlated with values of forced expiratory volume in 1 second/forced vital capacity (r = −0.278; P = 0.036), maximal mid-expiratory flow (r = −0.309; P = 0.019) and PC20 methacholine (r = −0.302; P = 0.029). In addition, ROS levels were significantly higher in patients with AERD and in those with severe asthma than in those with ATA or non-severe asthma (P < 0.05 for all). FTY720 treatment could suppress ROS/CD11b levels, and LPS-induced IL-8 and MMP-9 levels (P < 0.05 for all). Responders to FTY720 treatment had significantly higher neutrophil counts in sputum (P = 0.004). Conclusions Our findings suggest a useful in vitro PBN stimulation model for evaluating the neutrophil functional status and the therapeutic potentials of neutrophil-targeting candidates in asthmatics.
Collapse
Affiliation(s)
- Seung Hyun Kim
- Translational Research Laboratory for Inflammatory Disease, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea.
| | - Udval Uuganbayar
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Duy Le Pham
- Department of Immunology, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | - Namhyo Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Minji Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hyeukjun Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
20
|
Rossi A, Roviezzo F, Sorrentino R, Riemma MA, Cerqua I, Bilancia R, Spaziano G, Troisi F, Pace S, Pinto A, D'Agostino B, Werz O, Cirino G. Leukotriene-mediated sex dimorphism in murine asthma-like features during allergen sensitization. Pharmacol Res 2018; 139:182-190. [PMID: 30468889 DOI: 10.1016/j.phrs.2018.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022]
Abstract
The incidence and severity of asthma preponderate in women versus men. Leukotrienes (LTs) are lipid mediators involved in asthma pathogenesis, and sex disparities in LT biosynthesis and anti-LT pharmacology in inflammation have recently emerged. Here, we report on sex dimorphism in LT production during allergen sensitization and its correlation to lung function. While high plasma levels of IgE, as sensitization index, were elevated in both sexes, LT levels increased only in lungs of female ovalbumin-sensitized BALB/c mice. Sex-dependent elevated LT levels strictly correlated to an enhanced airway hyperreactivity, pulmonary inflammation and mast cell infiltration/activation in female mice. Importantly, this sex bias was coupled to superior therapeutic efficacy of different types of clinically used LT modifiers like zileuton, MK886 and montelukast in female animals. Our findings reveal sex-dependent LT production as a basic mechanism of sex dimorphism in allergic asthma, and suggest that women might benefit more from anti-LT asthma therapy.
Collapse
Affiliation(s)
- Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Rosalinda Sorrentino
- Department of Pharmacy (DIFARMA), University of Salerno, Via Giovanni Paolo II 132 Fisciano, I-84084 Salerno, Italy.
| | - Maria A Riemma
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Rossella Bilancia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Giuseppe Spaziano
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, Via Costantinopoli 16, I-80131 Naples, Italy.
| | - Fabiana Troisi
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany.
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany.
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, Via Giovanni Paolo II 132 Fisciano, I-84084 Salerno, Italy.
| | - Bruno D'Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, Via Costantinopoli 16, I-80131 Naples, Italy.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Philosophenweg 14, D-07743 Jena, Germany.
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| |
Collapse
|
21
|
Svajdova S, Mazurova L, Brozmanova M. The inflammatory molecule sphingosine-1-phosphate is not effective to evoke or sensitize cough in naïve guinea pigs. Respir Physiol Neurobiol 2018; 257:82-86. [DOI: 10.1016/j.resp.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/29/2018] [Accepted: 02/04/2018] [Indexed: 01/31/2023]
|
22
|
S1PR3 Mediates Itch and Pain via Distinct TRP Channel-Dependent Pathways. J Neurosci 2018; 38:7833-7843. [PMID: 30082422 DOI: 10.1523/jneurosci.1266-18.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/14/2018] [Indexed: 11/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive signaling lipid associated with a variety of chronic pain and itch disorders. S1P signaling has been linked to cutaneous pain, but its role in itch has not yet been studied. Here, we find that S1P triggers itch and pain in male mice in a concentration-dependent manner, with low levels triggering acute itch alone and high levels triggering both pain and itch. Ca2+ imaging and electrophysiological experiments revealed that S1P signals via S1P receptor 3 (S1PR3) and TRPA1 in a subset of pruriceptors and via S1PR3 and TRPV1 in a subset of heat nociceptors. Consistent with these findings, S1P-evoked itch behaviors are selectively lost in mice lacking TRPA1, whereas S1P-evoked acute pain and heat hypersensitivity are selectively lost in mice lacking TRPV1. We conclude that S1P acts via different cellular and molecular mechanisms to trigger itch and pain. Our discovery elucidates the diverse roles that S1P signaling plays in somatosensation and provides insight into how itch and pain are discriminated in the periphery.SIGNIFICANCE STATEMENT Itch and pain are major health problems with few effective treatments. Here, we show that the proinflammatory lipid sphingosine 1-phosphate (S1P) and its receptor, S1P receptor 3 (S1PR3), trigger itch and pain behaviors via distinct molecular and cellular mechanisms. Our results provide a detailed understanding of the roles that S1P and S1PR3 play in somatosensation, highlighting their potential as targets for analgesics and antipruritics, and provide new insight into the mechanistic underpinnings of itch versus pain discrimination in the periphery.
Collapse
|
23
|
Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol 2018; 29:247-261. [PMID: 28814067 DOI: 10.1093/intimm/dxx040] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies have highlighted an emerging role for neuro-immune interactions in mediating allergic diseases. Allergies are caused by an overactive immune response to a foreign antigen. The peripheral sensory and autonomic nervous system densely innervates mucosal barrier tissues including the skin, respiratory tract and gastrointestinal (GI) tract that are exposed to allergens. It is increasingly clear that neurons actively communicate with and regulate the function of mast cells, dendritic cells, eosinophils, Th2 cells and type 2 innate lymphoid cells in allergic inflammation. Several mechanisms of cross-talk between the two systems have been uncovered, with potential anatomical specificity. Immune cells release inflammatory mediators including histamine, cytokines or neurotrophins that directly activate sensory neurons to mediate itch in the skin, cough/sneezing and bronchoconstriction in the respiratory tract and motility in the GI tract. Upon activation, these peripheral neurons release neurotransmitters and neuropeptides that directly act on immune cells to modulate their function. Somatosensory and visceral afferent neurons release neuropeptides including calcitonin gene-related peptide, substance P and vasoactive intestinal peptide, which can act on type 2 immune cells to drive allergic inflammation. Autonomic neurons release neurotransmitters including acetylcholine and noradrenaline that signal to both innate and adaptive immune cells. Neuro-immune signaling may play a central role in the physiopathology of allergic diseases including atopic dermatitis, asthma and food allergies. Therefore, getting a better understanding of these cellular and molecular neuro-immune interactions could lead to novel therapeutic approaches to treat allergic diseases.
Collapse
Affiliation(s)
- Tiphaine Voisin
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Amélie Bouvier
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
24
|
Hill RZ, Hoffman BU, Morita T, Campos SM, Lumpkin EA, Brem RB, Bautista DM. The signaling lipid sphingosine 1-phosphate regulates mechanical pain. eLife 2018; 7:e33285. [PMID: 29561262 PMCID: PMC5896955 DOI: 10.7554/elife.33285] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Somatosensory neurons mediate responses to diverse mechanical stimuli, from innocuous touch to noxious pain. While recent studies have identified distinct populations of A mechanonociceptors (AMs) that are required for mechanical pain, the molecular underpinnings of mechanonociception remain unknown. Here, we show that the bioactive lipid sphingosine 1-phosphate (S1P) and S1P Receptor 3 (S1PR3) are critical regulators of acute mechanonociception. Genetic or pharmacological ablation of S1PR3, or blockade of S1P production, significantly impaired the behavioral response to noxious mechanical stimuli, with no effect on responses to innocuous touch or thermal stimuli. These effects are mediated by fast-conducting A mechanonociceptors, which displayed a significant decrease in mechanosensitivity in S1PR3 mutant mice. We show that S1PR3 signaling tunes mechanonociceptor excitability via modulation of KCNQ2/3 channels. Our findings define a new role for S1PR3 in regulating neuronal excitability and establish the importance of S1P/S1PR3 signaling in the setting of mechanical pain thresholds.
Collapse
Affiliation(s)
- Rose Z Hill
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Benjamin U Hoffman
- Department of Physiology and Cellular BiophysicsColumbia University College of Physicians and SurgeonsNew YorkUnited States
- Medical Scientist Training ProgramColumbia UniversityNew YorkUnited States
| | - Takeshi Morita
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | | | - Ellen A Lumpkin
- Department of Physiology and Cellular BiophysicsColumbia University College of Physicians and SurgeonsNew YorkUnited States
- Neurobiology CourseMarine Biological LaboratoryWoods HoleUnited States
| | - Rachel B Brem
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Buck Institute for Research on AgingNovatoUnited States
| | - Diana M Bautista
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Neurobiology CourseMarine Biological LaboratoryWoods HoleUnited States
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
25
|
Cao M, Ji C, Zhou Y, Huang W, Ni W, Tong X, Wei JF. Sphingosine kinase inhibitors: A patent review. Int J Mol Med 2018; 41:2450-2460. [PMID: 29484372 DOI: 10.3892/ijmm.2018.3505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2018] [Indexed: 11/05/2022] Open
Abstract
Sphingosine kinases (SphKs) catalyze the conversion of the sphingosine to the promitogenic/migratory product, sphingosine-1-phosphate (S1P). SphK/S1P pathway has been linked to the progression of cancer and various other diseases including allergic inflammatory disease, cardiovascular diseases, rejection after transplantation, the central nervous system, and virus infections. Therefore, SphKs represent potential new targets for developing novel therapeutics for these diseases. The history and development of SphK inhibitors are discussed, summarizing SphK inhibitors by their structures, and describing some applications of SphK inhibitors. We concluded: i) initial SphK inhibitors based on sphingosine have low specificity with several important off-targets. Identification the off-targets that would work synergistically with SphKs, and developing compounds that target the unique C4 domain of SphKs should be the focus of future studies. ii) The modifications of SphK inhibitors, which are devoted to increasing the selectivity to one of the two isoforms, now focus on the alkyl length, the spacer between the head and linker rings, and the insertion and the position of lipidic group in tail region. iii) SphK/S1P signaling pathway holds therapeutic values for many diseases. To find the exact function of each isoform of SphKs increasing the number of SphK inhibitor clinical trials is necessary.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Chunmei Ji
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanjun Zhou
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiwei Ni
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xunliang Tong
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
26
|
Roviezzo F, Sorrentino R, Terlizzi M, Riemma MA, Iacono VM, Rossi A, Spaziano G, Pinto A, D'Agostino B, Cirino G. Toll-Like Receptor 4 Is Essential for the Expression of Sphingosine-1-Phosphate-Dependent Asthma-Like Disease in Mice. Front Immunol 2017; 8:1336. [PMID: 29093714 PMCID: PMC5651245 DOI: 10.3389/fimmu.2017.01336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/03/2017] [Indexed: 11/13/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) levels significantly increase in bronchoalveolar lavage (BAL) of asthmatic patients following segmental allergen challenge and this increase well correlates with pulmonary inflammation. Epidemiological, genetic, clinical, and experimental data indicate a potential for the toll-like receptor 4 (TLR4) to initiate and exacerbate allergic airway diseases. The aim of this study was to evaluate the contribution of TLR4 in S1P-dependent asthma-like disease in mice. BALB/c or TLR4 defective (C3H/HeJ) mice received S1P (10 ng/mouse), LPS (0.1 μg/mouse) or S1P + LPS. Furthermore, S1P-treated BALB/c mice were injected with the purified rabbit anti-TLR4 antibody (10 μg/mouse). S1P administration induced airway hyperreactivity and pulmonary inflammation associated to an increase in the percentage of dendritic cells (DCs) and macrophages into the lung of BALB/c mice. These effects were coupled to a reduction of DCs in the mediastinic lymph node. All these S1P-mediated effects were absent in TLR4 defective mice or reversed by treatment with a purified rabbit anti-TLR4 antibody. Confocal analysis of pulmonary sections showed a significant increase in TLR4+ cells and a similar presence of S1P1 and TLR4 following S1P challenge. Accordingly, the immunoprecipitation evidenced an increased S1P1/TLR4 interaction. In conclusion, our findings suggest that a functional interaction between S1P1 and TLR4 leads to an enhanced allergic inflammatory response. Thus, S1P pathway contributes to the sentinel role played by innate immunity providing new targets for prevention and treatment of allergic airway diseases.
Collapse
Affiliation(s)
- Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | - Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, Salerno, Italy
| | | | | | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, Salerno, Italy
| | - Bruno D'Agostino
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Saluja R, Kumar A, Jain M, Goel SK, Jain A. Role of Sphingosine-1-Phosphate in Mast Cell Functions and Asthma and Its Regulation by Non-Coding RNA. Front Immunol 2017; 8:587. [PMID: 28588581 PMCID: PMC5439123 DOI: 10.3389/fimmu.2017.00587] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/03/2017] [Indexed: 01/07/2023] Open
Abstract
Sphingolipid metabolites are emerging as important signaling molecules in allergic diseases specifically asthma. One of the sphingolipid metabolite, sphingosine-1-phosphate (S1P), is involved in cell differentiation, proliferation, survival, migration, and angiogenesis. In the allergic diseases, alteration of S1P levels influences the differentiation and responsiveness of mast cells (MCs). S1P is synthesized by two sphingosine kinases (SphKs), sphingosine kinase 1, and sphingosine kinase 2. Engagement of IgE to the FcεRI receptor induces the activation of both the SphKs and generates S1P. Furthermore, SphKs are also essential to FcεRI-mediated MC activation. Activated MCs export S1P into the extracellular space and causes inflammatory response and tissue remodeling. S1P signaling has dual role in allergic responses. Activation of SphKs and secretion of S1P are required for MC activation; however, S1P signaling plays a vital role in the recovery from anaphylaxis. Several non-coding RNAs have been shown to play a crucial role in controlling the MC-associated inflammatory and allergic responses. Thus, S1P signaling pathway and its regulation by non-coding RNA could be explored as an exciting potential therapeutic target for asthma and other MC-associated diseases.
Collapse
Affiliation(s)
- Rohit Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | - Manju Jain
- Centre for Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Sudhir K Goel
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | - Aklank Jain
- Centre for Animal Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
28
|
Exploration of the Sphingolipid Metabolite, Sphingosine-1-phosphate and Sphingosine, as Novel Biomarkers for Aspirin-exacerbated Respiratory Disease. Sci Rep 2016; 6:36599. [PMID: 27830727 PMCID: PMC5103193 DOI: 10.1038/srep36599] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/06/2016] [Indexed: 11/20/2022] Open
Abstract
Sphingolipid (SL) metabolites have been suggested to be important inflammatory mediators in airway inflammation and asthma. However, little is known about SL metabolites in aspirin-exacerbated respiratory disease (AERD). We aimed to explore the potential AERD biomarkers by conducting lipidomics targeting SL metabolites. The levels of SL metabolites in serum and urine samples from 45 AERD patients and 45 aspirin-tolerant asthma (ATA) patients were quantified through mass spectrometry. During the lysine-aspirin bronchoprovocation test (ASA-BPT), the levels of serum sphingomyelin (SM) were significantly decreased in AERD (P < 0.05) but not in ATA. The serum SM levels were positively correlated with airway responsiveness to methacholine. At the basal status before the ASA-BPT, the levels of serum sphingosine-1-phosphate (S1P) and urine sphingosine were significantly higher in the AERD patients compared with that of ATA patients (P < 0.001) and were positively correlated with a greater decrease in FEV1 (%) values following the ASA-BPT test (P < 0.001 for each), and with serum periostin level (P < 0.05 for each). This study is the first to evaluate serum S1P and urine sphingosine as potential biomarkers of AERD as well as to examine the metabolic disturbance of SL in AERD patients.
Collapse
|
29
|
Roviezzo F, Sorrentino R, Iacono VM, Brancaleone V, Terlizzi M, Riemma MA, Bertolino A, Rossi A, Matteis M, Spaziano G, Pinto A, D'Agostino B, Cirino G. Disodium cromoglycate inhibits asthma-like features induced by sphingosine-1-phosphate. Pharmacol Res 2016; 113:626-635. [PMID: 27713021 DOI: 10.1016/j.phrs.2016.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/28/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022]
Abstract
Compelling evidence suggests the involvement of sphingosine-1-phosphate (S1P) in the pathogenesis of asthma. The systemic administration of S1P causes asthma like features in the mouse involving mast cells. In this study we investigated whether disodium cromoglycate (DSCG), administered as a preventative treatment as in human therapy, could affect S1P effects on airways. BALB/c mice, treated with DSCG, received subcutaneous administration of S1P. Bronchi and pulmonary tissues were collected and functional, molecular and cellular studies were performed. DSCG inhibited S1P-induced airway hyper-reactivity as well as pulmonary inflammation. DSCG decreased the recruitment of solely mast cells and B cells in the lung. IgE serum levels, prostaglandin D2, mucus production and IL-13 were also reduced when mice were pretreated with DSCG. S1P induced pulmonary expression of CD23 on T and B cells, that was reversed by DSCG. Conversely, S1P failed to upregulate CD23 in mast cell-deficient Kit W-sh/W-sh mice. In conclusion we have shown that DSCG inhibits S1P-induced asthma like features in the mouse. This beneficial effect is due to a regulatory action on mast cell activity, and in turn to an inhibition of IgE-dependent T and B cells responses.
Collapse
Affiliation(s)
| | | | | | | | - Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, Salerno, Italy
| | | | - Antonio Bertolino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Maria Matteis
- Department of Experimental Medicine L. Donatelli, Second University of Naples, Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine L. Donatelli, Second University of Naples, Naples, Italy
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, Salerno, Italy
| | - Bruno D'Agostino
- Department of Experimental Medicine L. Donatelli, Second University of Naples, Naples, Italy.
| | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
30
|
Yang H, Li S. Transient Receptor Potential Ankyrin 1 (TRPA1) Channel and Neurogenic Inflammation in Pathogenesis of Asthma. Med Sci Monit 2016; 22:2917-23. [PMID: 27539812 PMCID: PMC5003164 DOI: 10.12659/msm.896557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Asthma is characterized by airway inflammation, airway obstruction, and airway hyperresponsiveness (AHR), and it affects 300 million people worldwide. However, our current understanding of the molecular mechanisms that underlie asthma remains limited. Recent studies have suggested that transient receptor potential ankyrin 1 (TRPA1), one of the transient receptor potential cation channels, may be involved in airway inflammation in asthma. The present review discusses the relationship between TRPA1 and neurogenic inflammation in asthma, hoping to enhance our understanding of the mechanisms of airway inflammation in asthma.
Collapse
Affiliation(s)
- Hang Yang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - ShuZhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
31
|
Blankenbach KV, Schwalm S, Pfeilschifter J, Meyer Zu Heringdorf D. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks. Front Pharmacol 2016; 7:167. [PMID: 27445808 PMCID: PMC4914510 DOI: 10.3389/fphar.2016.00167] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/03/2016] [Indexed: 12/26/2022] Open
Abstract
The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular.
Collapse
Affiliation(s)
- Kira V Blankenbach
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| |
Collapse
|
32
|
Zhang Y, Xue Y, Liu Y, Song G, Lv G, Wang Y, Wang Y, Li X, Yang L. MicroRNA-146a expression inhibits the proliferation and promotes the apoptosis of bronchial smooth muscle cells in asthma by directly targeting the epidermal growth factor receptor. Exp Ther Med 2016; 12:854-858. [PMID: 27446287 DOI: 10.3892/etm.2016.3427] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to determine the expression of microRNA-146a (miR-146a) in the plasma of children with asthma, and to investigate the effect of miR-146a on the proliferation and apoptosis of bronchial smooth muscle cells (BSMCs). Reverse transcription-quantitative polymerase chain reaction was used to determine the expression levels of miR-146a mimics and its inhibitor. A Cell Counting kit-8 assay was performed to examine the proliferation of BSMCs. Caspase-3/7 activity was determined using a Caspase-Glo 3/7 kit. To measure the expression levels of proteins associated with apoptosis, western blotting was performed. The target gene of miR-146a was identified using a dual-luciferase reporter assay. The plasma levels of miR-146a in children with asthma were significantly higher compared with those in healthy children. Enhanced miR-146a expression inhibited the proliferation of BSMCs. BSMC apoptosis was promoted by miR-146a. The mechanism underlying the miR-146a-induced promotion of BSMC apoptosis may be its direct targeting of epidermal growth factor receptor (EGFR), which affects downstream signaling pathways. In conclusion, miR-146a expression in asthma inhibits the proliferation and promotes the apoptosis of BSMCs by direct targeting of EGFR.
Collapse
Affiliation(s)
- Yanxia Zhang
- Department of Pediatrics, Maternal and Child Healthcare Hospital, Laiwu, Shandong 271100, P.R. China
| | - Yan Xue
- Department of Pediatrics, General Hospital of Yanzhou Mining Bureau, Jining, Shandong 272100, P.R. China
| | - Yan Liu
- Department of Pediatrics, Zoucheng People's Hospital, Zoucheng, Shandong 273500, P.R. China
| | - Guodong Song
- Department of Pediatrics, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Guofeng Lv
- Department of Pediatrics, Maternal and Child Healthcare Hospital, Laiwu, Shandong 271100, P.R. China
| | - Yongqiang Wang
- Department of Pediatrics, Maternal and Child Healthcare Hospital, Laiwu, Shandong 271100, P.R. China
| | - Yijiang Wang
- Department of Pediatrics, Maternal and Child Healthcare Hospital, Laiwu, Shandong 271100, P.R. China
| | - Xiang Li
- Department of Pediatrics, Maternal and Child Healthcare Hospital, Laiwu, Shandong 271100, P.R. China
| | - Leiying Yang
- Department of Pathology, Taishan Medical College, Taian, Shandong 271016, P.R. China
| |
Collapse
|
33
|
Nigro E, Matteis M, Roviezzo F, Mattera Iacono V, Scudiero O, Spaziano G, Tartaglione G, Urbanek K, Filosa R, Daniele A, D'Agostino B. Role of adiponectin in sphingosine-1-phosphate induced airway hyperresponsiveness and inflammation. Pharmacol Res 2015; 103:114-22. [PMID: 26462929 DOI: 10.1016/j.phrs.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
Abstract
Epidemiological data suggest that obesity represent an important risk factor for asthma, but the link between excess fat and airway hyperresponsiveness (AHR) and inflammation is not fully understood. Recently, a key role in physiopathologic conditions of lungs has been given to adiponectin (Acrp30). Acrp30 is one of the most expressed adipokines produced and secreted by adipose tissue, showing an intriguing relationship with metabolism of sphingolipids. Sphingosine-1-phosphate (S1P) has been proposed as an important inflammatory mediator implicated in the pathogenesis of airway inflammation and asthma. In the present study we analyze the effects of recombinant Acrp30 administration in an experimental model of S1P-induced AHR and inflammation. The results show that S1P is able to reduce endogenous Acrp30 serum levels and that recombinant Acrp30 treatment significantly reduce S1P-induced AHR and inflammation. Moreover, we observed a reduction of Adiponectin receptors (AdipoR1, AdipoR2 and T-cadherin) expression in S1P treated mice. Treatment with recombinant Acrp30 was able to restore Acrp30 serum levels and adiponectin receptors expression. These results could indicate the ability of S1P to modulate the Acrp30 action, by modulating not only the serum levels of the protein, but also its receptors. Taken together, these data suggest that adiponectin could represent a possible biomarker in obesity-associated asthma.
Collapse
Affiliation(s)
- Ersilia Nigro
- CEINGE-Advanced Biotechnology s.c.ar.l, Naples, Italy
| | - Maria Matteis
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Fiorentina Roviezzo
- Department of Experimental Pharmacology, University Federico II of Naples, Naples, Italy
| | | | - Olga Scudiero
- CEINGE-Advanced Biotechnology s.c.ar.l, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Gioia Tartaglione
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Rosanna Filosa
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Aurora Daniele
- CEINGE-Advanced Biotechnology s.c.ar.l, Naples, Italy; Department of Environmental Sciences and Technologies Biological and Pharmaceutical, Second University of Naples, Caserta, Italy
| | - Bruno D'Agostino
- Department of Experimental Medicine, Second University of Naples, Naples, Italy.
| |
Collapse
|