1
|
Li G, Ma J, Wu L, Zhang H, Lin Y, Xu H, Gu M, Li K, Dong H, Huang Y, Wu H. Moxibustion regulates KDM4D expression and modulates lipid metabolism to inhibit tumor proliferation in CAC mice. Cancer Cell Int 2025; 25:173. [PMID: 40325472 PMCID: PMC12054041 DOI: 10.1186/s12935-025-03798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Lysine demethylase 4D (KDM4D) and aberrant lipid metabolism are implicated in the development and progression of colitis-associated cancer (CAC). Moxibustion, a therapeutic approach in traditional Chinese medicine, can inhibit intestinal inflammation and improve the intestinal mucosa. METHODS Mice were intraperitoneally injected with AOM, and three cycles of 3-2-2% DSS-free drinking water were administered to establish a CAC mouse model. Moxibustion and KDM4D inhibitor 5-c-8HQ intervention were performed for 30 days after modeling was completed. IHC staining was used to observe the expression of the nuclear-associated antigen Ki67 (Ki67), proliferating cell nuclear antigen (PCNA), and IL-33 in the colon. The expression of colon KDM4D and β-Catenin was observed by immunofluorescence staining and RT‒qPCR. LC‒MS pseudotargeted metabolomic sequencing was used to semiquantitatively detect the expression levels of lipids. RESULTS Moxibustion inhibited the proliferation of colon tumors in CAC mice, improved histopathology, and reduced the expression of PCNA and Ki67 in the colon. Using kdm4d knockout technology, it was initially confirmed that kdm4d is a key gene affecting CAC tumor proliferation. The inhibition of colon tumor proliferation in CAC mice by moxibustion is associated with the suppression of abnormal activation of the colon KDM4D/β-Catenin signaling pathway. LC-MS-targeted metabolomics revealed abnormal lipid metabolism in the colons of CAC mice. Moxibustion may affect the cholinergic metabolism pathway in the colon of CAC mice and regulate lipids such as sphingomyelin SM (d18:1/26:0) and triacylglycerol TAG58:7 (18:0). After kdm4d knockout, lipid disorders in the colons of CAC mice were partially restored. The kdm4d gene may be involved in the mechanism underlying the effect of moxibustion on lipid metabolism in the CAC colon. CONCLUSIONS Moxibustion inhibited the proliferation of colon tumors in CAC mice, inhibited the activation of the tumor-promoting signaling pathway KDM4D/β-Catenin, and improved lipid metabolism disorders in the colon, thus providing a promising strategy for the clinical adjuvant treatment of colorectal cancer.
Collapse
Affiliation(s)
- Guona Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, 650 Wanping Road, Shanghai, 200030, China
| | - Jindan Ma
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 568 Xinhua Road, Shanghai, 200052, China
| | - Luyi Wu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Hanxiao Zhang
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Yaying Lin
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Hongxiao Xu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Muen Gu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Kunshan Li
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, 650 Wanping Road, Shanghai, 200030, China
| | - Hongsheng Dong
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, 650 Wanping Road, Shanghai, 200030, China.
| | - Yan Huang
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China.
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, 650 Wanping Road, Shanghai, 200030, China.
| | - Huangan Wu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China.
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, 650 Wanping Road, Shanghai, 200030, China.
| |
Collapse
|
2
|
Li J, Chen X, Mao C, Xiong M, Ma Z, Zhu J, Li X, Chen W, Ma H, Ye X. Epiberberine ameliorates MNNG-induced chronic atrophic gastritis by acting on the EGFR-IL33 axis. Int Immunopharmacol 2025; 145:113718. [PMID: 39642571 DOI: 10.1016/j.intimp.2024.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Chronic atrophic gastritis (CAG) is a prevalent form of chronic gastritis that presents with chronic inflammation of the gastric mucosa, localised gastric mucosal glandular atrophy and intestinal metaplasia. Despite the existence of diagnostic criteria, effective therapeutic strategies for this condition remain to be developed. The objective of this study was to examine the potential therapeutic benefits of epiberberine in mitigating MNNG-induced CAG and to elucidate the underlying mechanisms. MNNG was employed to establish a CAG mouse model and a GES-1 cell model, and EPI was observed to be efficacious in ameliorating the gastric mucosal injury and inflammatory infiltration induced by MNNG in the CAG model mice, a finding that was subsequently validated in the GES-1 model cells. Bioinformatics analysis indicated that EPI may exert a direct effect on EGFR, thereby regulating the expression of IL-33 and thereby achieving the therapeutic effect of CAG. This hypothesis was also validated by molecular docking prediction, CETSA, and overexpression of EGFR in GES-1 model cells, using EGFR agonists and inhibitors to further demonstrate that EPI may act as an antagonist supplement to EGFR for the treatment of CAG.
Collapse
Affiliation(s)
- Juan Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xiantao Chen
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Changxia Mao
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mengyuan Xiong
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhengcai Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianyu Zhu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuegang Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Wanqun Chen
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400000, China.
| | - Hang Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024; 100:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
4
|
Weng CM, Lee MJ, Chao W, Lin YR, Chou CJ, Chen MC, Chou CL, Tsai IL, Lin CH, Fan Chung K, Kuo HP. Airway epithelium IgE-FcεRI cross-link induces epithelial barrier disruption in severe T2-high asthma. Mucosal Immunol 2023; 16:685-698. [PMID: 37536562 DOI: 10.1016/j.mucimm.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Although high-affinity immunoglobulin (Ig)E receptor (FcεRI) expression is upregulated in type 2 (T2)-high asthmatic airway epithelium, its functional role in airway epithelial dysfunction has not been elucidated. Here we report the upregulated expression of FcεRI and p-EGFR (Epidermal Growth Factor Receptor), associated with decreased expression of E-cadherin and claudin-18 in bronchial biopsies of severe T2-high asthmatics compared to mild allergic asthmatics and non-T2 asthmatics. Monomeric IgE (mIgE) decreased the expression of junction proteins, E-cadherin, claudin-18, and ZO-1, and increased alarmin messenger RNA and protein expression in cultured primary bronchial epithelial cells from T2-high asthmatics. Epithelial FcεRI ligation with mIgE decreased transepithelial electric resistance in air-liquid interface cultured epithelial cells. FcεRI ligation with mIgE or IgE- Dinitrophenyl or serum of high-level allergen-specific IgE activated EGFR and Akt via activation of Src family kinases, mediating alarmin expression, junctional protein loss, and increased epithelial permeability. Furthermore, tracheal instillation of mIgE in house dust mite-sensitized mice induced airway hyper-responsiveness, junction protein loss, epithelial cell shedding, and increased epithelial permeability. Thus, our results suggest that IgE-FcεRI cross-linking in the airway epithelium is a potential and unnoticed mechanism for impaired barrier function, increased mucosal permeability, and EGFR-mediated alarmin production in T2-high asthma.
Collapse
Affiliation(s)
- Chih-Ming Weng
- Pulmonary Medicine Research Center, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Jung Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei Chao
- Pulmonary Medicine Research Center, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Rong Lin
- Pulmonary Medicine Research Center, Taipei Medical University, Taipei, Taiwan
| | - Chun-Ju Chou
- Pulmonary Medicine Research Center, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chuan Chen
- Pulmonary Medicine Research Center, Taipei Medical University, Taipei, Taiwan; Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Liang Chou
- Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Lin Tsai
- Pulmonary Medicine Research Center, Taipei Medical University, Taipei, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- Pulmonary Medicine Research Center, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Han-Pin Kuo
- Pulmonary Medicine Research Center, Taipei Medical University, Taipei, Taiwan; Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Jou E, Rodriguez-Rodriguez N, McKenzie ANJ. Emerging roles for IL-25 and IL-33 in colorectal cancer tumorigenesis. Front Immunol 2022; 13:981479. [PMID: 36263033 PMCID: PMC9573978 DOI: 10.3389/fimmu.2022.981479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, and is largely refractory to current immunotherapeutic interventions. The lack of efficacy of existing cancer immunotherapies in CRC reflects the complex nature of the unique intestinal immune environment, which serves to maintain barrier integrity against pathogens and harmful environmental stimuli while sustaining host-microbe symbiosis during homeostasis. With their expression by barrier epithelial cells, the cytokines interleukin-25 (IL-25) and IL-33 play key roles in intestinal immune responses, and have been associated with inappropriate allergic reactions, autoimmune diseases and cancer pathology. Studies in the past decade have begun to uncover the important roles of IL-25 and IL-33 in shaping the CRC tumour immune microenvironment, where they may promote or inhibit tumorigenesis depending on the specific CRC subtype. Notably, both IL-25 and IL-33 have been shown to act on group 2 innate lymphoid cells (ILC2s), but can also stimulate an array of other innate and adaptive immune cell types. Though sometimes their functions can overlap they can also produce distinct phenotypes dependent on the differential distribution of their receptor expression. Furthermore, both IL-25 and IL-33 modulate pathways previously known to contribute to CRC tumorigenesis, including angiogenesis, tumour stemness, invasion and metastasis. Here, we review our current understanding of IL-25 and IL-33 in CRC tumorigenesis, with specific focus on dissecting their individual function in the context of distinct subtypes of CRC, and the potential prospects for targeting these pathways in CRC immunotherapy.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
6
|
Raja Sharin RNFS, Khan J, Ibahim MJ, Muhamad M, Bowen J, Wan Mohamad Zain WNI. Role of ErbB1 in the Underlying Mechanism of Lapatinib-Induced Diarrhoea: A Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4165808. [PMID: 35800225 PMCID: PMC9256418 DOI: 10.1155/2022/4165808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Lapatinib, an orally administered small-molecule tyrosine kinase inhibitor (SM-TKI), is an effective treatment for ErbB2-positive breast cancer. However, its efficacy as one of the targeted cancer therapies has been hampered by several adverse effects, especially gastrointestinal toxicity, commonly manifested as diarrhoea. Although it can be generally tolerated, diarrhoea is reported as the most common and most impactful on a patient's quality of life and associated with treatment interruption. Severe diarrhoea can result in malabsorption, leading to dehydration, fatigue, and even death. ErbB1 is an epidermal growth factor profoundly expressed in normal gut epithelium while lapatinib is a dual ErbB1/ErbB2 tyrosine kinase inhibitor. Thus, ErbB1 inhibition by lapatinib may affect gut homeostasis leading to diarrhoea. Nevertheless, the underlying mechanisms remain unclear. This review article provides evidence of the possible mechanisms of lapatinib-induced diarrhoea that may be related to/or modulated by ErbB1. Insight regarding the involvement of ErbB1 in the pathophysiological changes such as inflammation and intestinal permeability as the underlying cause of diarrhoea is covered in this article.
Collapse
Affiliation(s)
- Raja Nur Firzanah Syaza Raja Sharin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| | - Jesmine Khan
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mohamad Johari Ibahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mudiana Muhamad
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| | - Joanne Bowen
- Discipline of Physiology, School of Biomedicine, University of Adelaide, South Australia 5005, Australia
| | - Wan Nor I'zzah Wan Mohamad Zain
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
7
|
Huang F, Chen WY, Ma J, He XL, Wang JW. Paradoxical role of interleukin-33/suppressor of tumorigenicity 2 in colorectal carcinogenesis: Progress and therapeutic potential. World J Clin Cases 2022; 10:23-34. [PMID: 35071502 PMCID: PMC8727260 DOI: 10.12998/wjcc.v10.i1.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is presently the second most prevalent global mortality-inducing cancer. CRC carcinogenesis is a multifactorial process involving internal genetic mutations and the external environment. In addition, non-neoplastic cell activities within tumor microenvironments for CRC development have been established. However, interleukin (IL)-33, secreted by such cell types, plays a pivotal role in cancer progression due to interaction with cellular constituents within the tumor-inflammation microenvironment. IL-33 belongs to the IL-1 cytokine family and acts as binding attachments for the suppressor of tumorigenicity (ST)2 receptor. Therefore, how to coordinate tumor microenvironment, design and optimize treatment strategies suitable for CRC, based on IL-33/ST2 signal is a challenge. Even though it has established influences upon immunity-linked conditions, IL-33 effects on CRC progression and prevention and related mechanisms are still controversial. Our review depicts controversial activities for IL-33/ST2 within carcinogenesis and cancer prevention. Moreover, IL-33/ST2 signaling is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Fang Huang
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Wan-Yuan Chen
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Jie Ma
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Xiang-Lei He
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Jian-Wei Wang
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
8
|
The Janus Face of IL-33 Signaling in Tumor Development and Immune Escape. Cancers (Basel) 2021; 13:cancers13133281. [PMID: 34209038 PMCID: PMC8268428 DOI: 10.3390/cancers13133281] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Interleukin-33 (IL-33) is often released from damaged cells, acting as a danger signal. IL-33 exerts its function by interacting with its receptor suppression of tumorigenicity 2 (ST2) that is constitutively expressed on most immune cells. Therefore, IL-33/ST2 signaling can modulate immune responses to participate actively in a variety of pathological conditions, such as cancer. Like a two-faced Janus, which faces opposite directions, IL-33/ST2 signaling may play contradictory roles on its impact on cancer progression through both immune and nonimmune cellular components. Accumulating evidence demonstrates both pro- and anti-tumorigenic properties of IL-33, depending on the complex nature of different tumor immune microenvironments. We summarize and discuss the most recent studies on the contradictory effects of IL-33 on cancer progression and treatment, with a goal to better understanding the various ways for IL-33 as a therapeutic target. Abstract Interleukin-33 (IL-33), a member of the IL-1 cytokine family, plays a critical role in maintaining tissue homeostasis as well as pathological conditions, such as allergy, infectious disease, and cancer, by promoting type 1 and 2 immune responses. Through its specific receptor ST2, IL-33 exerts multifaceted functions through the activation of diverse intracellular signaling pathways. ST2 is expressed in different types of immune cells, including Th2 cells, Th1 cells, CD8+ T cells, regulatory T cells (Treg), cytotoxic NK cells, group 2 innate lymphoid cells (ILC2s), and myeloid cells. During cancer initiation and progression, the aberrant regulation of the IL-33/ST2 axis in the tumor microenvironment (TME) extrinsically and intrinsically mediates immune editing via modulation of both innate and adaptive immune cell components. The summarized results in this review suggest that IL-33 exerts dual-functioning, pro- as well as anti-tumorigenic effects depending on the tumor type, expression levels, cellular context, and cytokine milieu. A better understanding of the distinct roles of IL-33 in epithelial, stromal, and immune cell compartments will benefit the development of a targeting strategy for this IL-33/ST2 axis for cancer immunotherapy.
Collapse
|
9
|
Bars-Cortina D, Martínez-Bardají A, Macià A, Motilva MJ, Piñol-Felis C. Consumption evaluation of one apple flesh a day in the initial phases prior to adenoma/adenocarcinoma in an azoxymethane rat colon carcinogenesis model. J Nutr Biochem 2020; 83:108418. [PMID: 32592950 DOI: 10.1016/j.jnutbio.2020.108418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023]
Abstract
Colorectal cancer (CRC) is the fourth cancer with the most new cases reported in 2018 worldwide. Consumption of fruit and vegetables is a protective factor against the risk of CRC. Beyond this, flavonoids could orchestrate these healthy effects. Apart from containing the typical apple flavonoids, red-fleshed apples also contain anthocyanins, mainly cyanidin-3-O-galactoside (Cy3Gal). Through an azoxymethane rat carcinogenesis model, a study was carried out in order to assess the possible protective effects of apple polyphenols, with special attention to anthocyanins. In addition, apart from negative and positive controls, a group with chemotherapy with 5-fluorouracil (5FU) was included to compare their performance against the output collected from the animal treatments with white-fleshed apple (WF), red-fleshed apple (RF) and Cy3Gal (AE). Although the 5FU group presented the best performance towards aberrant crypt foci (ACF) inhibition (70.1%), rats fed with white-fleshed apples ('Golden Smoothee') were able to achieve 41.3% ACF inhibition, while none of the challenged treatments (WF, RF and AE) suffered mucin depletion in their colonocytes. Expression changes of 17 genes related to CRC were assessed. In detail, the ACF inhibition phenotype detected in 5FU and WF groups could be explained through the expression changes detected in the apoptosis-related genes of Aurka, p53 and Cox2. Moreover, in the apple consumption groups (WF and RF), a reduced protein expression of matrix metalloproteinases with gelatinase activity (MMP-2 and 9) was detected. Overall, our study suggests an effect of apple polyphenols and apple anthocyanin Cy3Gal against colon carcinogenesis, retarding/diminishing the appearance of the precancerous markers studied.
Collapse
Affiliation(s)
- David Bars-Cortina
- Food Technology Department, XaRTA-TPV, Agrotecnio Center, Escola Tècnica Superior d'Enginyeria Agrària, Universitat de Lleida, Lleida, Catalonia, Spain; Department of Medicine, Universitat de Lleida, Lleida, Catalonia, Spain.
| | | | - Alba Macià
- Food Technology Department, XaRTA-TPV, Agrotecnio Center, Escola Tècnica Superior d'Enginyeria Agrària, Universitat de Lleida, Lleida, Catalonia, Spain
| | - María-Jose Motilva
- Instituto de Ciencias de la Vid y del Vino (ICVV) (Consejo Superior de Investigaciones Científicas-CSIC, Universidad de la Rioja, Gobierno de la Rioja), Logroño, La Rioja, Spain.
| | - Carme Piñol-Felis
- Department of Medicine, Universitat de Lleida, Lleida, Catalonia, Spain; Institut de Recerca Biomèdica de Lleida, Fundació Dr. Pifarré-IRBLleida, Lleida, Catalonia, Spain.
| |
Collapse
|
10
|
Landskron G, De la Fuente López M, Dubois-Camacho K, Díaz-Jiménez D, Orellana-Serradell O, Romero D, Sepúlveda SA, Salazar C, Parada-Venegas D, Quera R, Simian D, González MJ, López-Köstner F, Kronberg U, Abedrapo M, Gallegos I, Contreras HR, Peña C, Díaz-Araya G, Roa JC, Hermoso MA. Interleukin 33/ST2 Axis Components Are Associated to Desmoplasia, a Metastasis-Related Factor in Colorectal Cancer. Front Immunol 2019; 10:1394. [PMID: 31281317 PMCID: PMC6598075 DOI: 10.3389/fimmu.2019.01394] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
In colorectal cancer (CRC), cancer-associated fibroblasts (CAFs) are the most abundant component from the tumor microenvironment (TM). CAFs facilitate tumor progression by inducing angiogenesis, immune suppression and invasion, thus altering the organization/composition of the extracellular matrix (i.e., desmoplasia) and/or activating epithelial-mesenchymal transition (EMT). Soluble factors from the TM can also contribute to cell invasion through secretion of cytokines and recently, IL-33/ST2 pathway has gained huge interest as a protumor alarmin, promoting progression to metastasis by inducing changes in TM. Hence, we analyzed IL-33 and ST2 content in tumor and healthy tissue lysates and plasma from CRC patients. Tissue localization and distribution of these molecules was evaluated by immunohistochemistry (using localization reference markers α-smooth muscle actin or α-SMA and E-cadherin), and clinical/histopathological information was obtained from CRC patients. In vitro experiments were conducted in primary cultures of CAFs and normal fibroblasts (NFs) isolated from tumor and healthy tissue taken from CRC patients. Additionally, migration and proliferation analysis were performed in HT29 and HCT116 cell lines. It was found that IL-33 content increases in left-sided CRC patients with lymphatic metastasis, with localization in tumor epithelia associated with abundant desmoplasia. Although ST2 content showed similarities between tumor and healthy tissue, a decreased immunoreactivity was observed in left-sided tumor stroma, associated to metastasis related factors (advanced stages, abundant desmoplasia, and presence of tumor budding). A principal component analysis (including stromal and epithelial IL-33/ST2 and α-SMA immunoreactivity with extent of desmoplasia) allowed us to distinguish clusters of low, intermediate and abundant desmoplasia, with potential to develop a diagnostic signature with benefits for further therapeutic targets. IL-33 transcript levels from CAFs directly correlated with CRC cell line migration induced by CAFs conditioned media, with rhIL-33 inducing a mesenchymal phenotype in HT29 cells. These results indicate a role of IL-33/ST2 in tumor microenvironment, specifically in the interaction between CAFs and epithelial tumor cells, thus contributing to invasion and metastasis in left-sided CRC, most likely by activating desmoplasia.
Collapse
Affiliation(s)
- Glauben Landskron
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Marjorie De la Fuente López
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile.,Research Sub-direction, Academic Direction, Clinica Las Condes, Santiago, Chile
| | - Karen Dubois-Camacho
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - David Díaz-Jiménez
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Octavio Orellana-Serradell
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Diego Romero
- Pathology Department, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Santiago A Sepúlveda
- Pathology Department, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Christian Salazar
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Daniela Parada-Venegas
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Rodrigo Quera
- Inflammatory Bowel Disease Program, Gastroenterology Department, Clinica Las Condes, Santiago, Chile
| | - Daniela Simian
- Research Sub-direction, Academic Direction, Clinica Las Condes, Santiago, Chile
| | - María-Julieta González
- Cell and Molecular Biology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | | | - Udo Kronberg
- Coloproctology Department, Clinica Las Condes, Santiago, Chile
| | - Mario Abedrapo
- Coloproctology Department, Clinica Las Condes, Santiago, Chile.,Coloproctology Surgery Department, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Iván Gallegos
- Pathology Department, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Héctor R Contreras
- Department of Basic and Clinic Oncology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristina Peña
- Medical Oncology Department, Ramon y Cajal University Hospital, IRYCIS, CIBERONC, Madrid, Spain
| | - Guillermo Díaz-Araya
- Molecular Pharmacology Laboratory, Faculty of Chemical Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Roa
- Pathology Department, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Marcela A Hermoso
- Immunology Program, Innate Immunity Laboratory, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Baker KJ, Houston A, Brint E. IL-1 Family Members in Cancer; Two Sides to Every Story. Front Immunol 2019; 10:1197. [PMID: 31231372 PMCID: PMC6567883 DOI: 10.3389/fimmu.2019.01197] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022] Open
Abstract
The IL-1 family of cytokines currently comprises of seven ligands with pro-inflammatory activity (IL-1α and IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ) as well as two ligands with anti-inflammatory activity (IL-37, IL-38). These cytokines are known to play a key role in modulating both the innate and adaptive immunes response, with dysregulation linked to a variety of autoimmune and inflammatory diseases. Given the increasing appreciation of the link between inflammation and cancer, the role of several members of this family in the pathogenesis of cancer has been extensively investigated. In this review, we highlight both the pro- and anti-tumorigenic effects identified for almost all members of this family, and explore potential underlying mechanisms accounting for these divergent effects. Such dual functions need to be carefully assessed when developing therapeutic intervention strategies targeting these cytokines in cancer.
Collapse
Affiliation(s)
- Kevin J Baker
- Department of Pathology, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Bars-Cortina D, Riera-Escamilla A, Gou G, Piñol-Felis C, Motilva MJ. Design, optimization and validation of genes commonly used in expression studies on DMH/AOM rat colon carcinogenesis model. PeerJ 2019; 7:e6372. [PMID: 30713822 PMCID: PMC6357868 DOI: 10.7717/peerj.6372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/30/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC), also known as colon cancer, is the third most common form of cancer worldwide in men and the second in women and is characterized by several genetic alterations, among them the expression of several genes. 1,2-dimethylhydrazine (DMH) and its metabolite azoxymethane (AOM) are procarcinogens commonly used to induce colon cancer in rats (DMH/AOM rat model). This rat model has been used to study changes in mRNA expression in genes involved in this pathological condition. However, a lack of proper detailed PCR primer design in the literature limits the reproducibility of the published data. The present study aims to design, optimize and validate the qPCR, in accordance with the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines, for seventeen genes commonly used in the DMH/AOM rat model of CRC (Apc, Aurka, Bax, Bcl2, β-catenin, Ccnd1, Cdkn1a, Cox2, Gsk3beta, IL-33, iNOs, Nrf2, p53, RelA, Smad4, Tnfα and Vegfa) and two reference genes (Actb or β-actin and B2m). The specificity of all primer pairs was empirically validated on agarose gel, and furthermore, the melting curve inspection was checked as was their efficiency (%) ranging from 90 to 110 with a correlation coefficient of r2 > 0.980. Finally, a pilot study was performed to compare the robustness of two candidate reference genes.
Collapse
Affiliation(s)
- David Bars-Cortina
- Food Technology Department, XaRTA-TPV, Agrotecnio Center, Escola Tècnica Superior d'Enginyeria Agrària, Universitat de Lleida, Lleida, Catalonia.,Department of Medicine, Universitat de Lleida, Lleida, Catalonia
| | - Antoni Riera-Escamilla
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia, Spain
| | - Gemma Gou
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Carme Piñol-Felis
- Department of Medicine, Universitat de Lleida, Lleida, Catalonia.,Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré-IRBLLeida, Lleida, Spain
| | - María-José Motilva
- Instituto de Ciencias de la Vid y del Vino (ICVV) (CSIC Universidad de la Rioja-Gobierno de La Rioja), Logroño, Spain
| |
Collapse
|
13
|
Cui G, Yuan A, Pang Z, Zheng W, Li Z, Goll R. Contribution of IL-33 to the Pathogenesis of Colorectal Cancer. Front Oncol 2018; 8:561. [PMID: 30547011 PMCID: PMC6279916 DOI: 10.3389/fonc.2018.00561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
The development of colorectal cancer (CRC) is not only determined by transformed cells per se, but also by factors existing in their immune microenvironment. Accumulating scientific evidence has revealed that interleukin (IL)-33, an IL-1 family member, plays an essential role in the regulation of immune response and is relevant in CRC pathogenesis. Data from both human and experimental studies demonstrated that IL-33 inhibits host anti-tumor immunity, remodels tumor stroma and enhances angiogenesis, thereby promoting the development of CRC. These pro-tumor effects of IL-33 are mainly mediated by IL-33 receptor ST2 (also known as IL-1RL1). Based on those findings, it is currently hypothesized that the IL-33/ST2 pathway is a potential biomarker and therapeutic target for colorectal tumorigenesis. Herein, we summarize the recent discoveries in understanding the critical role of the IL-33/ST2 pathway in contributing to the pathogenesis of colorectal tumorigenesis and discuss its potential implications for the future development of effective anti-tumor strategies.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Faculty of Health Science, Nord University, Levanger, Norway
| | - Aping Yuan
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Pang
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zheng
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenfeng Li
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rasmus Goll
- Department of Gastroenterology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
14
|
Kotsiou OS, Gourgoulianis KI, Zarogiannis SG. IL-33/ST2 Axis in Organ Fibrosis. Front Immunol 2018; 9:2432. [PMID: 30405626 PMCID: PMC6207585 DOI: 10.3389/fimmu.2018.02432] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin 33 (IL-33) is highly expressed in barrier sites, acting via the suppression of tumorigenicity 2 receptor (ST2). IL-33/ST2 axis has long been known to play a pivotal role in immunity and cell homeostasis by promoting wound healing and tissue repair. However, it is also involved in the loss of balance between extensive inflammation and tissue regeneration lead to remodeling, the hallmark of fibrosis. The aim of the current review is to critically evaluate the available evidence regarding the role of the IL-33/ST2 axis in organ fibrosis. The role of the axis in tissue remodeling is better understood considering its crucial role reported in organ development and regeneration. Generally, the IL-33/ST2 signaling pathway has mainly anti-inflammatory/anti-proliferative effects; however, chronic tissue injury is responsible for pro-fibrogenetic responses. Regarding pulmonary fibrosis mature IL-33 enhances pro-fibrogenic type 2 cytokine production in an ST2- and macrophage-dependent manner, while full-length IL-33 is also implicated in the pulmonary fibrotic process in an ST2-independent, Th2-independent fashion. In liver fibrosis, evidence indicate that when acute and massive liver damage occurs, the release of IL-33 might act as an activator of tissue-protective mechanisms, while in cases of chronic injury IL-33 plays the role of a hepatic fibrotic factor. IL-33 signaling has also been involved in the pathogenesis of acute and chronic pancreatitis. Moreover, IL-33 could be used as an early marker for ulcer-associated activated fibroblasts and myofibroblast trans-differentiation; thus one cannot rule out its potential role in inflammatory bowel disease-associated fibrosis. Similarly, the upregulation of the IL-33/ST2 axismay contribute to tubular cell injury and fibrosis via epithelial to mesenchymal transition (EMT) of various cell types in the kidneys. Of note, IL-33 exerts a cardioprotective role via ST2 signaling, while soluble ST2 has been demonstrated as a marker of myocardial fibrosis. Finally, IL-33 is a crucial cytokine in skin pathology responsible for abnormal fibroblast proliferation, leukocyte infiltration and morphologic differentiation of human endothelial cells. Overall, emerging data support a novel contribution of the IL-33/ST2 pathway in tissue fibrosis and highlight the significant role of the Th2 pattern of immune response in the pathophysiology of organ fibrosis.
Collapse
Affiliation(s)
- Ourania S. Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Konstantinos I. Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G. Zarogiannis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|
15
|
Islam MS, Kaji N, Mikawa S, Yang Q, Kusabe M, Hori M, Ozaki H. Induction of myosin light chain kinase and CPI-17 by TGF-β accelerates contractile activity in intestinal epithelial cells. J Vet Med Sci 2018; 80:977-984. [PMID: 29695674 PMCID: PMC6021892 DOI: 10.1292/jvms.17-0684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an orchestral and functional change in epithelial cells. Many signaling pathways are involved in EMT, and transforming growth factor-beta (TGF-β) is considered to be one of the most important factors in induction of EMT. In this study, we treated the rat intestinal epithelial cell line (IEC-6) with TGF-β1 as a signaling stimulant. Gross analysis of IEC-6 cells showed typical characteristics of epithelial cells such as cuboidal morphology and cell-cell contact, whereas treatment with TGF-β1 (10 ng/ml-1) for 7 days produced robust, spindle-shaped morphology. Immunocytochemistry analysis showed distinct E-cadherin staining in IEC-6 cells, but weak and faint in EMT cells. EMT cells showed positive expression of α-SMA and tenascin-C but IEC-6 cells did not. Quantitative real-time PCR analysis showed that myosin light chain kinase and C-kinase potentiated protein phosphatase-1 inhibitor (CPI-17) mRNAs were significantly upregulated in EMT cells. Immunocytochemistry analysis also showed that EMT cells strongly expressed CPI-17 but IEC-6 cells did not. A collagen gel contraction assay revealed that EMT cells had greatly increased contraction compared with control cells. These results suggest that the increased contractile activity induced by TGF-β in EMT cells may be attributable to the upregulation of molecules responsible for myosin phosphorylation/de-phosphorylation.
Collapse
Affiliation(s)
- Md Shafiqul Islam
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shoma Mikawa
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Qunhui Yang
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Moriaki Kusabe
- Development of Advanced Technology Laboratory Research Center for Food Safety, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroshi Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
16
|
Andrews C, McLean MH, Durum SK. Cytokine Tuning of Intestinal Epithelial Function. Front Immunol 2018; 9:1270. [PMID: 29922293 PMCID: PMC5996247 DOI: 10.3389/fimmu.2018.01270] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed.
Collapse
Affiliation(s)
- Caroline Andrews
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Mairi H McLean
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Scott K Durum
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
17
|
Rogler G. Resolution of inflammation in inflammatory bowel disease. Lancet Gastroenterol Hepatol 2017; 2:521-530. [PMID: 28606878 DOI: 10.1016/s2468-1253(17)30031-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
Treatment of inflammatory bowel disease at present mainly targets mediators of inflammation to stop or suppress pro-inflammatory processes. Typical examples are steroids, suppression of T cells by thioguanine nucleotides, or antibodies against cytokines such as tumour necrosis factor, interleukin 12, or interleukin 23. In addition to suppression of inflammation, development of therapeutic strategies that support resolution of inflammation or that actively resolve inflammation might be desirable. Resolution of inflammation is now seen as an active process involving specific mediators (eg, lipid mediators or specific cytokines) that is mandatory to restore organ function and completely shut down inflammation. The molecular pathways involved in resolution of inflammation have been investigated in recent years and could be adopted in treatment strategies for inflammatory bowel disease. Among these approaches are anti-integrin strategies and means to produce or locally increase restitution or resolution factors, such as restoration of the activity of transforming growth factor-β by anti-SMAD7 antisense oligonucleotides. The potential role of inflammation-resolving lipid mediators (eg, resolvins), however, still warrants further study and clinical development. This Review focuses on the specific role of active resolution of inflammation in inflammatory bowel disease pathophysiology. Potential therapeutic targets based on these pathways are also discussed.
Collapse
Affiliation(s)
- Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Recent Advances: The Imbalance of Cytokines in the Pathogenesis of Inflammatory Bowel Disease. Mediators Inflamm 2017; 2017:4810258. [PMID: 28420941 PMCID: PMC5379128 DOI: 10.1155/2017/4810258] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/22/2017] [Indexed: 12/17/2022] Open
Abstract
Cytokines play an important role in the immunopathogenesis of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, where they drive and regulate multiple aspects of intestinal inflammation. The imbalance between proinflammatory and anti-inflammatory cytokines that occurs in IBD results in disease progression and tissue damage and limits the resolution of inflammation. Targeting cytokines have been novel strategies in the treatment of IBD. Recent studies show the beneficial effects of anticytokine treatments to IBD patients, and multiple novel cytokines are found to be involved in the pathogenesis of IBD. In this review, we will discuss the recent advances of novel biologics in clinics and clinical trials, and novel proinflammatory and anti-inflammatory cytokines found in IBD with focusing on IL-12 family and IL-1 family members as well as their relevance to the potential therapy of IBD.
Collapse
|
19
|
Wasmer MH, Krebs P. The Role of IL-33-Dependent Inflammation in the Tumor Microenvironment. Front Immunol 2017; 7:682. [PMID: 28119694 PMCID: PMC5220330 DOI: 10.3389/fimmu.2016.00682] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
There is compelling evidence that inflammation contributes to tumorigenesis. Inflammatory mediators within the tumor microenvironment can either promote an antitumor immune response or support tumor pathogenesis. Therefore, it is critical to determine the relative contribution of tumor-associated inflammatory pathways to cancer development. Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that is released upon tissue stress or damage to operate as an alarmin. IL-33 has been primarily implicated in the induction of type-2 immune responses. However, recent findings have shown a role of IL-33 in several cancers where it may exert multiple functions. In this review, we will present the current knowledge on the role of IL-33 in the microenvironment of different tumors. We will highlight which cells produce and which cells are activated by IL-33 in cancer. Furthermore, we will explain how IL-33 modulates the tumor-associated inflammatory microenvironment to restrain or promote tumorigenesis. Finally, we will discuss the issues to be addressed first before potentially targeting the IL-33 pathway for cancer therapy.
Collapse
Affiliation(s)
- Marie-Hélène Wasmer
- Institute of Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern , Bern , Switzerland
| |
Collapse
|
20
|
Islam MS, Horiguchi K, Iino S, Kaji N, Mikawa S, Hori M, Ozaki H. Epidermal growth factor is a critical regulator of the cytokine IL-33 in intestinal epithelial cells. Br J Pharmacol 2016; 173:2532-42. [PMID: 27300306 DOI: 10.1111/bph.13535] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 04/28/2016] [Accepted: 06/08/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE IL-33 is a novel cytokine that is believed to be involved in inflammation and carcinogenesis. However, its source, its production and its secretion process remain unclear. Recently, we have reported that IL-33 is up-regulated in dextran sulfate sodium (DSS) colitis in mice. EXPERIMENTAL APPROACH Production of IL-33 from intestinal tissue was studied in a murine cancer model induced by azoxymethane (AOM) and DSS in vivo and in cultures of IEC-6 epithelial cells. Cytokine levels were measured by real time PCR, immunohistochemistry and elisa. KEY RESULTS Mice with AOM/DSS-induced colitis expressed all the characteristic symptoms of colon cancer pathology. Immunohistochemical analysis demonstrated epithelial cell-derived IL-33 in colon tissues from mice with AOM/DSS colitis. Real time PCR and quantitative PCR analysis revealed that AOM/DSS colitis tissues expressed up-regulated IL-1β, IL-33, TGF-β, and EGF mRNA. Gefitinib, an EGFR inhibitor, inhibited IL-33 mRNA expression in AOM/DSS colitis mice. The pathophysiological role of IL-33 in the rat intestinal epithelial cell line (IEC-6 cells) was then investigated. We found that EGF, but not TGF-β1 or PDGF, greatly enhanced mRNA expression of IL-33 and its receptor ST2. In accordance with the gene expression and immunohistochemical analysis of IL-33 levels, elisa-based analysis of cytoplasmic and nuclear extracts showed increased IL-33 protein levels in IEC-6 cells after treatment with EGF. CONCLUSIONS AND IMPLICATIONS Our results suggest that EGF is a key growth factor that increased IL-33 production and ST2 receptor expression during intestinal inflammation and carcinogenesis. The EGF/IL-33/ST2 axis represents a novel therapeutic target in colon cancer.
Collapse
Affiliation(s)
- M S Islam
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - K Horiguchi
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - S Iino
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - N Kaji
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - S Mikawa
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - M Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - H Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|