1
|
Fidler J, Gietler M, Graska J, Nykiel M, Michalska J, Niziuk J, Pełszyk E, Perkowska ZE, Labudda M. The Nitro-Oxidative Response Is Induced in the Leaves of Barley Plants Exposed to Barium. Int J Mol Sci 2025; 26:4661. [PMID: 40429803 PMCID: PMC12112646 DOI: 10.3390/ijms26104661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/06/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Barium (Ba) is classified as a non-essential element, meaning that it does not play a requisite role in the physiological processes of living organisms, but it poses a significant health risk to them. Plants that grow in Ba-rich soils, particularly near barite outcrops or mining waste, often accumulate high levels of Ba. Excess Ba in plant cells can lead to the overproduction of reactive oxygen species (ROS), which contributes to oxidative stress. Typically, nitric oxide (NO) can help alleviate heavy metal stress; however, under certain conditions, elevated levels of superoxide and nitric oxide may result in nitrosative and nitrative stress. This study investigated whether exposing barley plants to barium acetate (300 μM and 600 μM) triggers a nitro-oxidative response in spring barley plants. The molecular and biochemical analyses revealed fluctuations in the gene expression and activity of antioxidant enzymes and a steady rise in hydrogen peroxide (H2O2) in the leaves. Lower Ba concentrations and shorter exposures increased NO levels, while higher concentrations and more prolonged exposure reduced them, affecting nitrogen metabolism. These findings highlight the toxicological risks posed by Ba, especially for cultivated plants, and underscore the need for further research on its impact on plant physiology and the potential risks to human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (J.F.); (M.G.); (J.G.); (M.N.); (J.M.); (J.N.); (E.P.)
| |
Collapse
|
2
|
Yelisyeyeva O, Kaminskyy D, Semen M, Chelpanova I, Semen KO. Redox Metabolism and Autonomic Regulation During Aging: Can Heart Rate Variability Be Used to Monitor Healthy Longevity? Biomedicines 2025; 13:161. [PMID: 39857745 PMCID: PMC11761282 DOI: 10.3390/biomedicines13010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The functionality of redox metabolism is frequently named as an important contributor to the processes of aging and anti-aging. Excessive activation of free radical reactions accompanied by the inability of the antioxidant defense (AOD) mechanisms to control the flow of the reactive oxygen species (ROS) leads to the persistence of oxidative stress, hypoxia, impaired mitochondrial energy function and reduced ATP potential. From a long-term perspective, such changes contribute to the development of chronic diseases and facilitate aging. In turn, preconditioning of a biosystem with small doses of stressful stimuli might cause mobilization of the mechanisms of AOD and control an excessive flow of ROS, which supports optimal functioning of the redox reactions. Those mechanisms are of crucial importance for anti-aging and are also known as a eustress or hormetic response. To ensure continuous support of mild pro-oxidant activity in a metabolic system, close monitoring and timely corrections preventing the development of excessive ROS production are required. The paper introduces the potential of heart rate variability (HRV) as a biomarker of functional and metabolic reserves and a tool to measure stress resilience during aging. The practical approaches to interpretation of HRV are provided based on total power, changes in total power in response to an orthostatic test and activities of all spectral components. It is suggested that the complex of those parameters can reflect the depth of oxidative stress and may be used to guide lifestyle interventions and promote active longevity.
Collapse
Affiliation(s)
- Olha Yelisyeyeva
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (O.Y.); (I.C.)
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Marta Semen
- Department of Propaedeutics of Pediatrics and Medical Genetics, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Ilona Chelpanova
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (O.Y.); (I.C.)
| | | |
Collapse
|
3
|
Wang F, Ma DY, Yang JT, Lyu DF, Gao QH, Li CL, Zhong CF. Mechanisms and Efficacy of Chinese Herbal Medicines in Benign Prostatic Hyperplasia. Chin J Integr Med 2025; 31:73-82. [PMID: 39190272 DOI: 10.1007/s11655-024-3916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 08/28/2024]
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common diseases in elderly men, the incidence of which gradually increases with age and leads to lower urinary tract symptoms (LUTS), which seriously affects the quality of life of patients. Chinese herbal medicines (CHMs) are widely used for the treatment of BPH in China and some other countries. To explore the molecular mechanisms of CHMs for BPH, we conducted a review based on peer-reviewed English-language publications in PubMed and Web of Science databases from inception to December 31, 2023. This article primarily reviewed 32 papers on the use of CHMs and its active compounds in the treatment of BPH, covering animal and cell experiments, and identified relevant mechanisms of action. The results suggest that the mechanisms of action of CHMs in treating BPH may involve the regulation of sex hormones, downregulation of cell growth factors, anti-inflammatory and antioxidative effects, inhibition of cell proliferation, and promotion of apoptosis. CHMs also exhibit α-blocker-like effects, with the potential to relax urethral smooth muscle and alleviate LUTS. Additionally, we also reviewed 4 clinical trials and meta-analyses of CHMs for the treatment of BPH patients, which provided initial evidence of the safety and effectiveness of CHMs treatment. CHMs treatment for BPH shows advantages as a multi-component, multi-target, and multi-pathway therapy, which can mitigate the severity of the disease, improve LUTS, and may become a reliable treatment option in the future.
Collapse
Affiliation(s)
- Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Dong-Yue Ma
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jiu-Tian Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dong-Fang Lyu
- Department of Andrology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qing-He Gao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Chun-Lei Li
- Faculty of Medicine, Linyi University, Linyi, Shandong Province, 276000, China
| | - Chong-Fu Zhong
- Department of Andrology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
4
|
Habib I, Jawed JJ, Nasrin T, Shaikh S. Briefing of pulmonary sarcoidosis: Reduction-oxidation, misleading and possibilities. Indian J Tuberc 2025; 72:103-111. [PMID: 39890360 DOI: 10.1016/j.ijtb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 02/03/2025]
Abstract
Sarcoidosis is an inflammatory disease with limited treatment strategies and is characterized by the presence of abnormal lumps (granulomas) of the inflammatory cells. Among the types, pulmonary sarcoidosis most commonly occurs (about 90%), affecting the lungs and intrathoracic lymph nodes. Although the cause of its occurrence is still unknown, perhaps microbes and chemical exposures, as well as genetic history, may trigger the disease occurrence. The updated scenario also depicted the interconnection between oxidative stress and pulmonary sarcoidosis. Thus, the therapeutic value of the genetic consequences, as well as the redox status of pulmonary sarcoidosis, are under consideration. In addition, sarcoidosis complexity has been associated with tumor malignancy and tuberculosis. Therefore, in this review, we summarized the current status of pulmonary sarcoidosis, interference of lung cancer and tuberculosis complications, understanding of the role of reactive species in disease occurrence, and how they are associated with genetic features.
Collapse
Affiliation(s)
- Irfan Habib
- Department of Internal Medicine, College of Medicine and JNM Hospital, WB, India
| | - Junaid Jibran Jawed
- Institute of Health Sciences, Presidency University-2nd Campus, DG/02/02, New Town, Rajarhat, Kolkata, 700156, India
| | - Tina Nasrin
- Dept. of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| | - Soni Shaikh
- Laboratory of Histopathology, TATA MEDICAL CENTER 14, MAR (E-W), New Town, Rajarhat, Kolkata, 700160, India.
| |
Collapse
|
5
|
Song HY, Jin S, Lee S, Jalin AMA, Roh KH, Kim WK. The Therapeutic Effects of SP-8356, a Verbenone Derivative, with Multimodal Cytoprotective Mechanisms in an Ischemic Stroke Rat Model. Int J Mol Sci 2024; 25:12769. [PMID: 39684478 DOI: 10.3390/ijms252312769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
An ischemic cerebral stroke results from the interruption of blood flow to the brain, triggering rapid and complex cascades of excitotoxicity, oxidative stress, and inflammation. Current reperfusion therapies, including intravenous thrombolysis and mechanical thrombectomy, cause further brain injury due to reperfusion-induced cytotoxicity. To date, novel cytoprotective therapies that could address these challenges have yet to be developed, likely due to the limitations of targeting a single pathologic mechanism. To address these unmet clinical needs, we investigated a synthetic verbenone derivative, SP-8356, as a potential multi-target cytoprotective agent for acute ischemic strokes. In transient middle cerebral artery occlusion (MCAO) rats, SP-8356 significantly reduced brain infarct and edema volumes while improving acute neurological deficits in a dose-dependent manner. Furthermore, SP-8356 improved long-term outcomes, particularly by reducing mortality. These potent cytoprotective effects of SP-8356 were achieved by suppressing the excessive production of free radicals and pro-inflammatory cytokines, reducing the infiltration of inflammatory cells, and mitigating increases in blood-brain barrier permeability. Additional research is needed to determine whether co-administration of SP-8356 can extend the therapeutic time window of reperfusion therapies by mitigating ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hwa Young Song
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Central Research Institute, Shin Poong Pharmaceutical Company, Ltd., Ansan 15610, Republic of Korea
| | - Sejong Jin
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Sekwang Lee
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | | | - Kyung-Hye Roh
- Central Research Institute, Shin Poong Pharmaceutical Company, Ltd., Ansan 15610, Republic of Korea
| | - Won-Ki Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Luo Y, Liu R, Yuan G, Pan Y. Polyphenols for stroke therapy: the role of oxidative stress regulation. Food Funct 2024; 15:11383-11399. [PMID: 39497601 DOI: 10.1039/d4fo01900h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Stroke is associated with a high incidence and disability rate, which seriously endangers human health. Oxidative stress (OS) plays a crucial role in the underlying pathologic progression of cerebral damage in stroke. Emerging experimental studies suggest that polyphenols have antioxidant potential and express protective effects after different types of strokes, but no breakthrough has been achieved in clinical studies. Nanomaterials, due to small characteristic sizes, can be used to deliver drugs, and have shown excellent performance in the treatment of various diseases. The drug delivery capability of nanomaterials has significant implications for the clinical translation and application of polyphenols. This comprehensive review introduces the mechanism of oxidative stress in stroke, and also summarizes the antioxidant effects of polyphenols on reactive oxygen species generation and oxidative stress after stroke. Also, the application characteristics and research progress of nanomaterials in the treatment of stroke with antioxidants are presented.
Collapse
Affiliation(s)
- Yusong Luo
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ruolan Liu
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guoqiang Yuan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Academician Workstation, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
7
|
Rynkiewicz-Szczepanska E, Kosciuczuk U, Maciejczyk M. Total Antioxidant Status in Critically Ill Patients with Traumatic Brain Injury and Secondary Organ Failure-A Systematic Review. Diagnostics (Basel) 2024; 14:2561. [PMID: 39594227 PMCID: PMC11593164 DOI: 10.3390/diagnostics14222561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Introduction: The available literature indicates that oxidant-antioxidant imbalance plays a significant role in the pathophysiology of traumatic brain injury and the subsequent secondary organ dysfunctions. However, there is a lack of studies summarizing the knowledge in this area, and no clear guidelines exist regarding the use of biomarkers of oxidative stress as diagnostics tools. Methods: The present work aims to provide a systematic review of the literature on the use of total antioxidant capacity (TAC) assays in predicting the outcomes of traumatic brain injury (TBI). A literature search was conducted up to 1 September 2024, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines, using the PubMed and Scopus databases. Based on the inclusion criteria, 24 studies were used for the final review. Results: Promising data indicate that TAC assays are useful in predicting 30-day mortality and neurological outcomes. Moreover, they correlate with radiological findings on CT scans in brain injury and the clinical classifications of injuries, as well as the parameters of organ failure. Conclusions: Total antioxidant capacity assays can be used to assess the extent of brain damage and prognosticate general vital functions. Future experiments should include long-term randomized clinical trials on larger populations of TBI patients.
Collapse
Affiliation(s)
- Ewa Rynkiewicz-Szczepanska
- Department of Anaesthesiology and Intensive Therapy, Medical University of Bialystok, Kilinskiego Street 1, 15-276 Bialystok, Poland;
| | - Urszula Kosciuczuk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Kilinskiego Street 1, 15-276 Bialystok, Poland;
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Kilinskiego Street 1, 15-276 Bialystok, Poland;
| |
Collapse
|
8
|
Kaplish D, Vagha JD, Rathod S, Jain A. Current Pharmaceutical Strategies in the Management of Persistent Pulmonary Hypertension of the Newborn (PPHN): A Comprehensive Review of Therapeutic Agents. Cureus 2024; 16:e70307. [PMID: 39463604 PMCID: PMC11512740 DOI: 10.7759/cureus.70307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Persistent Pulmonary Hypertension of the Newborn (PPHN) is a life-threatening condition characterized by the failure of normal circulatory transition after birth, leading to sustained pulmonary hypertension and severe hypoxemia. Despite advancements in neonatal care, PPHN remains a significant cause of morbidity and mortality among newborns, particularly in full-term and near-term infants. This review provides a comprehensive overview of current pharmaceutical strategies for managing PPHN, focusing on various therapeutic agents' mechanisms, efficacy, and safety. Key interventions include inhaled nitric oxide, which has become the standard treatment for reducing pulmonary vascular resistance, alongside prostacyclin analogs, phosphodiesterase inhibitors, and endothelin receptor antagonists. Additionally, extracorporeal membrane oxygenation (ECMO) is highlighted as a critical intervention for severe, refractory cases. The review also discusses emerging therapies and the potential role of personalized medicine in improving treatment outcomes. Despite the progress made, challenges remain, including the timely diagnosis of PPHN and the need for accessible treatments in resource-limited settings. As research continues to uncover the underlying pathophysiology of PPHN, it is crucial to develop more targeted and effective pharmaceutical strategies. This review aims to inform clinicians and researchers of the current state of PPHN management and the ongoing advancements that may shape future therapeutic approaches.
Collapse
Affiliation(s)
- Divyanshi Kaplish
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jayant D Vagha
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sachin Rathod
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aditya Jain
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
9
|
Tampa M, Nicolae I, Ene CD, Mitran CI, Mitran MI, Matei C, Georgescu SR. The Interplay between Nitrosative Stress, Inflammation, and Antioxidant Defense in Patients with Lichen Planus. Antioxidants (Basel) 2024; 13:670. [PMID: 38929109 PMCID: PMC11200615 DOI: 10.3390/antiox13060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Lichen planus (LP) is a chronic inflammatory skin disease of unelucidated etiology. LP immunopathogenesis is mainly governed by cytotoxic T lymphocytes that mediate an immune response in basal keratinocytes, which may transform into a reservoir of antigens able to initiate an autoimmune reaction. However, other pathogenic pathways complement these mechanisms. Recent studies highlight the involvement of nitrosative stress in the pathogenesis of chronic inflammatory skin diseases. Current data on its role in the pathogenesis of LP are scarce. METHODS In this article, we investigated nitrosative stress in 40 cutaneous LP (CLP) patients compared to 40 healthy subjects using serum markers including nitrosative stress markers-direct nitrite, total nitrite, nitrate and symmetric dimethylarginine (SDMA), total antioxidant status (TAS), and hsCRP, a marker of inflammation, and analyzed the relationship between nitrosative stress, antioxidant defense, and inflammation to offer new insights into the role of the NO pathway in LP pathogenesis. RESULTS We identified significantly higher serum levels of direct nitrite, total nitrite, nitrate, SDMA and hsCRP, and significantly lower levels of TAS in CLP patients versus controls. There were significant negative correlations between the serum levels of TAS and significantl positive correlations between the serum levels of hsCRP and the analyzed nitrosative stress markers in patients with CLP. CONCLUSION Our results indicate an increased level of nitrosative stress in LP patients that correlates with a pro-inflammatory status and altered antioxidant defense.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (S.R.G.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Ilinca Nicolae
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Corina Daniela Ene
- Departments of Nephrology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Nephrology, ‘Carol Davila’ Nephrology Hospital, 010731 Bucharest, Romania
| | - Cristina Iulia Mitran
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.M.); (M.I.M.)
| | - Madalina Irina Mitran
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.M.); (M.I.M.)
| | - Clara Matei
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Simona Roxana Georgescu
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (S.R.G.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| |
Collapse
|
10
|
Ansari U, Alam M, Nadora D, Muttalib Z, Chen V, Taguinod I, FitzPatrick M, Wen J, Ansari Z, Lui F. Assessing the efficacy of amyotrophic lateral sclerosis drugs in slowing disease progression: A literature review. AIMS Neurosci 2024; 11:166-177. [PMID: 38988889 PMCID: PMC11230861 DOI: 10.3934/neuroscience.2024010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 07/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and intricate neurodegenerative disease that impacts upper and lower motor neurons within the central nervous system, leading to their progressive destruction. Despite extensive research, the pathogenesis of this multifaceted disease remains elusive. The United States Food and Drug Administration (FDA) has granted approval for seven medications designed to address ALS and mitigate its associated symptoms. These FDA-sanctioned treatments are Qalsody, Relyvrio, Radicava, Rilutek, Tiglutik, Exservan, and Nuedexta. In this review, the effects of these seven drugs on ALS based on their mechanism of action, dosing, and clinical presentations are comprehensively summarized. Each medication offers a distinct approach to manage ALS, aiming to alleviate the burdensome symptoms and slow the disease's progression, thereby improving the quality of life for individuals affected by this neurological condition. However, despite these advancements in pharmaceutical interventions, finding a definitive cure for ALS remains a significant challenge. Continuous investigation into ALS pathophysiology and therapeutic avenues remains imperative, necessitating further research collaborations and innovative approaches to unravel the complex mechanisms underlying this debilitating condition.
Collapse
Affiliation(s)
- Ubaid Ansari
- California Northstate University College of Medicine, USA
| | - Meraj Alam
- California Northstate University College of Medicine, USA
| | - Dawnica Nadora
- California Northstate University College of Medicine, USA
| | | | - Vincent Chen
- California Northstate University College of Medicine, USA
| | | | | | - Jimmy Wen
- California Northstate University College of Medicine, USA
| | - Zaid Ansari
- California Northstate University College of Medicine, USA
| | - Forshing Lui
- California Northstate University College of Medicine, USA
| |
Collapse
|
11
|
Wairimu NW, Wairagu P, Chepukosi KW, Obiero GF, Okanya PW, Isaac AO, Nyariki JN. Sodium Metabisulfite-Induced Hematotoxicity, Oxidative Stress, and Organ Damage Ameliorated by Standardized Ginkgo biloba in Mice. J Toxicol 2023; 2023:7058016. [PMID: 37854041 PMCID: PMC10581848 DOI: 10.1155/2023/7058016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Sodium metabisulfite (SMB) is a biocide and antioxidant agent generally used as a preservative in food and beverage industries but can oxidize to harmful sulfite radicals. A standardized Ginkgo biloba (EGb-761) has demonstrated potent antioxidant and anti-inflammatory activities, which is beneficial for the treatment of diseases that exhibit oxidative stress and inflammation. The present study sought to investigate the putative ameliorative effects of EGb-761 against SMB-induced toxicity in mice. Thirty-two male Swiss white mice were randomized into control, SMB-treated, SMB + EGb-761-treated, and EGb-761-treated groups. EGb-761 (100 mg/kg/day) and SMB (98 mg/kg/day) were administered by gastric gavage for 40 days. Oral administration of EGb-761 restored SMB-induced decrease in body weight and prevented SMB-induced thrombocytopenia, leukocytosis, and anemia. Furthermore, EGb-761-treatment protected against SMB-induced liver and kidney injury depicted by decreased serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase, bilirubin, creatinine, urea, uric acid, and albumin. Furthermore, EGb-761 treatment attenuated SMB-driven dyslipidemia and metabolic acidosis. Besides, EGb-761 supplementation abrogated SMB-driven oxidative stress as depicted by stabilized reduced glutathione (GSH) levels in the brain, liver, kidney, spleen, heart, and lungs. SMB induced a significant increase of tissue levels of malondialdehyde (MDA), serum nitric oxide (NO), interferon-gamma (IFN-γ) and tumor necrosis factor-α (TNF-α) which were abrogated by EGb-761 treatment. In conclusion, these results deepen our understanding of EGb-761 in light of various detrimental effects of SMB-driven toxicities. These findings provide a novel approach that can be optimized for preventing or treating exposure due to SMB toxicity.
Collapse
Affiliation(s)
- Nancy Wambui Wairimu
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, Nairobi 00200, Kenya
| | - Peninah Wairagu
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, Nairobi 00200, Kenya
| | - Kennedy W. Chepukosi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, Nairobi 00200, Kenya
| | - George F. Obiero
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, Nairobi 00200, Kenya
| | - Patrick W. Okanya
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, Nairobi 00200, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Technology, School of Health Sciences and Technology, Technical University of Kenya, P. O. Box 52428, Nairobi 00200, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, Nairobi 00200, Kenya
| |
Collapse
|
12
|
Flores-Gómez GD, Apam-Castillejos DJ, Juárez-Díaz I, Fuentes-Medel E, Díaz A, Tendilla-Beltrán H, Flores G. Aripiprazole attenuates the medial prefrontal cortex morphological and biochemical alterations in rats with neonatal ventral hippocampus lesion. J Chem Neuroanat 2023; 132:102316. [PMID: 37481172 DOI: 10.1016/j.jchemneu.2023.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Schizophrenia is a neurodevelopmental disorder characterized by a loss of dendritic spines in the medial prefrontal cortex (mPFC). Multiple subclinical and clinical studies have evidenced the ability of antipsychotics to improve neuroplasticity. In this study, it was evaluated the effect of the atypical antipsychotic aripiprazole (ARI) on the behavioral and mPFC neuronal disturbances of rats with neonatal ventral hippocampus lesion (nVHL), which is a heuristic developmental model relevant to the study of schizophrenia. ARI attenuated open field hyperlocomotion in the rats with nVHL. Also, ARI ameliorated structural neuroplasticity disturbances of the mPFC layer 3 pyramidal cells, but not in the layer 5 neurons. These effects can be associated with the ARI capability of increasing brain-derived neurotrophic factor (BDNF) levels. Moreover, in the animals with nVHL, ARI attenuated the immunoreactivity for some oxidative stress-related molecules such as the nitric oxide synthase 2 (NOS-2), 3-nitrotyrosine (3-NT), and cyclooxygenase 2 (COX-2), as well as the reactive astrogliosis in the mPFC. These results contribute to current knowledge about the neurotrophic, anti-inflammatory, and antioxidant properties of antipsychotics which may be contributing to their clinical effects and envision promising therapeutic targets for the treatment of schizophrenia.
Collapse
Affiliation(s)
| | | | - Ismael Juárez-Díaz
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Estefania Fuentes-Medel
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
13
|
Korczowska-Łącka I, Słowikowski B, Piekut T, Hurła M, Banaszek N, Szymanowicz O, Jagodziński PP, Kozubski W, Permoda-Pachuta A, Dorszewska J. Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants (Basel) 2023; 12:1811. [PMID: 37891890 PMCID: PMC10604347 DOI: 10.3390/antiox12101811] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In diseases of the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), stroke, amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and even epilepsy and migraine, oxidative stress load commonly surpasses endogenous antioxidative capacity. While oxidative processes have been robustly implicated in the pathogenesis of these diseases, the significance of particular antioxidants, both endogenous and especially exogenous, in maintaining redox homeostasis requires further research. Among endogenous antioxidants, enzymes such as catalase, superoxide dismutase, and glutathione peroxidase are central to disabling free radicals, thereby preventing oxidative damage to cellular lipids, proteins, and nucleic acids. Whether supplementation with endogenously occurring antioxidant compounds such as melatonin and glutathione carries any benefit, however, remains equivocal. Similarly, while the health benefits of certain exogenous antioxidants, including ascorbic acid (vitamin C), carotenoids, polyphenols, sulforaphanes, and anthocyanins are commonly touted, their clinical efficacy and effectiveness in particular neurological disease contexts need to be more robustly defined. Here, we review the current literature on the cellular mechanisms mitigating oxidative stress and comment on the possible benefit of the most common exogenous antioxidants in diseases such as AD, PD, ALS, HD, stroke, epilepsy, and migraine. We selected common neurological diseases of a basically neurodegenerative nature.
Collapse
Affiliation(s)
- Izabela Korczowska-Łącka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Agnieszka Permoda-Pachuta
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| |
Collapse
|
14
|
Meyer C, Rao NS, Vasanthi SS, Pereira B, Gage M, Putra M, Holtkamp C, Huss J, Thippeswamy T. Peripheral and central effects of NADPH oxidase inhibitor, mitoapocynin, in a rat model of diisopropylfluorophosphate (DFP) toxicity. Front Cell Neurosci 2023; 17:1195843. [PMID: 37416507 PMCID: PMC10320212 DOI: 10.3389/fncel.2023.1195843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Organophosphates (OP) are highly toxic chemical nerve agents that have been used in chemical warfare. Currently, there are no effective medical countermeasures (MCMs) that mitigate the chronic effects of OP exposure. Oxidative stress is a key mechanism underlying OP-induced cell death and inflammation in the peripheral and central nervous systems and is not mitigated by the available MCMs. NADPH oxidase (NOX) is one of the leading producers of reactive oxygen species (ROS) following status epilepticus (SE). In this study, we tested the efficacy of the mitochondrial-targeted NOX inhibitor, mitoapocynin (MPO) (10 mg/kg, oral), in a rat diisopropylfluorophosphate (DFP) model of OP toxicity. In DFP-exposed animals, MPO decreased oxidative stress markers nitrite, ROS, and GSSG in the serum. Additionally, MPO significantly reduced proinflammatory cytokines IL-1β, IL-6, and TNF-α post-DFP exposure. There was a significant increase in GP91phox, a NOX2 subunit, in the brains of DFP-exposed animals 1-week post-challenge. However, MPO treatment did not affect NOX2 expression in the brain. Neurodegeneration (NeuN and FJB) and gliosis [microglia (IBA1 and CD68), and astroglia (GFAP and C3)] quantification revealed a significant increase in neurodegeneration and gliosis after DFP-exposure. A marginal reduction in microglial cells and C3 colocalization with GFAP in DFP + MPO was observed. The MPO dosing regimen used in this study at 10 mg/kg did not affect microglial CD68 expression, astroglial count, or neurodegeneration. MPO reduced DFP-induced oxidative stress and inflammation markers in the serum but only marginally mitigated the effects in the brain. Dose optimization studies are required to determine the effective dose of MPO to mitigate DFP-induced changes in the brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
15
|
Quds R, Iqbal Z, Arif A, Mahmood R. Mancozeb-induced cytotoxicity in human erythrocytes: enhanced generation of reactive species, hemoglobin oxidation, diminished antioxidant power, membrane damage and morphological changes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105453. [PMID: 37248021 DOI: 10.1016/j.pestbp.2023.105453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Mancozeb is an ethylene bis-dithiocarbamate fungicide extensively used in agriculture to safeguard crops from various fungal diseases. The general population is exposed to mancozeb through consumption of contaminated food or water. Here, we have investigated the effect of mancozeb on isolated human erythrocytes under in vitro conditions. Erythrocytes were treated with different concentrations of mancozeb (0, 5, 10, 25, 50, 100 μM) and incubated for 24 h at 37 °C. Analysis of biochemical parameters and cell morphology showed dose-dependent toxicity of mancozeb in human erythrocytes. Mancozeb treatment caused hemoglobin oxidation and heme degradation. Protein and lipid oxidation were enhanced, while a significant decrease was seen in reduced glutathione and total sulfhydryl content. A significant increase in the generation of reactive oxygen and nitrogen species was detected in mancozeb-treated erythrocytes. The antioxidant capacity and the activity of key antioxidant enzymes were greatly diminished, while crucial metabolic pathways were inhibited in erythrocytes. Damage to the erythrocyte membrane on mancozeb treatment was apparent from increased cell lysis and osmotic fragility, along with the impairment of the plasma membrane redox system. Mancozeb also caused morphological alterations and transformed the normal discoid-shaped erythrocytes into echinocytes and stomatocytes. Thus, mancozeb induces oxidative stress in human erythrocytes, impairs the antioxidant defense system, oxidizes cellular components, that will adversely affect erythrocyte structure and function.
Collapse
Affiliation(s)
- Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Zarmin Iqbal
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Amin Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
16
|
Lichtenberg D, Pinchuk I, Yonassi E, Weber D, Grune T. Oxidative Stress Is a Concept, Not an Indication for Selective Antioxidant Treatment. Antioxidants (Basel) 2023; 12:1188. [PMID: 37371918 DOI: 10.3390/antiox12061188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The steady-state redox status is physiologically important and therefore homeostatically maintained. Changes in the status result in signaling (eustress) or oxidative damage (distress). Oxidative stress (OS) is a hard-to-quantitate term that can be estimated only based on different biomarkers. Clinical application of OS, particularly for selective antioxidant treatment of people under oxidative stress, requires quantitative evaluation and is limited by the lack of universal biomarkers to describe it. Furthermore, different antioxidants have different effects on the redox state. Hence, as long as we do not have the possibility to determine and quantify OS, therapeutic interventions by the "identify-and-treat" approach cannot be assessed and are, therefore, not likely to be the basis for selective preventive measures against oxidative damage.
Collapse
Affiliation(s)
- Dov Lichtenberg
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Digital Medical Technologies, Holon Institute of Technology, Holon 5810201, Israel
| | - Ilya Pinchuk
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eleni Yonassi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniela Weber
- Department Molecular Toxicology, German Institute of Human Nutritio Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Tilman Grune
- Department Molecular Toxicology, German Institute of Human Nutritio Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 13357 Berlin, Germany
- Institute of Nutrition, University of Potsdam, 14558 Nutmeal, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Forte A, Lessa P, Chaves A, de Aquino P, Brito L, Pinheiro L, Juruena M, de Lucena D, de Rezende P, de Vasconcelos S. Oxidative stress and inflammatory process in borderline personality disorder (BPD): a narrative review. Braz J Med Biol Res 2023; 56:e12484. [PMID: 36946840 PMCID: PMC10021502 DOI: 10.1590/1414-431x2023e12484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/13/2023] [Indexed: 03/23/2023] Open
Abstract
Borderline personality disorder (BPD) is a severe psychiatric condition that affects up to 2.7% of the population and is highly linked to functional impairment and suicide. Despite its severity, there is a lack of knowledge about its pathophysiology. Studies show genetic influence and childhood violence as factors that may contribute to the development of BPD; however, the involvement of neuroinflammation in BPD remains poorly investigated. This article aimed to explore the pathophysiology of BPD according to the levels of brain-derived neurotrophic factor (BDNF), inflammatory cytokines, and oxidative stress substances that exacerbate neuronal damage. Few articles have been published on this theme. They show that patients with BPD have a lower level of BDNF and a higher level of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in peripheral blood, associated with increased plasma levels of oxidative stress markers, such as malondialdehyde and 8-hydroxy-2-deoxyguanosine. Therefore, more research on the topic is needed, mainly with a pre-clinical and clinical focus.
Collapse
Affiliation(s)
- A.R.C.C. Forte
- Laboratório de Neuropsicofarmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P.H.C. Lessa
- Curso de Medicina, Departamento de Ciências Biológicas e da Saúde (DCBS), Universidade Federal do Amapá, Macapá, AP, Brasil
| | - A.J.M. Chaves
- Laboratório de Neuropsicofarmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P.E.A. de Aquino
- Laboratório de Neuropsicofarmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - L.M. Brito
- Laboratório de Neuropsicofarmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - L.C. Pinheiro
- Laboratório de Neuropsicofarmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M.F. Juruena
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - D.F. de Lucena
- Laboratório de Neuropsicofarmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P.H.F. de Rezende
- Laboratório de Neuropsicofarmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - S.M.M. de Vasconcelos
- Laboratório de Neuropsicofarmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
18
|
Reed EC, Case AJ. Defining the nuanced nature of redox biology in post-traumatic stress disorder. Front Physiol 2023; 14:1130861. [PMID: 37007993 PMCID: PMC10060537 DOI: 10.3389/fphys.2023.1130861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental health disorder that arises after experiencing or witnessing a traumatic event. Despite affecting around 7% of the population, there are currently no definitive biological signatures or biomarkers used in the diagnosis of PTSD. Thus, the search for clinically relevant and reproducible biomarkers has been a major focus of the field. With significant advances of large-scale multi-omic studies that include genomic, proteomic, and metabolomic data, promising findings have been made, but the field still has fallen short. Amongst the possible biomarkers examined, one area is often overlooked, understudied, or inappropriately investigated: the field of redox biology. Redox molecules are free radical and/or reactive species that are generated as a consequence of the necessity of electron movement for life. These reactive molecules, too, are essential for life, but in excess are denoted as "oxidative stress" and often associated with many diseases. The few studies that have examined redox biology parameters have often utilized outdated and nonspecific methods, as well as have reported confounding results, which has made it difficult to conclude the role for redox in PTSD. Herein, we provide a foundation of how redox biology may underlie diseases like PTSD, critically examine redox studies of PTSD, and provide future directions the field can implement to enhance standardization, reproducibility, and accuracy of redox assessments for the use of diagnosis, prognosis, and therapy of this debilitating mental health disorder.
Collapse
Affiliation(s)
- Emily C. Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J. Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
19
|
Fevereiro-Martins M, Marques-Neves C, Guimarães H, Bicho M. Retinopathy of prematurity: A review of pathophysiology and signaling pathways. Surv Ophthalmol 2023; 68:175-210. [PMID: 36427559 DOI: 10.1016/j.survophthal.2022.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder of the retina and a leading cause of visual impairment and childhood blindness worldwide. The disease is characterized by an early stage of retinal microvascular degeneration, followed by neovascularization that can lead to subsequent retinal detachment and permanent visual loss. Several factors play a key role during the different pathological stages of the disease. Oxidative and nitrosative stress and inflammatory processes are important contributors to the early stage of ROP. Nitric oxide synthase and arginase play important roles in ischemia/reperfusion-induced neurovascular degeneration. Destructive neovascularization is driven by mediators of the hypoxia-inducible factor pathway, such as vascular endothelial growth factor and metabolic factors (succinate). The extracellular matrix is involved in hypoxia-induced retinal neovascularization. Vasorepulsive molecules (semaphorin 3A) intervene preventing the revascularization of the avascular zone. This review focuses on current concepts about signaling pathways and their mediators, involved in the pathogenesis of ROP, highlighting new potentially preventive and therapeutic modalities. A better understanding of the intricate molecular mechanisms underlying the pathogenesis of ROP should allow the development of more effective and targeted therapeutic agents to reduce aberrant vasoproliferation and facilitate physiological retinal vascular development.
Collapse
Affiliation(s)
- Mariza Fevereiro-Martins
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal; Departamento de Oftalmologia, Hospital Cuf Descobertas, Lisboa, Portugal.
| | - Carlos Marques-Neves
- Centro de Estudos das Ci.¼ncias da Visão, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Hercília Guimarães
- Departamento de Ginecologia-Obstetrícia e Pediatria, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| | - Manuel Bicho
- Laboratório de Genética and Grupo Ecogenética e Saúde Humana, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Investigação Científica Bento da Rocha Cabral, Lisboa, Portugal.
| |
Collapse
|
20
|
Chhimpa N, Singh N, Puri N, Kayath HP. The Novel Role of Mitochondrial Citrate Synthase and Citrate in the Pathophysiology of Alzheimer's Disease. J Alzheimers Dis 2023; 94:S453-S472. [PMID: 37393492 PMCID: PMC10473122 DOI: 10.3233/jad-220514] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Citrate synthase is a key mitochondrial enzyme that utilizes acetyl-CoA and oxaloacetate to form citrate in the mitochondrial membrane, which participates in energy production in the TCA cycle and linked to the electron transport chain. Citrate transports through a citrate malate pump and synthesizes acetyl-CoA and acetylcholine (ACh) in neuronal cytoplasm. In a mature brain, acetyl-CoA is mainly utilized for ACh synthesis and is responsible for memory and cognition. Studies have shown low citrate synthase in different regions of brain in Alzheimer's disease (AD) patients, which reduces mitochondrial citrate, cellular bioenergetics, neurocytoplasmic citrate, acetyl-CoA, and ACh synthesis. Reduced citrate mediated low energy favors amyloid-β (Aβ) aggregation. Citrate inhibits Aβ25-35 and Aβ1-40 aggregation in vitro. Hence, citrate can be a better therapeutic option for AD by improving cellular energy and ACh synthesis, and inhibiting Aβ aggregation, which prevents tau hyperphosphorylation and glycogen synthase kinase-3 beta. Therefore, we need clinical studies if citrate reverses Aβ deposition by balancing mitochondrial energy pathway and neurocytoplasmic ACh production. Furthermore, in AD's silent phase pathophysiology, when neuronal cells are highly active, they shift ATP utilization from oxidative phosphorylation to glycolysis and prevent excessive generation of hydrogen peroxide and reactive oxygen species (oxidative stress) as neuroprotective action, which upregulates glucose transporter-3 (GLUT3) and pyruvate dehydrogenase kinase-3 (PDK3). PDK3 inhibits pyruvate dehydrogenase, which decreases mitochondrial-acetyl-CoA, citrate, and cellular bioenergetics, and decreases neurocytoplasmic citrate, acetyl-CoA, and ACh formation, thus initiating AD pathophysiology. Therefore, GLUT3 and PDK3 can be biomarkers for silent phase of AD.
Collapse
Affiliation(s)
- Neeraj Chhimpa
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Department of Pharmacology, Meharishi Markandeshwar College of Medical Science & Research, Ambala, India
| | - Neha Singh
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Nikkita Puri
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
21
|
Cho SY, Chung YS, Yoon HK, Roh HT. Impact of Exercise Intensity on Systemic Oxidative Stress, Inflammatory Responses, and Sirtuin Levels in Healthy Male Volunteers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811292. [PMID: 36141561 PMCID: PMC9516970 DOI: 10.3390/ijerph191811292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 05/14/2023]
Abstract
Exercise can induce anti-inflammatory and antioxidant effects, for which regulation of sirtuins (SIRTs) may be a major consideration for exercise prescription. The purpose of this study was to investigate the effects of acute aerobic exercise, in particular its intensity, on systemic oxidative stress, inflammatory responses, and SIRT levels. Twenty healthy, untrained males were recruited and randomly assigned to moderate-intensity (MI, 65% VO2max, n = 10) and high-intensity (HI, 85% VO2max, n = 10) exercise. Blood samples were obtained pre-, immediately post-, and 1 h post-exercise for measurements of malonaldehyde (MDA), superoxide dis-mutase (SOD), interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, SIRT-1, SIRT-2, and SIRT-3. Overall, MDA, SOD, IL-6, SIRT-1, and SIRT-3 levels were significantly increased at post-exercise compared with pre-exercise regardless of exercise intensity (p < 0.05). The HI group had significantly higher MDA, SOD, and IL-6 levels than the MI group at post-exercise (p < 0.05), whereas no significant differences were observed in the IL-1β, TNF-α, and SIRT-2 levels (p > 0.05). Altogether, these findings suggest that exercise-induced oxidative stress and inflammatory responses may be dependent on exercise intensity. Moreover, activation of inflammatory cytokines and SIRT family members may be dependent on the intensity of the exercise.
Collapse
Affiliation(s)
- Su-Youn Cho
- Exercise Physiology Laboratory, Department of Physical Education, Yonsei University, Seoul 03722, Korea
| | - Young-Soo Chung
- Department of Sports and Leisure Studies, School of Arts and Health, Myongji College, Seoul 03656, Korea
| | - Hyoung-Ki Yoon
- School of Sports, College of Humanities, Soongsil University, Seoul 06978, Korea
| | - Hee-Tae Roh
- Department of Sports Science, College of Health Science, Sun Moon University, 70 Sunmoon-ro 221 beongil, Tangjeong-myeon, Asan-si 31460, Korea
- Correspondence: ; Tel.: +82-41-530-2293
| |
Collapse
|
22
|
Sengupta S, Nath R, Bhuyan R, Bhattacharjee A. Variation in glucose metabolism under acidified sodium nitrite mediated nitrosative stress in Saccharomyces cerevisiae. J Appl Microbiol 2022; 133:1660-1675. [PMID: 35702895 DOI: 10.1111/jam.15669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
AIMS The work aimed to understand the important changes during glucose metabolism in Saccharomyces cerevisiae under acidified sodium nitrite (ac.NaNO2 ) mediated nitrosative stress. METHODS AND RESULTS Confocal microscopy and fluorescence-activated cell sorting analysis were performed to investigate the generation of reactive nitrogen and oxygen species, and redox homeostasis under nitrosative stress was also characterized. Quantitative PCR analysis revealed that the expression of ADH genes was upregulated under such condition, whereas the ACO2 gene was downregulated. Some of the enzymes of the tricarboxylic acid cycle were partially inhibited, whereas malate metabolism and alcoholic fermentation were increased under nitrosative stress. Kinetics of ethanol production was also characterized. A network analysis was conducted to validate our findings. In the presence of ac.NaNO2 , in vitro protein tyrosine nitration formation was checked by western blotting using pure alcohol dehydrogenase and aconitase. CONCLUSIONS Alcoholic fermentation rate was increased under stress condition and this altered metabolism might be conjoined with the defence machinery to overcome the nitrosative stress. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first work of this kind where the role of metabolism under nitrosative stress has been characterized in S. cerevisiae and it will provide a base to develop an alternative method of industrial ethanol production.
Collapse
Affiliation(s)
- Swarnab Sengupta
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Rohan Nath
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Rajabrata Bhuyan
- Department of Bio-Science and Biotechnology, Banasthali Vidyapith (Deemed) University, Banasthali, Rajasthan, India
| | - Arindam Bhattacharjee
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| |
Collapse
|
23
|
The Effects of Probiotics on Inflammation, Endothelial Dysfunction, and Atherosclerosis Progression: A Mechanistic Overview. Heart Lung Circ 2022; 31:e45-e71. [PMID: 35153150 DOI: 10.1016/j.hlc.2021.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/07/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The relationship between the intestinal microbiota dysbiosis, inflammation, and cardiovascular disorders (CVDs) has become evident, based on a growing body of literature from animal models and human studies. On the other hand, probiotics are believed to have promising effects on modifying dysbiosis and protecting against CVDs. OBJECTIVE This narrative review provides an overview of the link between gut microbiota, inflammation, endothelial dysfunction, and atherosclerosis. The influences of probiotic supplementation on biomarkers contributing to these conditions as the primary underlying risk factors for developing CVDs are also discussed. METHODS An up-to-date review was performed of the available evidence from experimental studies, clinical trials, and meta-analyses, considering their challenges and limitations. It also aimed to provide mechanistic insight into the likely mechanisms of probiotics that could prevent atherosclerosis initiation and progression. RESULTS Probiotic supplementation seems to be associated with reduced levels of inflammation and oxidative stress biomarkers (C-reactive protein, tumour necrosis factor-α, interleukin (IL)-6, IL-12, and malondialdehyde). Further, these agents might enhance antioxidant factors (IL-10, total antioxidant status, total antioxidant capacity, glutathione, and nitric oxide). Probiotics also appear to improve intestinal barrier integrity, reduce leakage of harmful metabolites (e.g., lipopolysaccharides), inhibit pro-inflammatory signalling pathways, and possibly suppress the formation of trimethylamine/trimethylamine oxide. Probiotics have also been found to enhance endothelial function and halter thrombosis. CONCLUSION The current clinical evidence underlines belief that probiotics might be associated with reduced levels of inflammation biomarkers. Experimental evidence reports that the beneficial effects of probiotics seem to be mainly imposed by triggering the secretion of short-chain fatty acids and bile acids, in addition to suppressing the NF-κB signalling pathway. However, the current studies are still in their infancy and it is of high priority to design further research on the topic.
Collapse
|
24
|
Lin J, Li Q, Jin T, Wang J, Gong Y, Lv Q, Wang M, Chen J, Shang M, Zhao Y, Fu G. Cardiomyocyte IL-1R2 protects heart from ischemia/reperfusion injury by attenuating IL-17RA-mediated cardiomyocyte apoptosis. Cell Death Dis 2022; 13:90. [PMID: 35087030 PMCID: PMC8795442 DOI: 10.1038/s41419-022-04533-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022]
Abstract
Myocardial ischemia reperfusion (I/R) injury is a complex process with intense inflammatory response and cardiomyocyte apoptosis. As a decoy receptor of IL-1β, Interleukin-1 receptor type 2 (IL-1R2) inhibits IL-1β signaling. However, its role in I/R injury remains unknown. Here we found that the serum levels of IL-1R2 were significantly increased in patients with acute myocardial infarction (AMI) following interventional therapy. Similarly, after myocardial I/R surgery, IL-1R2 expression was significantly increased in heart of wild-type mice. In addition, IL-1R2-deficient mice heart showed enlarged infarct size, increased cardiomyocyte apoptosis together with reduced cardiac systolic function. Following exposure to hypoxia and reoxygenation (H/R), neonatal rat ventricular myocytes (NRVM) significantly increased IL-1R2 expression relying on NF-κB activation. Consistently, IL-1R2-deficient mice increased immune cells infiltrating into heart after surgery, which was relevant with cardiac damage. Additionally, IL-1R2 overexpression in cardiomyocyte protected cardiomyocyte against apoptosis through reducing the IL-17RA expression both in vivo and in vitro. Our results indicate that IL-1R2 protects cardiomyocytes from apoptosis, which provides a therapeutic approach to turn down myocardial I/R injury.
Collapse
Affiliation(s)
- Jun Lin
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Qinfeng Li
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Tingting Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Jiacheng Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Qingbo Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Jiawen Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China.
| | - Yanbo Zhao
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China.
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
25
|
Tice RR, Bassan A, Amberg A, Anger LT, Beal MA, Bellion P, Benigni R, Birmingham J, Brigo A, Bringezu F, Ceriani L, Crooks I, Cross K, Elespuru R, Faulkner DM, Fortin MC, Fowler P, Frericks M, Gerets HHJ, Jahnke GD, Jones DR, Kruhlak NL, Lo Piparo E, Lopez-Belmonte J, Luniwal A, Luu A, Madia F, Manganelli S, Manickam B, Mestres J, Mihalchik-Burhans AL, Neilson L, Pandiri A, Pavan M, Rider CV, Rooney JP, Trejo-Martin A, Watanabe-Sailor KH, White AT, Woolley D, Myatt GJ. In Silico Approaches In Carcinogenicity Hazard Assessment: Current Status and Future Needs. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20. [PMID: 35368437 DOI: 10.1016/j.comtox.2021.100191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Historically, identifying carcinogens has relied primarily on tumor studies in rodents, which require enormous resources in both money and time. In silico models have been developed for predicting rodent carcinogens but have not yet found general regulatory acceptance, in part due to the lack of a generally accepted protocol for performing such an assessment as well as limitations in predictive performance and scope. There remains a need for additional, improved in silico carcinogenicity models, especially ones that are more human-relevant, for use in research and regulatory decision-making. As part of an international effort to develop in silico toxicological protocols, a consortium of toxicologists, computational scientists, and regulatory scientists across several industries and governmental agencies evaluated the extent to which in silico models exist for each of the recently defined 10 key characteristics (KCs) of carcinogens. This position paper summarizes the current status of in silico tools for the assessment of each KC and identifies the data gaps that need to be addressed before a comprehensive in silico carcinogenicity protocol can be developed for regulatory use.
Collapse
Affiliation(s)
- Raymond R Tice
- RTice Consulting, Hillsborough, North Carolina, 27278, USA
| | | | - Alexander Amberg
- Sanofi Preclinical Safety, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Lennart T Anger
- Genentech, Inc., South San Francisco, California, 94080, USA
| | - Marc A Beal
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | | | | | - Jeffrey Birmingham
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation, Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | | - Lidia Ceriani
- Humane Society International, 1000 Brussels, Belgium
| | - Ian Crooks
- British American Tobacco (Investments) Ltd, GR&D Centre, Southampton, SO15 8TL, United Kingdom
| | | | - Rosalie Elespuru
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, 20993, USA
| | - David M Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marie C Fortin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08855, USA
| | - Paul Fowler
- FSTox Consulting (Genetic Toxicology), Northamptonshire, United Kingdom
| | | | | | - Gloria D Jahnke
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Naomi L Kruhlak
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland, 20993, USA
| | - Elena Lo Piparo
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Juan Lopez-Belmonte
- Cuts Ice Ltd Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Amarjit Luniwal
- North American Science Associates (NAMSA) Inc., Minneapolis, Minnesota, 55426, USA
| | - Alice Luu
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Serena Manganelli
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | | | - Jordi Mestres
- IMIM Institut Hospital Del Mar d'Investigacions Mèdiques and Universitat Pompeu Fabra, Doctor Aiguader 88, Parc de Recerca Biomèdica, 08003 Barcelona, Spain; and Chemotargets SL, Baldiri Reixac 4, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | | | - Louise Neilson
- Broughton Nicotine Services, Oak Tree House, Earby, Lancashire, BB18 6JZ United Kingdom
| | - Arun Pandiri
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - John P Rooney
- Integrated Laboratory Systems, LLC., Morrisville, North Carolina, 27560, USA
| | | | - Karen H Watanabe-Sailor
- School of Mathematical and Natural Sciences, Arizona State University, West Campus, Glendale, Arizona, 85306, USA
| | - Angela T White
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | | | | |
Collapse
|
26
|
Garg M, Gupta A, Sharma AL, Singh S. Advancements in 2D Materials Based Biosensors for Oxidative Stress Biomarkers. ACS APPLIED BIO MATERIALS 2021; 4:5944-5960. [DOI: 10.1021/acsabm.1c00625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mayank Garg
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arushi Gupta
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit L. Sharma
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Singh
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
27
|
A Blood Biomarker for Duchenne Muscular Dystrophy Shows That Oxidation State of Albumin Correlates with Protein Oxidation and Damage in Mdx Muscle. Antioxidants (Basel) 2021; 10:antiox10081241. [PMID: 34439489 PMCID: PMC8389308 DOI: 10.3390/antiox10081241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked muscle wasting disease with no cure. While the precise mechanisms of progressive dystropathology remain unclear, oxidative stress caused by excessive generation of oxidants is strongly implicated. Blood biomarkers that could track oxidant levels in tissues would be valuable to measure the effectiveness of clinical treatments for DMD; our research has focused on developing such biomarkers. One target of oxidants that has the potential to be harnessed as a clinical biomarker is the thiol side chain of cysteine 34 (Cys34) of the blood protein albumin. This study using the mdx mouse model of DMD shows that in plasma, albumin Cys34 undergoes thiol oxidation and these changes correlate with levels of protein thiol oxidation and damage of the dystrophic muscles. A comparison with the commonly used biomarker protein carbonylation, confirmed that albumin thiol oxidation is the more sensitive plasma biomarker of oxidative stress occurring in muscle tissue. We show that plasma albumin oxidation reflects muscle dystropathology, as increased after exercise and decreased after taurine treatment of mdx mice. These data support the use of albumin thiol oxidation as a blood biomarker of dystropathology to assist with advancing clinical development of therapies for DMD.
Collapse
|
28
|
Lafère P, Lambrechts K, Germonpré P, Balestra A, Germonpré FL, Marroni A, Cialoni D, Bosco G, Balestra C. Heart Rate Variability During a Standard Dive: A Role for Inspired Oxygen Pressure? Front Physiol 2021; 12:635132. [PMID: 34381372 PMCID: PMC8350129 DOI: 10.3389/fphys.2021.635132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 06/18/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction: Heart rate variability (HRV) during underwater diving has been infrequently investigated because of environment limitations and technical challenges. This study aims to analyze HRV changes while diving at variable hyperoxia when using open circuit (OC) air diving apparatus or at constant hyperoxia using a closed-circuit rebreather (CCR). We used HRV analysis in time and frequency domain adding nonlinear analysis which is more adapted to short-time analysis and less dependent on respiratory rate (Sinus respiratory arrhythmia). Materials and Methods: 18 males, 12 using OC (30 mfw for 20 min) and 6 using CCR (30 mfw for 40 min.). HRV was recorded using a polar recorder. Four samples of R-R intervals representing the dive were saved for HRV analysis. Standard deviation of normal-to-normal intervals (SDNN), square root of the mean squared differences between successive RR intervals (rMSSD), and average RR intervals (RR) in time-domain; low frequency (LF) and high frequency (HF) in frequency domain were investigated. Nonlinear analysis included fractal dimension (FrD). Results: SDNN and rMSSD were significantly increased during descent and at depth with OC, not with CCR. Mean RR interval was longer at depth with OC, but only during ascent and after the dive with CCR. HF power was higher than baseline during the descent both with OC and CCR and remained elevated at depth for OC. The LF/HF ratio was significantly lower than baseline for descent and at depth with both OC and CCR. After 30 min of recovery, the LF/HF ratio was higher than baseline with both OC and CCR. Nonlinear analysis detected differences at depth for OC and CCR. Discussion: Increased parasympathetic tone was present during diving. RR duration, SDNN; rMSSD, HF spectral power all increased during the dive above pre-dive levels. Conversely, HF power decreased (and the LF/HF increased) 30 min after the dive. Using FrD, a difference was detected between OC and CCR, which may be related to differences in partial pressure of oxygen breathed during the dive.
Collapse
Affiliation(s)
- Pierre Lafère
- Environmental, Occupational & Ageing Physiology Laboratory, Haute Ecole Bruxelles-Brabant, Brussels, Belgium.,DAN Europe Research Division, Roseto degli Abruzzi, Italy.,Laboratoire ORPHY, EA4324, Université de Bretagne Occidentale, Brest, France
| | - Kate Lambrechts
- Environmental, Occupational & Ageing Physiology Laboratory, Haute Ecole Bruxelles-Brabant, Brussels, Belgium
| | - Peter Germonpré
- Environmental, Occupational & Ageing Physiology Laboratory, Haute Ecole Bruxelles-Brabant, Brussels, Belgium.,DAN Europe Research Division, Roseto degli Abruzzi, Italy.,Centre for Hyperbaric Oxygen Therapy, Military Hospital "Queen Astrid", Brussels, Belgium
| | - Ambre Balestra
- Environmental, Occupational & Ageing Physiology Laboratory, Haute Ecole Bruxelles-Brabant, Brussels, Belgium
| | - Faye Lisa Germonpré
- Centre for Hyperbaric Oxygen Therapy, Military Hospital "Queen Astrid", Brussels, Belgium
| | | | - Danilo Cialoni
- DAN Europe Research Division, Roseto degli Abruzzi, Italy.,Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Gerardo Bosco
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Costantino Balestra
- Environmental, Occupational & Ageing Physiology Laboratory, Haute Ecole Bruxelles-Brabant, Brussels, Belgium.,DAN Europe Research Division, Roseto degli Abruzzi, Italy.,Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
29
|
Mechanisms of Oxidative Stress and Therapeutic Targets following Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8815441. [PMID: 33688394 PMCID: PMC7920740 DOI: 10.1155/2021/8815441] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress (OS) is induced by the accumulation of reactive oxygen species (ROS) following intracerebral hemorrhage (ICH) and plays an important role in secondary brain injury caused by the inflammatory response, apoptosis, autophagy, and blood-brain barrier (BBB) disruption. This review summarizes the current state of knowledge regarding the pathogenic mechanisms of brain injury after ICH, markers for detecting OS, and therapeutic strategies that target OS to mitigate brain injury.
Collapse
|
30
|
Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C. Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines 2021; 9:biomedicines9020169. [PMID: 33572080 PMCID: PMC7914955 DOI: 10.3390/biomedicines9020169] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. An insufficient supply of oxygen and glucose in brain cells, primarily neurons, triggers a cascade of events in which mitochondria are the leading characters. Mitochondrial calcium overload, reactive oxygen species (ROS) overproduction, mitochondrial permeability transition pore (mPTP) opening, and damage-associated molecular pattern (DAMP) release place mitochondria in the center of an intricate series of chance interactions. Depending on the degree to which mitochondria are affected, they promote different pathways, ranging from inflammatory response pathways to cell death pathways. In this review, we will explore the principal mitochondrial molecular mechanisms compromised during ischemic and reperfusion injury, and we will delineate potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Bianca Vezzani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Ilaria Casetta
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
- Correspondence:
| |
Collapse
|
31
|
Tomov DG, Bocheva G, Divarova V, Kasabova L, Svinarov D. Phase separation liquid-liquid extraction for the quantification of 8-iso-Prostaglandin F2 Alpha in human plasma by LC-MS/MS. J Med Biochem 2021; 40:10-16. [PMID: 33584135 PMCID: PMC7857857 DOI: 10.5937/jomb0-24746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/06/2020] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are produced in the body during normal metabolism by means of enzymes and non-enzymatic chemical reduction of molecular oxygen. In case of the prevalence of ROS formation over their elimination, highly reactive free radicals can be accumulated and can cause multiple damages to the biomolecules and cells. Determination of isoprostanes in biological matrices is most often used to register free radical damage and requires selective, sensitive and specific techniques. METHODS This study presents the development and validation of the LC-MS/MS method for the determination of 8-iso-Prostaglandin F2α in human plasma utilising a modified liquid-liquid extraction procedure with phase separation. RESULTS Modified sample preparation procedure assured higher extraction yield, clear separation of organic layer from the plasma water phase and protein precipitates, and better-purified product for instrumental analysis. Linearity was validated in the range 0.1-5.0 µg/L with R2 > 0.996; normalised matrix varied between 86.0% and 108.3%, accuracy ranged from 90.4 % to 113.9% and precision both within runs and between runs was less than 7%. With a run time of 10 min, a throughput of over 50 samples per working day could be performed. CONCLUSIONS The method meets all the current industrial validation criteria and allows the accurate and precise determination of 8-iso-PGF2α in human plasma at diagnostically significant concentration range.
Collapse
Affiliation(s)
| | - Georgeta Bocheva
- Medical University of Sofia, Faculty of Medicine, Department of Pharmacology and Toxicology, Sofia, Bulgaria
| | - Vidka Divarova
- Technological Center for Emergency Medicine, Plovdiv, Bulgaria
| | - Lilia Kasabova
- Medical University of Sofia, Faculty of Medicine, UMBAL Alexandrovska, Clinical Laboratory & Clinical Pharmacology, Sofia, Bulgaria
| | - Dobrin Svinarov
- Medical University of Sofia, Faculty of Medicine, UMBAL Alexandrovska, Clinical Laboratory & Clinical Pharmacology, Sofia, Bulgaria
| |
Collapse
|
32
|
Salomone F, Petta S, Micek A, Pipitone RM, Distefano A, Castruccio Castracani C, Rini F, Di Rosa M, Gardi C, Calvaruso V, Di Marco V, Li Volti G, Grimaudo S, Craxì A. Hepatitis C virus eradication by direct antiviral agents abates oxidative stress in patients with advanced liver fibrosis. Liver Int 2020; 40:2820-2827. [PMID: 32666695 DOI: 10.1111/liv.14608] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/20/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS HCV eradication improves non-hepatic outcomes such as cardiovascular diseases, although without clearly defined mechanisms. In this study we aimed to assess whether improvement of carotid atherosclerosis may be linked to a reduction in systemic oxidative stress after viral clearance. METHODS We studied a retrospective cohort of 105 patients (age 62.4 ± 11.2 years; 62 men) with F3/F4 fibrosis, characterized by carotid ultrasonography at baseline and at sustained virologic response (SVR) follow-up. Levels of 8-iso-prostaglandin F2α (F2 -isoprostanes) and other oxidative stress markers were measured on frozen sera. Association between change (denoted as Δ) in oxidative stress markers (exposures) and change in carotid intima-media thickness (cIMT) (outcome) was examined using multiple linear regression. RESULTS Subclinical atherosclerosis, defined as the presence of carotid plaque and/or cIMT ≥ 0.9, was present in 72% of the cohort. All patients achieved SVR that led to reduction in cIMT (0.92 ± 0.20 vs 0.83 ± 0.21 mm, P < .001). HCV eradication markedly decreased serum levels of F2 -isoprostanes (620.5 [143.2; 1904.1] vs 119.51 [63.2; 400.6] pg/mL, P < .0001), lipid hydroperoxides (13.8 [6.3; 20.7] vs 4.9 [2.3; 9.6] nmol/μl, P < .0001) and 8-hydroxy-2'-deoxyguanosine (558.9 [321.0; 6301.2] vs 294.51 [215.31; 408.95] pg/mL, P < .0001), whereas increased serum GPx activity (10.44 [4.6; 16.3] vs 13.75 [9.42; 20.63] nmol/min/mL, P = .001). By multiple linear regression analysis ΔcIMT was independently associated with ΔF2 -isoprostanes (β: 1.746 [0.948; 2.543]; P < .0001) after adjustment for age, baseline F2 -isoprostanes and baseline IMT. CONCLUSIONS Besides association of lipid peroxidation with severity of liver disease, the reduction in F2 -isoprostanes may be involved in the improvement of atherosclerosis after HCV eradication.
Collapse
Affiliation(s)
- Federico Salomone
- Division of Gastroenterology, Ospedale di Acireale, Azienda Sanitaria Provinciale di Catania, Catania, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Agnieszka Micek
- Department of Nursing Management and Epidemiology Nursing, Jagiellonian University Medical College, Krakow, Poland
| | - Rosaria Maria Pipitone
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Francesca Rini
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Concetta Gardi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenza Calvaruso
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Vito Di Marco
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefania Grimaudo
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| | - Antonio Craxì
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Italy
| |
Collapse
|
33
|
Lensen IS, Monfredi OJ, Andris RT, Lake DE, Moorman JR. Heart rate fragmentation gives novel insights into non-autonomic mechanisms governing beat-to-beat control of the heart's rhythm. JRSM Cardiovasc Dis 2020; 9:2048004020948732. [PMID: 32922768 PMCID: PMC7457638 DOI: 10.1177/2048004020948732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022] Open
Abstract
To demonstrate how heart rate fragmentation gives novel insights into
non-autonomic mechanisms of beat-to-beat variability in cycle length, and
predicts survival of cardiology clinic patients, over and above traditional
clinical risk factors and measures of heart rate variability. Approach: We studied 2893 patients seen by cardiologists with
clinical data including 24-hour Holter monitoring. Novel measures of heart
rate fragmentation alongside canonical time and frequency domain measures of
heart rate variability, as well as an existing local dynamics score were
calculated. A proportional hazards model was utilized to relate the results
to survival. Main results: The novel heart rate fragmentation measures were
validated and characterized with respect to the effects of age, ectopy and
atrial fibrillation. Correlations between parameters were determined.
Critically, heart rate fragmentation results could not be accounted for by
undersampling respiratory sinus arrhythmia. Increased heart rate
fragmentation was associated with poorer survival (p ≪ 0.01 in the
univariate model). In multivariable analyses, increased heart rate
fragmentation and more abnormal local dynamics (p 0.045), along with
increased clinical risk factors (age (p ≪ 0.01), tobacco use (p ≪ 0.01) and
history of heart failure (p 0.019)) and lower low- to high-frequency ratio
(p 0.022) were all independent predictors of 2-year mortality. Significance: Analysis of continuous ECG data with heart rate
fragmentation indices yields information regarding non-autonomic control of
beat-to-beat variability in cycle length that is independent of and additive
to established parameters for investigating heart rate variability, and
predicts mortality in concert with measures of local dynamics, frequency
content of heart rate, and clinical risk factors.
Collapse
Affiliation(s)
- Irene S Lensen
- University of Technology Eindhoven, Noord-Brabant, Netherlands
| | | | | | | | | |
Collapse
|
34
|
Mezzetti M, Bionaz M, Trevisi E. Interaction between inflammation and metabolism in periparturient dairy cows. J Anim Sci 2020; 98:S155-S174. [PMID: 32810244 DOI: 10.1093/jas/skaa134] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
35
|
Jabłońska-Trypuć A, Krętowski R, Świderski G, Cechowska-Pasko M, Lewandowski W. Cichoric acid attenuates the toxicity of mesotrione. Effect on in vitro skin cell model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103375. [PMID: 32279013 DOI: 10.1016/j.etap.2020.103375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
There is an important need to increase knowledge regarding the interactions between environmental contaminants and other compounds. Pesticides are an important group of food contaminants. By contrast, cichoric acid (CA) belongs to the category of desirable food ingredients with antioxidant and cytotoxic effects. The aim of the presented study was to test if CA may constitute a food ingredient, which eliminate stimulatory effect of pesticides on skin cancer cells and toxic effect of herbicides on fibroblasts. Therefore, we conducted cytotoxicity studies of environmentally relevant pesticide concentrations and the mixture of both compounds in melanoma and fibroblasts cells. We studied if CA combined with mesotrione change the oxidative stress parameters and apoptotic activity in treated cells. Obtained results indicate that CA exhibits cytotoxic activity against mesotrione-induced skin cancer development by influencing oxidative stress parameters and apoptosis. On the other hand CA inhibits prooxidative and proapoptotic activity of mesotrione in fibroblasts. Presented methods and obtained results could be a useful tool in the analysis of environmental contaminants toxicity and possible preventive activity of antioxidative plant- origin compounds.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, Białystok, 15-351, Poland.
| | - Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Białystok, 15-222, Poland.
| | - Grzegorz Świderski
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, Białystok, 15-351, Poland.
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Białystok, 15-222, Poland.
| | - Włodzimierz Lewandowski
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, Białystok, 15-351, Poland.
| |
Collapse
|
36
|
Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J Clin Med 2020; 9:jcm9061995. [PMID: 32630452 PMCID: PMC7355625 DOI: 10.3390/jcm9061995] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD), including heart and pathological circulatory conditions, are the world's leading cause of mortality and morbidity. Endothelial dysfunction involved in CVD pathogenesis is a trigger, or consequence, of oxidative stress and inflammation. Endothelial dysfunction is defined as a diminished production/availability of nitric oxide, with or without an imbalance between endothelium-derived contracting, and relaxing factors associated with a pro-inflammatory and prothrombotic status. Endothelial dysfunction-induced phenotypic changes include up-regulated expression of adhesion molecules and increased chemokine secretion, leukocyte adherence, cell permeability, low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. Inflammation-induced oxidative stress results in an increased accumulation of reactive oxygen species (ROS), mainly derived from mitochondria. Excessive ROS production causes oxidation of macromolecules inducing cell apoptosis mediated by cytochrome-c release. Oxidation of mitochondrial cardiolipin loosens cytochrome-c binding, thus, favoring its cytosolic release and activation of the apoptotic cascade. Oxidative stress increases vascular permeability, promotes leukocyte adhesion, and induces alterations in endothelial signal transduction and redox-regulated transcription factors. Identification of new endothelial dysfunction-related oxidative stress markers represents a research goal for better prevention and therapy of CVD. New-generation therapeutic approaches based on carriers, gene therapy, cardiolipin stabilizer, and enzyme inhibitors have proved useful in clinical practice to counteract endothelial dysfunction. Experimental studies are in continuous development to discover new personalized treatments. Gene regulatory mechanisms, implicated in endothelial dysfunction, represent potential new targets for developing drugs able to prevent and counteract CVD-related endothelial dysfunction. Nevertheless, many challenges remain to overcome before these technologies and personalized therapeutic strategies can be used in CVD management.
Collapse
|
37
|
Apolipoprotein A-I Supports MSCs Survival under Stress Conditions. Int J Mol Sci 2020; 21:ijms21114062. [PMID: 32517119 PMCID: PMC7312015 DOI: 10.3390/ijms21114062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Clinical trials have shown the safety of mesenchymal stem/stromal cells (MSCs) transplantation, but the effectiveness of these treatments is limited. Since, transplanted MSCs will undergo metabolic disturbances in the bloodstream, we investigated the influence of blood plasmas of type 2 diabetes (T2D) patients on MSCs viability and examined whether apolipoprotein A-I (apoA-I) could protect cells from stressful conditions of serum deprivation (SD), hypoxia, and elevated concentrations of reactive oxygen species (ROS). ApoA-I exhibits anti-inflammatory, immune activities, improves glycemic control, and is suitable for T2D patients but its influence on MSCs remains unknown. For the first time we have shown that apoA-I decreases intracellular ROS and supports proliferative rate of MSCs, thereby increasing cell count in oxidation conditions. ApoA-I did not influence cell cycle when MSCs were predominantly in the G0/G1 phases under conditions of SD/hypoxia, activated proliferation rapidly, and reduced apoptosis during MSCs transition to the oxygenation or oxidation conditions. Finally, it was found that the blood plasma of T2D individuals had a cytotoxic effect on MSCs in 39% of cases and had a wide variability of antioxidant properties. ApoA-I protects cells under all adverse conditions and can increase the efficiency of MSCs transplantation in T2D patients.
Collapse
|
38
|
Zhao J, Liang H, Shi W. Effect of serum 3-nitrotyrosine on the occurrence and development of carotid atherosclerosis in patients with essential hypertension. Minerva Med 2020; 112:670-671. [PMID: 32338481 DOI: 10.23736/s0026-4806.20.06558-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Zhao
- Department of Cardiology, Haijiya Hospital of Heze, Heze, China
| | - Houcai Liang
- Department of ICU, Dongda Hospital of Shanxian, Heze, China
| | - Wenbing Shi
- Department of Cardiology, Dongda Hospital of Shanxian, Heze, China -
| |
Collapse
|
39
|
Abstract
The fungal metabolite sporidesmin is responsible for the hepatogenous photosensitising disease facial eczema in livestock. Toxicity is due to a sulfur-bridged epidithiodioxopiperazine ring that has wide biological reactivity. The ways in which the toxin causes hepatobiliary and other tissue damage have not been established. Hypotheses include direct interaction with cellular thiols including protein cysteine residues or production of reactive oxygen species resulting in oxidative stress. Comparison with the cellular effects of the structurally related compound gliotoxin suggests additional mechanisms including interaction with cell adhesion complexes and possible downstream consequences for regulated necrosis as a response to tissue injury. Revision of hypotheses of how sporidesmin affects cells has the potential to generate new strategies for control of facial eczema including through identification of proteins and genes that are associated with resistance to the disease.
Collapse
Affiliation(s)
- T W Jordan
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
40
|
Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat 2020; 49:100670. [DOI: 10.1016/j.drup.2019.100670] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/13/2022]
|
41
|
Puttabyatappa M, Ciarelli JN, Chatoff AG, Singer K, Padmanabhan V. Developmental programming: Adipose depot-specific changes and thermogenic adipocyte distribution in the female sheep. Mol Cell Endocrinol 2020; 503:110691. [PMID: 31863810 PMCID: PMC7012762 DOI: 10.1016/j.mce.2019.110691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Prenatal testosterone (T)-treated female sheep exhibit an enhanced inflammatory and oxidative stress state in the visceral adipose tissue (VAT) but not in the subcutaneous (SAT), while surprisingly maintaining insulin sensitivity in both depots. In adult sheep, adipose tissue is predominantly composed of white adipocytes which favor lipid storage. Brown/beige adipocytes that make up the brown adipose tissue (BAT) favor lipid utilization due to thermogenic uncoupled protein 1 expression and are interspersed amidst white adipocytes, more so in epicardiac (ECAT) and perirenal (PRAT) depots. The impact of prenatal T-treatment on ECAT and PRAT depots are unknown. As BAT imparts a metabolically healthy phenotype, the depot-specific impact of prenatal T-treatment on inflammation, oxidative stress, differentiation and insulin sensitivity could be dictated by the distribution of brown adipocytes. This hypothesis was tested by assessing markers of oxidative stress, inflammation, adipocyte differentiation, fibrosis and thermogenesis in adipose depots from control and prenatal T (100 mg T propionate twice a week from days 30-90 of gestation) -treated female sheep at 21 months of age. Our results show prenatal T-treatment induces depot-specific changes in inflammation, oxidative stress state, collagen accumulation, and differentiation with changes being more pronounced in the VAT. Prenatal T-treatment also increased thermogenic gene expression in all depots indicative of increased browning with effects being more prominent in VAT and SAT. Considering that inflammatory and oxidative stress are also elevated, the increased brown adipocyte distribution is likely a compensatory response to maintain insulin sensitivity and function of organs in the proximity of respective depots.
Collapse
Affiliation(s)
| | - Joseph N Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Adam G Chatoff
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
42
|
Puttabyatappa M, Banker M, Zeng L, Goodrich JM, Domino SE, Dolinoy DC, Meeker JD, Pennathur S, Song PXK, Padmanabhan V. Maternal Exposure to Environmental Disruptors and Sexually Dimorphic Changes in Maternal and Neonatal Oxidative Stress. J Clin Endocrinol Metab 2020; 105:dgz063. [PMID: 31613966 PMCID: PMC7046018 DOI: 10.1210/clinem/dgz063] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022]
Abstract
CONTEXT Early pregnancy exposure to endocrine disrupting chemicals (EDCs) may contribute to poor birth outcomes through oxidative stress (OS)-mediated disruption of the maternal and fetal milieu. Most studies have investigated the effect of single EDC exposures on OS. OBJECTIVE Assess the association of uniquely weighted mixtures of early pregnancy exposures with the maternal and neonatal OS markers. DESIGN Prospective analysis of mother-infant dyads. SETTING University hospital. PARTICIPANTS 56 mother-infant dyads. MAIN OUTCOME MEASURES The association of OS markers (nitrotyrosine, dityrosine, chlorotyrosine) in maternal first trimester and term, and cord blood plasma with maternal first trimester exposure levels of each of 41 toxicants (trace elements, metals, phenols, and phthalates) from 56 subjects was analyzed using Spearman correlations and linear regression. The association of OS markers with inflammatory cytokines and birth outcomes were analyzed by Spearman correlation and linear regression analysis, respectively. Weighted mixtures of early pregnancy exposures were created by principal component analysis and offspring sex-dependent and independent associations with oxidative stress markers were assessed. RESULTS (1) An inverse relationship between levels of maternal/cord OS markers and individual EDCs was evident. In contrast, when assessed as EDC mixtures, both direct and inverse associations were evident in a sex-specific manner; (2) the maternal term OS marker, nitrotyrosine, was inversely associated with gestational age, and (3) both direct and inverse associations were evident between the 3 OS markers and individual cytokines. CONCLUSIONS Provides proof of concept that effects of exposures on OS varies when assessed as EDC mixtures versus individually.
Collapse
Affiliation(s)
| | | | - Lixia Zeng
- Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Steven E Domino
- Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - John D Meeker
- Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | | | - Peter X K Song
- Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Departments of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
- Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
43
|
Pagano G, Pallardó FV, Porto B, Fittipaldi MR, Lyakhovich A, Trifuoggi M. Mitoprotective Clinical Strategies in Type 2 Diabetes and Fanconi Anemia Patients: Suggestions for Clinical Management of Mitochondrial Dysfunction. Antioxidants (Basel) 2020; 9:antiox9010082. [PMID: 31963742 PMCID: PMC7023409 DOI: 10.3390/antiox9010082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress (OS) and mitochondrial dysfunction (MDF) occur in a number of disorders, and several clinical studies have attempted to counteract OS and MDF by providing adjuvant treatments against disease progression. The present review is aimed at focusing on two apparently distant diseases, namely type 2 diabetes (T2D) and a rare genetic disease, Fanconi anemia (FA). The pathogenetic links between T2D and FA include the high T2D prevalence among FA patients and the recognized evidence for OS and MDF in both disorders. This latter phenotypic/pathogenetic feature-namely MDF-may be regarded as a mechanistic ground both accounting for the clinical outcomes in both diseases, and as a premise to clinical studies aimed at counteracting MDF. In the case for T2D, the working hypothesis is raised of evaluating any in vivo decrease of mitochondrial cofactors, or mitochondrial nutrients (MNs) such as α-lipoic acid, coenzyme Q10, and l-carnitine, with possibly combined MN-based treatments. As for FA, the established knowledge of MDF, as yet only obtained from in vitro or molecular studies, prompts the requirement to ascertain in vivo MDF, and to design clinical studies aimed at utilizing MNs toward mitigating or delaying FA's clinical progression. Altogether, this paper may contribute to building hypotheses for clinical studies in a number of OS/MDF-related diseases.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy;
- Correspondence: ; Tel.: +39-335-790-7261
| | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, E-46010 Valencia, Spain;
| | - Beatriz Porto
- Institute of Biomedical Sciences, ICBAS, University of Porto, 4099-030 Porto, Portugal;
| | - Maria Rosa Fittipaldi
- Internal Medicine Unit, San Francesco d’Assisi Hospital, I-84020 Oliveto Citra (SA), Italy;
| | - Alex Lyakhovich
- Vall d’Hebron Institut de Recerca, E-08035 Barcelona, Spain;
- Institute of Molecular Biology and Biophysics of the “Federal Research Center of Fundamental and Translational Medicine”, 630117 Novosibirsk, Russia
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy;
| |
Collapse
|
44
|
Hypermethioninemia induces memory deficits and morphological changes in hippocampus of young rats: implications on pathogenesis. Amino Acids 2020; 52:371-385. [PMID: 31902007 DOI: 10.1007/s00726-019-02814-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the effect of the chronic administration of methionine (Met) and/or its metabolite, methionine sulfoxide (MetO), on the behavior and neurochemical parameters of young rats. Rats were treated with saline (control), Met (0.2-0.4 g/kg), MetO (0.05-0.1 g/kg), and/or a combination of Met + MetO, subcutaneously twice a day from postnatal day 6 (P6) to P28. The results showed that Met, MetO, and Met + MetO impaired short-term and spatial memories (P < 0.05), reduced rearing and grooming (P < 0.05), but did not alter locomotor activity (P > 0.05). Acetylcholinesterase activity was increased in the cerebral cortex, hippocampus, and striatum following Met and/or MetO (P < 0.05) treatment, while Na+, K+-ATPase activity was reduced in the hippocampus (P < 0.05). There was an increase in the level of thiobarbituric acid reactive substances (TBARS) in the cerebral cortex in Met-, MetO-, and Met + MetO-treated rats (P < 0.05). Met and/or MetO treatment reduced superoxide dismutase, catalase, and glutathione peroxidase activity, total thiol content, and nitrite levels, and increased reactive oxygen species and TBARS levels in the hippocampus and striatum (P < 0.05). Hippocampal brain-derived neurotrophic factor was reduced by MetO and Met + MetO compared with the control group. The number of NeuN-positive cells was decreased in the CA3 in Met + MetO group and in the dentate gyrus in the Met, MetO, and Met + MetO groups compared to control group (P < 0.05). Taken together, these findings further increase our understanding of changes in the brain in hypermethioninemia by elucidating behavioral alterations, biological mechanisms, and the vulnerability of brain function to high concentrations of Met and MetO.
Collapse
|
45
|
Polyphenols in human nutrition: from the in vitro antioxidant capacity to the beneficial effects on cardiometabolic health and related inter-individual variability - an overview and perspective. Br J Nutr 2019; 123:241-254. [PMID: 31658907 DOI: 10.1017/s0007114519002733] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Oxidative damage of cells and tissues is broadly implicated in human pathophysiology, including cardiometabolic diseases. Polyphenols, as important constituents of the human diet and potent in vitro free radical scavengers, have been extensively studied for their beneficial effects on cardiometabolic health. However, it has been demonstrated that the in vivo antioxidant activity of polyphenols is distinct from their in vitro free radical-scavenging capacity. Indeed, bioavailability of nutritional polyphenols is low and conditioned by complex mechanisms of absorption, distribution, metabolism and excretion. Nowadays, it is commonly accepted that the cellular antioxidant activity of polyphenols is mainly carried out via modification of transcription of genes involved in antioxidant defence. Importantly, polyphenols also contribute to cardiometabolic health by modulation of a plethora of cellular processes that are not directly associated with antioxidant enzymes, through nutri(epi)genomic mechanisms. Numerous human intervention studies have demonstrated beneficial effects of polyphenols on the key cardiometabolic risk factors. However, inconsistency of the results of some studies led to identification of the inter-individual variability in response to consumption of polyphenols. In perspective, a detailed investigation of the determinants of this inter-individual variability will potentially lead us towards personalised dietary recommendations. The phenomenon of inter-individual variability is also of relevance for supplementation with antioxidant (pro)vitamins.
Collapse
|
46
|
Tounsi N, Djerdjouri B, Bouzid C, Bentabak K. Correlation of adenosine deaminase operating under nitro-oxidative stress with tumor and vascularization in patients with advanced gallbladder carcinoma. J Appl Biomed 2019; 17:175-183. [PMID: 34907699 DOI: 10.32725/jab.2019.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/20/2019] [Indexed: 11/05/2022] Open
Abstract
This study investigates serum redox status and adenosine catabolism markers in relation to tumor and angiogenesis, in patients with gallbladder carcinoma (GBC). The level of adenosine deaminase (ADA) and xanthine oxidase (XO) activities, nitrites (NO2-), glutathione (GSH) and malondialdehyde (MDA) were measured in sera of 40 GBC patients and 40 healthy donors. In parallel, 15 tumors at TNM stage IV were scored for CD34 expression and microvessel density (MVD). The results showed that XO and ADA activities, nitrites and MDA levels enhanced by 1.26 (p < 0.01), 2.69, 2.0, and 3.2-fold (p < 0.001), respectively, while those of GSH decreased by 44.6% (p < 0.001). According to receiver operating characteristic (ROC) curve, the optimal cut-off for XO, ADA, MDA, GSH and nitrites were 5.41U/l, 17.02 U/l, 3.72 μM, 36.91 μM and 21.21 μM, respectively. Spearman correlation revealed that ADA activity correlated to nitrites levels (r = 0.3419, p < 0.05) and XO activity (r = 0.5487, p < 0.001). Multivariate binary logistic regression analysis revealed that MDA (OR = 5.78, p < 0.05), ADA (OR = 1.28, p < 0.001) and XO (OR = 2.81, p < 0.05) correlated positively to GBC. CD34 was up expressed in 73.3% of tumors at intermediate to high levels. Multiple regression analysis showed that ADA affected MVD (r = 0.604, p < 0.01). The results suggest that high MDA/GSH ratio is a potential biomarker of GBC. In addition, the oxidative adenosine catabolism indicated that active purine salvage pathway could support tumor progression by sustaining angiogenesis.
Collapse
Affiliation(s)
- Nabila Tounsi
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Algiers, Algeria
| | - Bahia Djerdjouri
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Algiers, Algeria
| | - Chafik Bouzid
- Mustapha Pacha Hospital, Public Health Center Pierre and Marie Curie, Department of Oncological Surgery A, Algiers, Algeria
| | - Kamel Bentabak
- Mustapha Pacha Hospital, Public Health Center Pierre and Marie Curie, Department of Oncological Surgery A, Algiers, Algeria
| |
Collapse
|
47
|
Cenini G, Voos W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front Pharmacol 2019; 10:902. [PMID: 31507410 PMCID: PMC6716473 DOI: 10.3389/fphar.2019.00902] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer disease (AD) is a progressive and deleterious neurodegenerative disorder that affects mostly the elderly population. At the moment, no effective treatments are available in the market, making the whole situation a compelling challenge for societies worldwide. Recently, novel mechanisms have been proposed to explain the etiology of this disease leading to the new concept that AD is a multifactor pathology. Among others, the function of mitochondria has been considered as one of the intracellular processes severely compromised in AD since the early stages and likely represents a common feature of many neurodegenerative diseases. Many mitochondrial parameters decline already during the aging, reaching an extensive functional failure concomitant with the onset of neurodegenerative conditions, although the exact timeline of these events is still unclear. Thereby, it is not surprising that mitochondria have been already considered as therapeutic targets in neurodegenerative diseases including AD. Together with an overview of the role of mitochondrial dysfunction, this review examines the pros and cons of the tested therapeutic approaches targeting mitochondria in the context of AD. Since mitochondrial therapies in AD have shown different degrees of progress, it is imperative to perform a detailed analysis of the significance of mitochondrial deterioration in AD and of a pharmacological treatment at this level. This step would be very important for the field, as an effective drug treatment in AD is still missing and new therapeutic concepts are urgently needed.
Collapse
Affiliation(s)
- Giovanna Cenini
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
48
|
Raffaeli G, Ghirardello S, Passera S, Mosca F, Cavallaro G. Oxidative Stress and Neonatal Respiratory Extracorporeal Membrane Oxygenation. Front Physiol 2018; 9:1739. [PMID: 30564143 PMCID: PMC6288438 DOI: 10.3389/fphys.2018.01739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is a frequent condition in critically ill patients, especially if exposed to extracorporeal circulation, and it is associated with worse outcomes and increased mortality. The inflammation triggered by the contact of blood with a non-endogenous surface, the use of high volumes of packed red blood cells and platelets transfusion, the risk of hyperoxia and the impairment of antioxidation systems contribute to the increase of reactive oxygen species and the imbalance of the redox system. This is responsible for the increased production of superoxide anion, hydrogen peroxide, hydroxyl radicals, and peroxynitrite resulting in increased lipid peroxidation, protein oxidation, and DNA damage. The understanding of the pathophysiologic mechanisms leading to redox imbalance would pave the way for the future development of preventive approaches. This review provides an overview of the clinical impact of the oxidative stress during neonatal extracorporeal support and concludes with a brief perspective on the current antioxidant strategies, with the aim to focus on the potential oxidative stress-mediated cell damage that has been implicated in both short and long-term outcomes.
Collapse
Affiliation(s)
- Genny Raffaeli
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Ghirardello
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sofia Passera
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Fabio Mosca
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Cavallaro
- NICU, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
49
|
Zare S, Hossein Dabbaghmanesh M, Noorafshan A, Koohpeyma F, Bakhshayeshkaram M, Montazeri-Najafabady N. Protective effect of vitamin E and vitamin C alone and in combination on testicular damage induced by sodium metabisulphite in rats: A stereological study. Andrologia 2018; 51:e13193. [PMID: 30478946 DOI: 10.1111/and.13193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022] Open
Abstract
The existing investigation was directed to consider the protective role of vitamin C and E alone and in combination on sodium metabisulphite-induced damage on testicular. Experimental animals were received sodium metabisulphite (520 mg/kg) alone and in combination with vitamin E (100 mg/kg), vitamin C (100 mg/kg) and vitamin E + C, while the control groups received 0.9% saline solution and olive oil (the solvent of the vitamin E). Finally, the changes in the testis histology were examined stereologically. Lipid peroxidation was assessed through the measurement of malondialdehyde (MDA) levels in testis tissues. Also, serum testosterone concentrations were measured. The results indicated that 80%-90% (spermatogonia A and B, spermatocyte and Leydig) and 40% of the Sertoli cells were missed in the rats that received sodium metabisulphite, respectively, compared with the controls. The co-supplementation of vitamin E with vitamin C significantly decreased MDA (p = 0.006) and increased testosterone (p = 0.001) concentrations in the rats received SMB which were as much as control and olive groups. Co-supplementation of vitamin E and vitamin C due to their synergistic effects could be an appropriate strategy in preventing testicular from sodium metabisulphite-induced damage.
Collapse
Affiliation(s)
- Shiva Zare
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
50
|
Blakeley JO, Grossman SA, Chi AS, Mikkelsen T, Rosenfeld MR, Ahluwalia MS, Nabors LB, Eichler A, Ribas IG, Desideri S, Ye X. Phase II Study of Iniparib with Concurrent Chemoradiation in Patients with Newly Diagnosed Glioblastoma. Clin Cancer Res 2018; 25:73-79. [PMID: 30131387 DOI: 10.1158/1078-0432.ccr-18-0110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/04/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE Iniparib is a purported prodrug causing cell death through intracellular conversion to nitro radical ions. We assessed the efficacy and safety of iniparib with standard radiotherapy and temozolomide in patients with newly diagnosed glioblastoma (GBM). PATIENTS AND METHODS Adults meeting eligibility criteria were enrolled in this prospective, single-arm, open-label multi- institution phase II trial with median overall survival (mOS) compared with a historical control as the primary objective. A safety run-in component of radiotherapy + temozolomide + iniparib (n = 5) was followed by an efficacy study (n = 76) with the recommended phase II doses of iniparib (8.0 mg/kg i.v. twice/week with radiotherapy + daily temozolomide followed by 8.6 mg/kg i.v. twice/week with 5/28-day temozolomide). RESULTS The median age of the 81 evaluable participants was 58 years (63% male). Baseline KPS was ≥ 80% in 87% of participants. The mOS was 22 months [95% confidence interval (CI), 17-24] and the HR was 0.44 (95% CI, 0.35-0.55) per-person-year of follow-up. The 2- and 3-year survival rates were 38% and 25%, respectively. Treatment-related grade 3 adverse events (AEs) occurred in 27% of patients; 9 patients had AEs requiring drug discontinuation including infusion-related reaction, rash, gastritis, increased liver enzymes, and thrombocytopenia. CONCLUSIONS Iniparib is well tolerated with radiotherapy and temozolomide in patients with newly diagnosed GBM at up to 17.2 mg/kg weekly. The primary objective of improved mOS compared with a historical control was met, indicating potential antitumor activity of iniparib in this setting. Dosing optimization (frequency and sequence) is needed prior to additional efficacy studies.
Collapse
Affiliation(s)
- Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Oncology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stuart A Grossman
- Department of Oncology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew S Chi
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | | | - Myrna R Rosenfeld
- Institute for Biomedical Research (IDIBAPS)/Hospital Clinic, Barcelona, Spain
| | | | - L Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - April Eichler
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Serena Desideri
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaobu Ye
- Department of Oncology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|