1
|
Cui Z, Qiu J, Lin J, Fu Y, Lin L. Discovering genetically-supported drug targets for multisite chronic pain through multi-omics Mendelian randomization and single-cell RNA-sequencing. Neuroscience 2025; 572:254-268. [PMID: 39993665 DOI: 10.1016/j.neuroscience.2025.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/14/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Multisite chronic pain (MCP) is a highly prevalent disorder with substantial unmet therapeutic needs.We conducted multi-omics Mendelian randomization and Bayesian colocalization to identify potential therapeutic targets for MCP. Summary-level data of gene expressions and protein abundance levels were obtained from corresponding quantitative trait loci studies, respectively. Summary-level data for MCP was leveraged from the UK Biobank. The transcriptome-wide association study (TWAS), Mendelian randomization, and Bayesian colocalization approaches were applied to investigate the potential causal effects of gene expressions and protein levels on MCP in both blood and brain tissues. Phenome-wide Mendelian randomization analysis (MR-PheWAS), single-cell sequencing data, protein-protein interaction (PPI), and reaction pathway analysis were further conducted to digging the underlying mechanisms. Our analysis identified and validated two plasma targets for MCP, namely KLC1 and LANCL1, at both gene expression levels and protein levels across multi-methodologies. Moreover, MR-PheWAS observed additional benefits associated with these two targets. Through analyses based on single-cell sequencing data, we identified critical cell types for KLC1, primarily megakaryocytes, and neurons, notably linked to the axon guidance pathway, while LANCL1 showed associations with B lymphocytes, neurons, and the electron transport pathway. In dorsal root ganglions, we identified enrichments of both LANCL1 and KLC1 in putative silent nociceptors. The effects are possibly mediated through axonal transport and the activation of NMDARs, supported by PPI and reaction pathway analysis. Our multi-dimensional analysis suggests that genetically determined KLC1 and LANCL1 are causally linked to MCP risk, holding promise as appealing drug targets for MCP.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jianwei Lin
- Big Data Laboratory, Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China.
| | - Yanni Fu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Liling Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
de la Peña JB, García G, Campbell ZT. Ribosome profiling reveals that post-transcriptional control of Nalf1 by heterogeneous nuclear ribonucleoprotein L is required for paclitaxel-induced neuropathic pain. Pain 2025:00006396-990000000-00870. [PMID: 40198721 DOI: 10.1097/j.pain.0000000000003577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/05/2025] [Indexed: 04/10/2025]
Abstract
ABSTRACT Sensory neurons are integral to the genesis and maintenance of neuropathic pain. The molecular mechanisms that mediate long-lived changes in their excitability are unclear. Here, we leverage functional genomics approaches to survey changes in RNA abundance and translation in dorsal root ganglion neurons from a mouse model of paclitaxel-induced neuropathic pain. We focus specifically on females as paclitaxel is a first-line therapy for breast cancer. The sequencing data indicate that substantially more changes occur at the level of translation (n = 404) than transcription and decay (n = 109). We discovered that a core subunit of the sodium leak channel (NALCN) channel, auxiliary factor 1 (NALF1), is preferentially translated in response to paclitaxel. This effect is mediated by the RNA-binding protein heterogeneous nuclear ribonucleoprotein L (HNRNP L). Heterogeneous nuclear ribonucleoprotein L binds a 14 base CA-rich element (CARE) in the Nalf1 3' untranslated region (3'UTR). Genetic elimination of either HNRNP L, the Nalf1 CARE motif, or the pore-forming subunit of the nonselective NALCN diminishes pain amplification in vivo. Collectively, these results illustrate that an element situated in a 3'UTR is required for neuropathic pain in female mice.
Collapse
Affiliation(s)
- June Bryan de la Peña
- Department of Anesthesiology, University of New Mexico, Albuquerque, NM, United States
| | - Guadalupe García
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Zhao S, Zhang JJ, Zhang MY, Yang QQ, Li ZX, Ren XH, Su SX, Si TE, Li JM, Wu HR, Chen SY, Zang WD, Cao J. TET1 participates in oxaliplatin-induced neuropathic pain by regulating microRNA-30b/Nav1.6. J Biol Chem 2025; 301:108228. [PMID: 39864621 PMCID: PMC11894311 DOI: 10.1016/j.jbc.2025.108228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Chemotherapy-induced neuropathic pain poses significant clinical challenges and severely impacts patient quality of life. Sodium ion channels are crucial in regulating neuronal excitability and pain. Our research indicates that the microRNA-30b (miR-30b) in rat dorsal root ganglia (DRG) contributes to chemotherapy-induced neuropathic pain by regulating the Nav1.6 protein. Additionally, ten-eleven translocation methylcytosine dioxygenase 1 (TET1) plays a crucial role in pain generation by altering gene expression. We established a chemotherapy-induced neuropathy model using intraperitoneal oxaliplatin (OXA) injections and measured TET1 and Nav1.6 protein in the DRG. Using lentivirus and Tet1flox/flox mice, we modulated TET1 expression and assessed pain behaviors, DRG neuronal excitability, Nav1.6 currents, miR-30b-5p, and demethylation of the Mir30b promoter region. We employed chromatin immunoprecipitation to pinpoint TET1-binding sites on the Mir30b promoter. The impacts of miR-30b agomir or antagomir on Nav1.6 expression and pain responses were assessed postintrathecal injections. The results showed that OXA reduced TET1, increasing neuronal excitability, Nav1.6 currents, and miR-30b-5p in the DRG. TET1 knockdown exacerbated these effects and induced pain behaviors. Conversely, TET1 overexpression reversed these effects. TET1 also targeted and enhanced demethylation at the Mir30b promoter (-1103 bp to -1079 bp). miR-30b agomir reduces Nav1.6, whereas miR-30b antagomir reverses TET1's effects on Nav1.6 and pain. In OXA-induced neuropathy, decreased TET1 reduces miR-30b, elevating Nav1.6 expression and currents and contributing to pain. We hypothesize that TET1 mediates this process by regulating the demethylation of the Mir30b promoter.
Collapse
Affiliation(s)
- Sen Zhao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Institute of Neuroscience, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing-Jing Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; School of Nursing and Health, Zhengzhou University, Zhengzhou, China; Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, China
| | - Meng-Ya Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing-Qing Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Institute of Neuroscience, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi-Xiao Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiu-Hua Ren
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Song-Xue Su
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tian-En Si
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian-Min Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Institute of Neuroscience, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hui-Rui Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shi-Yue Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei-Dong Zang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Institute of Neuroscience, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Jing Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Institute of Neuroscience, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; School of Nursing and Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Deng C, Yuan X, Lin X, Liu S. MiR-200a-3p Attenuates Neuropathic Pain by Suppressing the Bromodomain-Containing Protein 3-Nuclear Factor-κB Pathway. J Biochem Mol Toxicol 2024; 38:e70041. [PMID: 39651616 DOI: 10.1002/jbt.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024]
Abstract
MicroRNAs (miRNAs) have key roles in the pathological processes of neuropathic pain. Here, our aim was to elucidate the function of miR-200a-3p as well as its related regulatory mechanism in neuropathic pain. An animal model of neuropathic pain was established by chronic constriction injury (CCI) induction. The knockdown experiments are performed by injecting a lentiviral construct intrathecally. MiR-200a-3p and bromodomain-containing protein 3 (BRD3) expression in rat spinal cord was determined using RT-qPCR. The mechanical, thermal, and cold responses in animals were assessed at the indicated time after surgery. The levels of inflammatory cytokines in rat spinal cord were measured by ELISA. The changes in NF-κB signaling-related molecules in rat spinal cord were determined using western blot and immunofluorescence. MiR-200a-3p was underexpressed in CCI rats in a time-dependent manner. Overexpression of miR-200a-3p decreased mechanical hyperalgesia and thermal sensitivity to attenuate neuropathic pain in rats. BRD3 was targeted by miR-200a-3p. Additionally, downregulation of BRD3 inhibited neuropathic pain progression. Moreover, overexpression of BRD3 rescued the effect of miR-200a-3p on NF-κB signaling and neuropathic pain in CCI rats. MiR-200a-3p attenuates neuropathic pain via downregulating BRD3 to block NF-κB signaling.
Collapse
Affiliation(s)
- Chao Deng
- Department of Pain Treatment, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuequan Yuan
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuezheng Lin
- Department of Anesthesia and Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Sitong Liu
- Department of Anesthesia, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Kuroda T, Suzuki A, Okada H, Shimizu M, Watanabe D, Suzuki K, Mori K, Ohmura K, Niwa A, Imaizumi Y, Matsuo M, Ichihashi K, Okubo T, Taniguchi T, Kanayma T, Kobayashi R, Sugie S, Hara A, Tomita H. Endothelial Glycocalyx in the Peripheral Capillaries is Injured Under Oxaliplatin-Induced Neuropathy. THE JOURNAL OF PAIN 2024; 25:104462. [PMID: 38211844 DOI: 10.1016/j.jpain.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Oxaliplatin, a platinum-based anticancer drug, is associated with peripheral neuropathy (oxaliplatin-induced peripheral neuropathy, OIPN), which can lead to worsening of quality of life and treatment interruption. The endothelial glycocalyx, a fragile carbohydrate-rich layer covering the luminal surface of endothelial cells, acts as an endothelial gatekeeper and has been suggested to protect nerves, astrocytes, and other cells from toxins and substances released from the capillary vessels. Mechanisms underlying OIPN and the role of the glycocalyx remain unclear. This study aimed to define changes in the three-dimensional ultrastructure of capillary endothelial glycocalyx near nerve fibers in the hind paws of mice with OIPN. The mouse model of OPIN revealed disruption of the endothelial glycocalyx in the peripheral nerve compartment, accompanied by vascular permeability, edema, and damage to the peripheral nerves. To investigate the potential treatment interventions, nafamostat mesilate, a glycocalyx protective agent was used in tumor-bearing male mice. Nafamostat mesilate suppressed mechanical allodynia associated with neuropathy. It also prevented intra-epidermal nerve fiber loss and improved vascular permeability in the peripheral paws. The disruption of endothelial glycocalyx in the capillaries that lie within peripheral nerve bundles is a novel finding in OPIN. Furthermore, these findings point toward the potential of a new treatment strategy targeting endothelial glycocalyx to prevent vascular injury as an effective treatment of neuropathy as well as of many other diseases. PERSPECTIVE: OIPN damages the endothelial glycocalyx in the peripheral capillaries, increasing vascular permeability. In order to prevent OIPN, this work offers a novel therapy approach that targets endothelial glycocalyx.
Collapse
Affiliation(s)
- Takahiro Kuroda
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan; Laboratory of Advanced Medical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| | - Masayoshi Shimizu
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daichi Watanabe
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Keiko Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan; Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kosuke Mori
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazufumi Ohmura
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuko Imaizumi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Mikiko Matsuo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Koki Ichihashi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takafumi Okubo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiaki Taniguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiro Kanayma
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ryo Kobayashi
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan; Laboratory of Advanced Medical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| |
Collapse
|
6
|
Sharma D, Feng X, Wang B, Yasin B, Bekker A, Hu H, Tao YX. NT-3 contributes to chemotherapy-induced neuropathic pain through TrkC-mediated CCL2 elevation in DRG neurons. EMBO Rep 2024; 25:2375-2390. [PMID: 38594391 PMCID: PMC11094060 DOI: 10.1038/s44319-024-00133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Cancer patients undergoing treatment with antineoplastic drugs often experience chemotherapy-induced neuropathic pain (CINP), and the therapeutic options for managing CINP are limited. Here, we show that systemic paclitaxel administration upregulates the expression of neurotrophin-3 (Nt3) mRNA and NT3 protein in the neurons of dorsal root ganglia (DRG), but not in the spinal cord. Blocking NT3 upregulation attenuates paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities and spontaneous pain without altering acute pain and locomotor activity in male and female mice. Conversely, mimicking this increase produces enhanced responses to mechanical, heat, and cold stimuli and spontaneous pain in naive male and female mice. Mechanistically, NT3 triggers tropomyosin receptor kinase C (TrkC) activation and participates in the paclitaxel-induced increases of C-C chemokine ligand 2 (Ccl2) mRNA and CCL2 protein in the DRG. Given that CCL2 is an endogenous initiator of CINP and that Nt3 mRNA co-expresses with TrkC and Ccl2 mRNAs in DRG neurons, NT3 likely contributes to CINP through TrkC-mediated activation of the Ccl2 gene in DRG neurons. NT3 may be thus a potential target for CINP treatment.
Collapse
Affiliation(s)
- Dilip Sharma
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Xiaozhou Feng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Bing Wang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Bushra Yasin
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Huijuan Hu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
- Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
- Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
7
|
Zhang Y, Feng J, Ou C, Zhou X, Liao Y. AQP4 mitigates chronic neuropathic pain-induced cognitive impairment in mice. Behav Brain Res 2023; 440:114282. [PMID: 36596395 DOI: 10.1016/j.bbr.2022.114282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/29/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Neuropathic pain is a risk factor for cognitive defects. The ubiquitous expression of AQP4 in astrocytes throughout the central nervous system is altered in the neurodegenerative disease. However, the exact role of AQP4 in cognitive impairment induced by chronic neuropathic pain remains unclear. In this study, we discovered that AQP4 protein and mRNA expression decreased time-dependently in the model of chronic neuropathic pain-induced cognitive disorder. AQP4 overexpression recovered mice from cognitive impairment. Furthermore, the concentration of Aβ1-42 in the serum and hippocampus reduced in mice with AQP4 overexpression adeno-associated virus injection. In conclusion, AQP4 in astrocytes is important in mitigating cognitive impairment caused by chronic neuropathic pain.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cehua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xue Zhou
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Yonghong Liao
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
8
|
Li X, Jin DS, Eadara S, Caterina MJ, Meffert MK. Regulation by noncoding RNAs of local translation, injury responses, and pain in the peripheral nervous system. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100119. [PMID: 36798094 PMCID: PMC9926024 DOI: 10.1016/j.ynpai.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Neuropathic pain is a chronic condition arising from damage to somatosensory pathways that results in pathological hypersensitivity. Persistent pain can be viewed as a consequence of maladaptive plasticity which, like most enduring forms of cellular plasticity, requires altered expression of specific gene programs. Control of gene expression at the level of protein synthesis is broadly utilized to directly modulate changes in activity and responsiveness in nociceptive pathways and provides an effective mechanism for compartmentalized regulation of the proteome in peripheral nerves through local translation. Levels of noncoding RNAs (ncRNAs) are commonly impacted by peripheral nerve injury leading to persistent pain. NcRNAs exert spatiotemporal regulation of local proteomes and affect signaling cascades supporting altered sensory responses that contribute to hyperalgesia. This review discusses ncRNAs found in the peripheral nervous system (PNS) that are dysregulated following nerve injury and the current understanding of their roles in pathophysiological pain-related responses including neuroimmune interactions, neuronal survival and axon regeneration, Schwann cell dedifferentiation and proliferation, intercellular communication, and the generation of ectopic action potentials in primary afferents. We review progress in the field beyond cataloging, with a focus on the relevant target transcripts and mechanisms underlying pain modulation by ncRNAs.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Daniel S. Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Sreenivas Eadara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Michael J. Caterina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Department of Neurosurgery and Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
9
|
Tavakoli Pirzaman A, Ebrahimzadeh Pirshahid M, Babajani B, Rahmati A, Niknezhad S, Hosseinzadeh R, Taheri M, Ebrahimi-Zadeh F, Doostmohamadian S, Kazemi S. The Role of microRNAs in Regulating Cancer Cell Response to Oxaliplatin-Containing Regimens. Technol Cancer Res Treat 2023; 22:15330338231206003. [PMID: 37849311 PMCID: PMC10586010 DOI: 10.1177/15330338231206003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023] Open
Abstract
Oxaliplatin (cyclohexane-1,2-diamine; oxalate; platinum [2+]) is a third-generation chemotherapeutic drug with anticancer effects. Oxaliplatin has a role in the treatment of several cancers. It is one of the few drugs which can eliminate the neoplastic cells of colorectal cancer. Also, it has an influential role in breast cancer, lung cancer, bladder cancer, prostate cancer, and gastric cancer. Although oxaliplatin has many beneficial effects in cancer treatment, resistance to this drug is in the way to cure neoplastic cells and reduce treatment efficacy. microRNAs are a subtype of small noncoding RNAs with ∼22 nucleotides that exist among species. They have diverse roles in physiological processes, including cellular proliferation and cell death. Moreover, miRNAs have essential roles in resistance to cancer treatment and can strengthen sensitivity to chemotherapeutic drugs and regimens. In colorectal cancer, the co-treatment of oxaliplatin with anti-miR-19a can partially reverse the oxaliplatin resistance through the upregulation of phosphatase and tensin homolog (PTEN). Moreover, by preventing the spread of gastric cancer cells and downregulating glypican-3 (GPC3), MiR-4510 may modify immunosuppressive signals in the tumor microenvironment. Treatment with oxaliplatin may develop into a specialized therapeutic drug for patients with miR-4510 inhibition and glypican-3-expressing gastric cancer. Eventually, miR-122 upregulation or Wnt/β-catenin signaling suppression boosted the death of HCC cells and made them more sensitive to oxaliplatin. Herein, we have reviewed the role of microRNAs in regulating cancer cells' response to oxaliplatin, with particular attention to gastrointestinal cancers. We also discussed the role of these noncoding RNAs in the pathophysiology of oxaliplatin-induced neuropathic pain.
Collapse
Affiliation(s)
| | | | - Bahareh Babajani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Amirhossein Rahmati
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Shokat Niknezhad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Taheri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Faezeh Ebrahimi-Zadeh
- Student Research Committee, school of Medicine, Jahrom University of Medical Science, Jahrom, Iran
| | | | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
10
|
Huang J, Lin F, Hu Y, Bloe CB, Wang D, Zhang W. From Initiation to Maintenance: HIV-1 Gp120-induced Neuropathic Pain Exhibits Different Molecular Mechanisms in the Mouse Spinal Cord Via Bioinformatics Analysis Based on RNA Sequencing. J Neuroimmune Pharmacol 2022; 17:553-575. [PMID: 35059976 DOI: 10.1007/s11481-021-10044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus (HIV), which causes acquired immunodeficiency syndrome (AIDS), remains one of the most diverse crucial health and development challenges around the world. People infected with HIV constitute a large patient population, and a significant number of them experience neuropathic pain. To study the key mechanisms that mediate HIV-induced neuropathic pain (HNP), we established an HNP mouse model via intrathecal injection of the HIV-1 envelope glycoprotein gp120. The L3~L5 spinal cord was isolated on postoperative days 1/12 (POD1/12), 1 (POD1), and 14 (POD14) for RNA sequencing to investigate the gene expression profiles of the initiation, transition, and maintenance stages of HNP. A total of 1682, 430, and 413 differentially expressed genes were obtained in POD1/12, POD1, and POD14, respectively, and their similarity was low. Bioinformatics analysis confirmed that POD1/12, POD1, and POD14 exhibited different biological processes and signaling pathways. Inflammation, oxidative damage, apoptosis, and inflammation-related signaling pathways were enriched on POD1/12. Inflammation, chemokine activity, and downstream signaling regulated by proinflammatory cytokines, such as the MTOR signaling pathway, were enriched on POD1, while downregulation of ion channel activity, mitochondrial damage, endocytosis, MAPK and neurotrophic signaling pathways developed on POD14. Additionally, we screened key genes and candidate genes, which were verified at the transcriptional and translational levels. Our results suggest that the initiation and maintenance of HNP are regulated by different molecular mechanisms. Therefore, our research may yield a fresh and deeper understanding of the mechanisms underlying HNP, providing accurate molecular targets for HNP therapy.
Collapse
Affiliation(s)
- Jian Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Fei Lin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yanling Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Chris Bloe Bloe
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Advanced glycation end products induce Aβ 1-42 deposition and cognitive decline through H19/miR-15b/BACE1 axis in diabetic encephalopathy. Brain Res Bull 2022; 188:187-196. [PMID: 35961529 DOI: 10.1016/j.brainresbull.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Diabetic encephalopathy (DE), a chronic complication of diabetes, is characterized by decline of cognitive function. The molecular mechanism of DE remains unclear. The purpose of this study is to evaluate the roles of advanced glycation end products (AGEs) in the pathogenesis of DE and investigate its underlying mechanisms in this process. METHODS DE rats were developed by incorporating a high-fat diet and streptozotocin injection followed by the Morris Water Maze test. HT-22 cells were used to mimic the in vitro neuronal injuries of DE. Expression levels of long non-coding RNA H19, miR-15b and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) mRNA in the hippocampus of DE rats or HT-22 cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The levels of BACE1 proteins were analyzed by western blotting or immunohistochemical staining. The contents of Aβ1-42 in supernatant of the cell culture were analyzed by enzyme-linked immu-nosorbent assay (ELISA). The relationship between H19 or BACE1 and miR-15b was verified with dual-luciferase reporter assay. RESULTS We found that the accumulation of Aβ1-42 and the phosphorylation of Tau (Ser404) were increased in the hippocampus CA3 regionof DE rats. MiR-15b was downregulated while H19 and BACE1 were upregulated in the hippocampus CA3 regionof DE rats and AGEs-treated HT-22 cells. The expression of BACE1 protein was negatively regulated by miR-15b at the post-transcriptional level in HT-22 cells. In vivo, administration of miR-15b mimics by the intranasal delivery markedly decreased the BACE1 protein in hippocampal CA3 region and improved the cognitive decline in DE rats. Besides, the luciferase activity assay confirmed the binding site of miR-15b to both the 3'-untranslated region (3'-UTR) of BACE1 mRNA and H19. Then, miR-15b inhibitor reversed H19 knockdown-mediated decrease of Aβ1-42 level in AGEs-treated HT-22 cells. CONCLUSION These results suggested that AGEs induced Aβ1-42 deposition andcognitive decline through H19/miR-15b/ BACE1 axis in DE.
Collapse
|
12
|
Mao Q, Tian L, Wei J, Zhou X, Cheng H, Zhu X, Li X, Gao Z, Zhang X, Liang L. Transcriptome analysis of microRNAs, circRNAs, and mRNAs in the dorsal root ganglia of paclitaxel-induced mice with neuropathic pain. Front Mol Neurosci 2022; 15:990260. [PMID: 36117915 PMCID: PMC9470859 DOI: 10.3389/fnmol.2022.990260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
The microtubule-stabilizing drug paclitaxel (PTX) is a chemotherapeutic agent widely prescribed for the treatment of various tumor types. The main adverse effect of PTX-mediated therapy is chemotherapy-induced peripheral neuropathy (CIPN) and neuropathic pain, which are similar to the adverse effects associated with other chemotherapeutic agents. Dorsal root ganglia (DRG) contain primary sensory neurons; any damage to these neurons or their axons may lead to neuropathic pain. To gain molecular and neurobiological insights into the peripheral sensory system under conditions of PTX-induced neuropathic pain, we used transcriptomic analysis to profile mRNA and non-coding RNA expression in the DRGs of adult male C57BL/6 mice treated using PTX. RNA sequencing and in-depth gene expression analysis were used to analyze the expression levels of 67,228 genes. We identified 372 differentially expressed genes (DEGs) in the DRGs of vehicle- and PTX-treated mice. Among the 372 DEGs, there were 8 mRNAs, 3 long non-coding RNAs (lncRNAs), 16 circular RNAs (circRNAs), and 345 microRNAs (miRNAs). Moreover, the changes in the expression levels of several miRNAs and circRNAs induced by PTX have been confirmed using the quantitative polymerase chain reaction method. In addition, we compared the expression levels of differentially expressed miRNAs and mRNA in the DRGs of mice with PTX-induced neuropathic pain against those evaluated in other models of neuropathic pain induced by other chemotherapeutic agents, nerve injury, or diabetes. There are dozens of shared differentially expressed miRNAs between PTX and diabetes, but only a few shared miRNAs between PTX and nerve injury. Meanwhile, there is no shared differentially expressed mRNA between PTX and nerve injury. In conclusion, herein, we show that treatment with PTX induced numerous changes in miRNA expression in DRGs. Comparison with other neuropathic pain models indicates that DEGs in DRGs vary greatly among different models of neuropathic pain.
Collapse
Affiliation(s)
- Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Lixia Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jianxiong Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaoqiong Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hong Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xuan Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Zihao Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Lingli Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Lingli Liang,
| |
Collapse
|
13
|
Jiang M, Wang Y, Wang J, Feng S, Wang X. The etiological roles of miRNAs, lncRNAs, and circRNAs in neuropathic pain: A narrative review. J Clin Lab Anal 2022; 36:e24592. [PMID: 35808924 PMCID: PMC9396192 DOI: 10.1002/jcla.24592] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background Non‐coding RNAs (ncRNAs) are involved in neuropathic pain development. Herein, we systematically searched for neuropathic pain‐related ncRNAs expression changes, including microRNAs (miRNAs), long non‐coding RNAs (lncRNAs), and circular non‐coding RNAs (circRNAs). Methods We searched two databases, PubMed and GeenMedical, for relevant studies. Results Peripheral nerve injury or noxious stimuli can induce extensive changes in the expression of ncRNAs. For example, higher serum miR‐132‐3p, ‐146b‐5p, and ‐384 was observed in neuropathic pain patients. Either sciatic nerve ligation, dorsal root ganglion (DRG) transaction, or ventral root transection (VRT) could upregulate miR‐21 and miR‐31 while downregulating miR‐668 and miR‐672 in the injured DRG. lncRNAs, such as early growth response 2‐antisense‐RNA (Egr2‐AS‐RNA) and Kcna2‐AS‐RNA, were upregulated in Schwann cells and inflicted DRG after nerve injury, respectively. Dysregulated circRNA homeodomain‐interacting protein kinase 3 (circHIPK3) in serum and the DRG, abnormally expressed lncRNAs X‐inactive specific transcript (XIST), nuclear enriched abundant transcript 1 (NEAT1), small nucleolar RNA host gene 1 (SNHG1), as well as ciRS‐7, zinc finger protein 609 (cirZNF609), circ_0005075, and circAnks1a in the spinal cord were suggested to participate in neuropathic pain development. Dysregulated miRNAs contribute to neuropathic pain via neuroinflammation, autophagy, abnormal ion channel expression, regulating pain‐related mediators, protein kinases, structural proteins, neurotransmission excitatory–inhibitory imbalances, or exosome miRNA‐mediated neuron–glia communication. In addition, lncRNAs and circRNAs are essential in neuropathic pain by acting as antisense RNA and miRNA sponges, epigenetically regulating pain‐related molecules expression, or modulating miRNA processing. Conclusions Numerous dysregulated ncRNAs have been suggested to participate in neuropathic pain development. However, there is much work to be done before ncRNA‐based analgesics can be clinically used for various reasons such as conservation among species, proper delivery, stability, and off‐target effects.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yelong Wang
- Department of Anesthesiology, Gaochun People's Hospital, Nanjing, China
| | - Jing Wang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Shanwu Feng
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Wang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Ju Y, Seol YM, Kim J, Jin H, Choi GE, Jang A. Expression Profiles of Circulating MicroRNAs in XELOX-Chemotherapy-Induced Peripheral Neuropathy in Patients with Advanced Gastric Cancer. Int J Mol Sci 2022; 23:ijms23116041. [PMID: 35682716 PMCID: PMC9180980 DOI: 10.3390/ijms23116041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers and a leading cause of cancer deaths around the world. Chemotherapy is one of the most effective treatments for cancer patients, and has remarkably enhanced survival rates. However, it has many side effects. Recently, microRNAs (miRNAs) have been intensively studied as potential biomarkers for cancer diagnosis and treatment monitoring. However, definitive biomarkers in chemotherapy-induced peripheral neuropathy (CIPN) are still lacking. The aim of this study was to identify the factors significant for neurological adverse events in GC patients receiving XELOX (oxaliplatin and capecitabine) chemotherapy. The results show that XELOX chemotherapy induces changes in the expression of hsa-miR-200c-3p, hsa-miR-885-5p, and hsa-miR-378f. Validation by qRT-PCR demonstrated that hsa-miR-378f was significantly downregulated in CIPN. Hsa-miR-378f was identified as showing a statistically significant correlation in GC patients receiving XELOX chemotherapy according to the analysis of differentially expressed (DE) miRNAs. Furthermore, 34 potential target genes were predicted using a web-based database for miRNA target prognostication and functional annotations. The identified genes are related to the peptidyl-serine phosphorylation and regulation of alternative mRNA splicing with enrichment in the gastric cancer, neurotrophin, MAPK, and AMPK signaling pathways. Collectively, these results provide information useful for developing promising strategies for the treatment of XELOX-chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Yeongdon Ju
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea; (Y.J.); (J.K.); (H.J.)
- Clinical Trial Specialist Program for In Vitro Diagnostics, Brain Busan 21 Plus Program, Graduate School, Catholic University of Pusan, Busan 46252, Korea
| | - Young Mi Seol
- Division of Hematology-Oncology, Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea;
| | - Jungho Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea; (Y.J.); (J.K.); (H.J.)
| | - Hyunwoo Jin
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea; (Y.J.); (J.K.); (H.J.)
- Clinical Trial Specialist Program for In Vitro Diagnostics, Brain Busan 21 Plus Program, Graduate School, Catholic University of Pusan, Busan 46252, Korea
| | - Go-Eun Choi
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea; (Y.J.); (J.K.); (H.J.)
- Correspondence: (G.-E.C.); (A.J.); Tel.: +82-51-510-0563 (G.-E.C.); +82-52-259-1252 (A.J.)
| | - Aelee Jang
- Department of Nursing, University of Ulsan, Ulsan 44610, Korea
- Correspondence: (G.-E.C.); (A.J.); Tel.: +82-51-510-0563 (G.-E.C.); +82-52-259-1252 (A.J.)
| |
Collapse
|
15
|
Kowalski JL, Nguyen N, Battaglino RA, Falci SP, Charlifue S, Morse LR. miR-338-5p Levels and Cigarette Smoking are Associated With Neuropathic Pain Severity in Individuals With Spinal Cord Injury: Preliminary Findings From a Genome-Wide microRNA Expression Profiling Screen. Arch Phys Med Rehabil 2022; 103:738-746. [PMID: 34717922 DOI: 10.1016/j.apmr.2021.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To identify microRNA biomarkers and clinical factors associated with neuropathic pain after spinal cord injury. DESIGN Cross-sectional, secondary analysis of baseline data collected from ongoing clinical studies. Using a genome-wide microRNA screening approach, we studied differential microRNA expression in serum from 43 adults with spinal cord injury enrolled in ongoing clinical studies. Least squares regression was used to identify associations between microRNA expression, clinical factors, and neuropathic pain severity. SETTING Community-dwelling individuals with spinal cord injury. PARTICIPANTS Participants (N=43) were at least 18 years old with spinal cord injury, with 28 reporting neuropathic pain and 15 reporting no neuropathic pain. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Pain presence, type, and intensity were assessed with the International Spinal Cord Injury Pain Basic Data Set. Serum microRNA normalized deep sequencing counts were quantified from blood samples. Participant demographic factors, injury characteristics, medication use, and health habits were collected via questionnaire. RESULTS miR-338-5p expression and history of cigarette smoking were associated with and explained 37% of the variance in neuropathic pain severity (R2=0.37, F2,18=5.31, P=.02) independent of other clinical factors. No association was identified between miR-338-5p levels and nociceptive pain severity. CONCLUSIONS Our findings suggest that miR-338-5p and cigarette smoking may both play a role in the development or maintenance of neuropathic pain after spinal cord injury. While additional work is needed to confirm these findings, validated target analysis suggests a neuroprotective role of miR-338-5p in modulating neuroinflammation and neuronal apoptosis and that its downregulation may result in maladaptive neuroplastic mechanisms contributing to neuropathic pain after spinal cord injury.
Collapse
Affiliation(s)
- Jesse L Kowalski
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Nguyen Nguyen
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Ricardo A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Scott P Falci
- Department of Neurosurgery, Swedish Medical Center, Englewood, Colorado; Research Department, Craig Hospital, Englewood, Colorado
| | | | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
16
|
Zheng YL, Su X, Chen YM, Guo JB, Song G, Yang Z, Chen PJ, Wang XQ. microRNA-Based Network and Pathway Analysis for Neuropathic Pain in Rodent Models. Front Mol Biosci 2022; 8:780730. [PMID: 35096965 PMCID: PMC8794747 DOI: 10.3389/fmolb.2021.780730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Neuropathic pain (NP) is poorly managed, and in-depth mechanisms of gene transcriptome alterations in NP pathogenesis are not yet fully understood. To determine microRNA-related molecular mechanisms of NP and their transcriptional regulation in NP, PubMed, Embase, Web of Science and CINAHL Complete (EBSCO) were searched from inception to April 2021. Commonly dysregulated miRNAs in NP were assessed. The putative targets of these miRNAs were determined using TargetScan, Funrich, Cytoscape and String database. A total of 133 literatures containing miRNA profiles studies and experimentally verify studies were included. Venn analysis, target gene prediction analysis and functional enrichment analysis indicated several miRNAs (miR-200b-3p, miR-96, miR-182, miR-183, miR-30b, miR-155 and miR-145) and their target genes involved in known relevant pathways for NP. Targets on transient receptor potential channels, voltage-gated sodium channels and voltage-gated calcium channels may be harnessed for pain relief. A further delineation of signal processing and modulation in neuronal ensembles is key to achieving therapeutic success in future studies.
Collapse
Affiliation(s)
- Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Meng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jia-Bao Guo
- The Second School of Clinical Medical, Xuzhou Medical University, Xuzhou, China
| | - Ge Song
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Yang
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- *Correspondence: Pei-Jie Chen, ; Xue-Qiang Wang,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Pei-Jie Chen, ; Xue-Qiang Wang,
| |
Collapse
|
17
|
Hu C, He M, Xu Q, Tian W. Advances With Non-coding RNAs in Neuropathic Pain. Front Neurosci 2022; 15:760936. [PMID: 35002601 PMCID: PMC8733285 DOI: 10.3389/fnins.2021.760936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropathic pain (NP) is one of the most common types of clinical pain. The common causes of this syndrome include injury to the central or peripheral nervous systems and pathological changes. NP is characterized by spontaneous pain, hyperalgesia, abnormal pain, and paresthesia. Because of its diverse etiology, the pathogenesis of NP has not been fully elucidated and has become one of the most challenging problems in clinical medicine. This kind of pain is extremely resistant to conventional treatment and is accompanied by serious complications. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), contribute to diverse biological processes by regulating the expression of various mRNAs involved in pain-related pathways, at the posttranscriptional level. Abnormal regulation of ncRNAs is closely related to the occurrence and development of NP. In this review, we summarize the current state of understanding of the roles of different ncRNAs in the development of NP. Understanding these mechanisms can help develop novel therapeutic strategies to prevent or treat chronic pain.
Collapse
Affiliation(s)
- Cheng Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Menglin He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Qian Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Weiqian Tian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Egashira N. Pathological Mechanisms and Preventive Strategies of Oxaliplatin-Induced Peripheral Neuropathy. FRONTIERS IN PAIN RESEARCH 2021; 2:804260. [PMID: 35295491 PMCID: PMC8915546 DOI: 10.3389/fpain.2021.804260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Oxaliplatin, which is widely used in treating cancers such as colorectal cancer, frequently causes peripheral neuropathy. It not only significantly reduces the patient's quality of life due to physical distress but may also result in a change or discontinuation of cancer treatment. Oxaliplatin-induced peripheral neuropathy (OIPN) is classified as acute or chronic depending on the onset time of side effects; however, the prevention and treatment of OIPN has not been established. As these peripheral neuropathies are side effects that occur due to treatment, the administration of effective prophylaxis can effectively prevent their onset. Although transient relief of symptoms such as pain and numbness enable the continuation of cancer treatment, it may result in the worsening of peripheral neuropathy. Thus, understanding the pathological mechanisms of OIPN and finding better preventative measures are important. This review focuses on animal models to address these issues, clarifies the pathological mechanisms of OIPN, and summarizes various approaches to solving OIPN, including targets for preventing OIPN.
Collapse
|
19
|
Yang Y, Zhao B, Gao X, Sun J, Ye J, Li J, Cao P. Targeting strategies for oxaliplatin-induced peripheral neuropathy: clinical syndrome, molecular basis, and drug development. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:331. [PMID: 34686205 PMCID: PMC8532307 DOI: 10.1186/s13046-021-02141-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022]
Abstract
Oxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN) is a severe clinical problem and potentially permanent side effect of cancer treatment. For the management of OIPN, accurate diagnosis and understanding of significant risk factors including genetic vulnerability are essential to improve knowledge regarding the prevalence and incidence of OIPN as well as enhance strategies for the prevention and treatment of OIPN. The molecular mechanisms underlying OIPN are complex, with multi-targets and various cells causing neuropathy. Furthermore, mechanisms of OIPN can reinforce each other, and combination therapies may be required for effective management. However, despite intense investigation in preclinical and clinical studies, no preventive therapies have shown significant clinical efficacy, and the established treatment for painful OIPN is limited. Duloxetine is the only agent currently recommended by the American Society of Clinical Oncology. The present article summarizes the most recent advances in the field of studies on OIPN, the overview of the clinical syndrome, molecular basis, therapy development, and outlook of future drug candidates. Importantly, closer links between clinical pain management teams and oncology will advance the effectiveness of OIPN treatment, and the continued close collaboration between preclinical and clinical research will facilitate the development of novel prevention and treatments for OIPN.
Collapse
Affiliation(s)
- Yang Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China. .,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Yangtze River Pharmaceutical Group, Taizhou, 225321, China.
| | - Bing Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuejiao Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinbing Sun
- Changshu No.1 People's Hospital Affiliated to Soochow University, Changshu, 215500, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P.R. China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China. .,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212002, Jiangsu, China.
| |
Collapse
|
20
|
Meregalli C, Bonomo R, Cavaletti G, Carozzi VA. Blood molecular biomarkers for chemotherapy-induced peripheral neuropathy: From preclinical models to clinical practice. Neurosci Lett 2021; 749:135739. [PMID: 33600907 DOI: 10.1016/j.neulet.2021.135739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) has long been recognized as a clinically significant issue in patients treated with antineoplastic drugs. This common long-term toxic side-effect which negatively impacts the outcome of the disease can lead to disability and have detrimental effects on patients' quality of life. Since axonal injury is a prominent feature of CIPN, responsible for several sensory symptoms, including pain, sensory loss and hypersensitivity to mechanical and/or cold stimuli in the hands and feet, neurophysiological assessments remain the gold standard for clinical diagnosis of CIPN. Given the large impact of CIPN on cancer patients, there is increasing emphasis on biomarkers of adverse outcomes in safety assessment and translational research, to prevent permanent neuroaxonal damage. Since the results on reliable blood molecular markers for axonal degeneration are still controversial, here we provide a brief overview of blood molecular biomarkers used for assessing and/or predicting CIPN in preclinical and clinical settings.
Collapse
Affiliation(s)
- C Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, NeuroMI (Milan Center for Neuroscience), University of Milan Bicocca, Monza, Italy
| | - R Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, NeuroMI (Milan Center for Neuroscience), University of Milan Bicocca, Monza, Italy; PhD Program in Neuroscience, University of Milan Bicocca, Monza, Italy
| | - G Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, NeuroMI (Milan Center for Neuroscience), University of Milan Bicocca, Monza, Italy
| | - V A Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, NeuroMI (Milan Center for Neuroscience), University of Milan Bicocca, Monza, Italy; Young Against Pain Group, Italy.
| |
Collapse
|
21
|
Yamamoto S, Egashira N. Drug Repositioning for the Prevention and Treatment of Chemotherapy-Induced Peripheral Neuropathy: A Mechanism- and Screening-Based Strategy. Front Pharmacol 2021; 11:607780. [PMID: 33519471 PMCID: PMC7840493 DOI: 10.3389/fphar.2020.607780] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse effect observed in most patients treated with neurotoxic anti-cancer drugs. Currently, there are no therapeutic options available for the prevention of CIPN. Furthermore, few drugs are recommended for the treatment of existing neuropathies because the mechanisms of CIPN remain unclear. Each chemotherapeutic drug induces neuropathy by distinct mechanisms, and thus we need to understand the characteristics of CIPN specific to individual drugs. Here, we review the known pathogenic mechanisms of oxaliplatin- and paclitaxel-induced CIPN, highlighting recent findings. Cancer chemotherapy is performed in a planned manner; therefore, preventive strategies can be planned for CIPN. Drug repositioning studies, which identify the unexpected actions of already approved drugs, have increased in recent years. We have also focused on drug repositioning studies, especially for prevention, because they should be rapidly translated to patients suffering from CIPN.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
22
|
Abdelhamid AM, Mahmoud SS, Abdelrahman AE, Said NM, Toam M, Samy W, Amer MAM. Protective effect of cerium oxide nanoparticles on cisplatin and oxaliplatin primary toxicities in male albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2411-2425. [PMID: 32710137 DOI: 10.1007/s00210-020-01946-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
Cisplatin and oxaliplatin are widely used anticancer drugs. Their use is restricted by their dose-limiting side effects: nephrotoxicity and neurotoxicity, respectively. Cerium oxide nanoparticles (CONPs) are promising antioxidant and anti-inflammatory agent. To test the possible ameliorative impact of CONPs on the toxic effect of cisplatin and oxaliplatin in male albino rats. Forty eight rats were divided into 6 groups: control group, CONPs group, cisplatin group, cisplatin and CONPs group, oxaliplatin group, and oxaliplatin and CONPs group. After 4 weeks, serum urea and creatinine, renal tissue level of interleukin 10 (IL10), and total antioxidant (TAO) were measured in control, CONPs, and cisplatin groups. The other kidney was used for histopathological and immunohistochemical studies. The right sciatic nerves and the lumbar spinal cord of rats from control, CONPs, and oxaliplatin groups were used for immunohistochemical evaluations of nitrotyrosine, myelin basic protein (MBP), and glial fibrillary acidic protein (GFAP). Cisplatin significantly increased serum urea and creatinine levels, significantly decreased the kidney level of IL10 and TAO with marked tubular necrosis, hemorrhage and renal damage. Also, it decreased IL10 immunohistochemical expression. CONPs significantly decreased the serum urea and creatinine level and increased IL10 and TAO with lower renal damage and strong IL10 expression compared with cisplatin group. Oxaliplatin significantly decreased MBP immunoreactivity and increased nitrotyrosine immunoreactivity. In the lumbar spinal cord, GFAP immunoreactivity was significantly increased. CONPs significantly increased MBP and decreased nitrotyrosine immunoreactivity. GFAP immunoreactivity was significantly decreased. CONPs ameliorated cisplatin and oxaliplatin primary toxicities through anti-inflammatory and antioxidant characteristics.
Collapse
Affiliation(s)
- Amira Mohamed Abdelhamid
- Clinical pharmacology department, faculty of medicine, Zagazig University, Zagazig, Sharqia, Egypt.
| | - Shireen Sami Mahmoud
- Clinical pharmacology department, faculty of medicine, Zagazig University, Zagazig, Sharqia, Egypt
| | - Aziza E Abdelrahman
- Pathology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Nelly Mohamed Said
- Pathology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Mostafa Toam
- Clinical Oncology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Samy
- Biochemistry department, faculty of medicine, Zagazig University, Zagazig, Egypt
| | - Marwa AbdEl-Moniem Amer
- Forensic Medicine and Clinical toxicology department, faculty of medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
23
|
Montague-Cardoso K, Malcangio M. The role of microRNAs in neurons and neuroimmune communication in the dorsal root ganglia in chronic pain. Neurosci Lett 2020; 735:135230. [PMID: 32621949 DOI: 10.1016/j.neulet.2020.135230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022]
Abstract
Despite being a life-restricting condition, chronic pain remains poorly treated. A better understanding of the underlying mechanisms of chronic pain and thence development of innovative targets is therefore essential. Recently we have started to elucidate the importance of the role of microRNAs (miRs) in preclinical chronic pain. miRs are small, non-coding RNAs that regulate genes including those involved in nociceptive signalling. MiRs can exert their effects both intracellularly and extracellularly, the latter of which requires that they are released either as naked species or packaged in exosomes. Here we discuss changes in miR expression that occur in the dorsal root ganglia in murine models of chronic pain. We consider the downstream targets of changes in miR expression, including voltage-gated ion channels, as well as discuss extracellular consequences such as changes in macrophage phenotype that constitute of means by which neuron-immune cell crosstalk occurs. Such miR-mediated intracellular communication could provide a novel target for the treatment of chronic pain, which would be most effective if tailored to the specific cause of pain. Indeed, we conclude by reviewing evidence for the involvement of miRs in clinical cases of chronic pain, supporting the notion that tailored, miR-targeted therapies could prove to be an effective new strategy for the treatment of chronic pain clinically.
Collapse
Affiliation(s)
| | - Marzia Malcangio
- Wolfson CARD, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom.
| |
Collapse
|
24
|
Cata JP, Gorur A, Yuan X, Berg NK, Sood AK, Eltzschig HK. Role of Micro-RNA for Pain After Surgery. Anesth Analg 2020; 130:1638-1652. [DOI: 10.1213/ane.0000000000004767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Zhang X, Chen Q, Shen J, Wang L, Cai Y, Zhu K. miR‐194 relieve neuropathic pain and prevent neuroinflammation via targeting FOXA1. J Cell Biochem 2020; 121:3278-3285. [PMID: 31930555 DOI: 10.1002/jcb.29598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xian Zhang
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Qiuqing Chen
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jian Shen
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Li Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST)& Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan University Wuhan China
| | - Yi Cai
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei China
| | - Kai‐Run Zhu
- Department of Anesthesiology, Huai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| |
Collapse
|
26
|
Oxaliplatin-induced peripheral neuropathy: clinical features, mechanisms, prevention and treatment. J Neurol 2020; 268:3269-3282. [PMID: 32474658 DOI: 10.1007/s00415-020-09942-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Oxaliplatin (OXA) is a commonly used platinum-based chemotherapy drug for colorectal cancer. OXA-induced peripheral neurotoxcity (OIPN) is a comprehensive adverse reaction of OXA. OIPN can be divided into acute and chronic types according to clinical features and different mechanisms. The main clinical features of acute OIPN are cold-sensitive sensory symptoms and neuropathic pain in limbs. In addition to the above symptoms, chronic OIPN also produces autonomic nerve dysfunction. The most important mechanism involved in acute OIPN is the alteration of voltage-gated Na + channels, and nuclear DNA damage in chronic OIPN. There are some methods like reducing exposure to cold, calcium and magnesium salts, amifostine could be beneficial in acute OIPN prevention and dose modification, changing in schedule glutathione, duloxetine, selective serotonin reuptake inhibitors, carbonic anhydrase inhibitor in chronic OIPN prevention. Recent updates are provided in this article in relation to the clinical features, potential mechanisms, prevention and treatment of OIPN.
Collapse
|
27
|
Kalpachidou T, Kummer K, Kress M. Non-coding RNAs in neuropathic pain. Neuronal Signal 2020; 4:NS20190099. [PMID: 32587755 PMCID: PMC7306520 DOI: 10.1042/ns20190099] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.
Collapse
Affiliation(s)
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
28
|
Wang J, Yao S, Diao Y, Geng Y, Bi Y, Liu G. miR-15b enhances the proliferation and migration of lung adenocarcinoma by targeting BCL2. Thorac Cancer 2020; 11:1396-1405. [PMID: 32220063 PMCID: PMC7262900 DOI: 10.1111/1759-7714.13382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a subtype of lung cancer (LC), which is the most common tumor worldwide. Accumulating evidence has elucidated an important role of microRNAs (miRNAs) in mediating the development and progression of several tumors. The purpose of this study was to explore the role and underlying mechanism of miR‐15b in LUAD. Methods CCK‐8 and Transwell assays were conducted to measure the capacities of cell viability and migration in SPC‐A1 cells. Luciferase assay was utilized to verifymiR‐15b direct binding to BCL2 mRNA 3′‐UTR. Results We determined that miR‐15b was overexpressed in LUAD and miR‐15b overexpression predicted a significantly worse outcome in patients with LUAD. miR‐15b improved LUAD growth in vitro and vivo. miR‐15b enhanced cell migration and epithelial–mesenchymal transition (EMT) in LUAD. miR‐15b promoted cell viability, migration and EMT through inhibiting BCL2 expression by targeting to its mRNA 3′‐UTR. BCL2 reversed functions of miR‐15b on promoting cell proliferation, migration and EMT in SPC‐A1 cells. Conclusions miR‐15b promoted cell viability, migration and EMT by targeting BCL2 in LUAD. The newly identified miR‐15b/BCL2 axis provides a novel insight into the pathogenesis of LUAD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Thoracic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shupeng Yao
- Department of Respiratory Medicine, Liaocheng Dongchangfu People's Hospital, Liaocheng, China
| | - Yanping Diao
- Department of Gastrointestinal Surgery, the People's Hospital of Zhangqiu Area, Jinan, China
| | - Yan Geng
- Department of Gastrointestinal Surgery, the People's Hospital of Zhangqiu Area, Jinan, China
| | - Yanling Bi
- Operation Room, The People's Hospital of Zhangqiu Area, Jinan, China
| | - Guangyue Liu
- Department of Outpatient, Weifang People's Hospital, Weifang, China
| |
Collapse
|
29
|
Hoshikawa N, Sakai A, Takai S, Suzuki H. Targeting Extracellular miR-21-TLR7 Signaling Provides Long-Lasting Analgesia in Osteoarthritis. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:199-207. [PMID: 31841992 PMCID: PMC6920297 DOI: 10.1016/j.omtn.2019.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is the most prevalent joint disorder associated with severe chronic pain. Although synovial inflammation is well correlated with pain severity, the molecular mechanism responsible for OA pain remains unclear. Here, we show that extracellular miR-21 released from synovial tissue mediates knee OA pain in surgical OA model rats. miR-21 was the most abundant among increased microRNAs (miRNAs) in the synovial tissue. miR-21 was released into extracellular space from the synovial tissue and increased in the synovial fluid. A single intra-articular injection of miR-21 inhibitor exerted long-term analgesia of knee OA pain, whereas miR-21 injection in naive rats caused knee joint pain. miR-21 mutant, which lacks the Toll-like receptor (TLR) binding motif, but not in the seed sequence, did not cause joint pain, suggesting a non-canonical mode of action different from translational repression. Consistent with this, the algesic effect of miR-21 was blocked by antagonizing TLR7. The TLR7 antagonist also exerted a long-lasting analgesic effect on knee OA pain. Therefore, extracellular miR-21 released from synovial tissue mediates knee OA pain through TLR7 activation in surgical OA model rats. Extracellular miRNA in the joint may be a plausible target for pain therapy, providing a novel analgesic strategy for OA.
Collapse
Affiliation(s)
- Naoya Hoshikawa
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Atsushi Sakai
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Shinro Takai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
30
|
Tramullas M, Francés R, de la Fuente R, Velategui S, Carcelén M, García R, Llorca J, Hurlé MA. MicroRNA-30c-5p modulates neuropathic pain in rodents. Sci Transl Med 2019; 10:10/453/eaao6299. [PMID: 30089634 DOI: 10.1126/scitranslmed.aao6299] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/21/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022]
Abstract
Neuropathic pain is a debilitating chronic syndrome that is often refractory to currently available analgesics. Aberrant expression of several microRNAs (miRNAs) in nociception-related neural structures is associated with neuropathic pain in rodent models. We have exploited the antiallodynic phenotype of mice lacking the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), a transforming growth factor-β (TGF-β) pseudoreceptor. We used these mice to identify new miRNAs that might be useful for diagnosing, treating, or predicting neuropathic pain. We show that, after sciatic nerve injury in rats, miR-30c-5p was up-regulated in the spinal cord, dorsal root ganglia, cerebrospinal fluid (CSF) and plasma and that the expression of miR-30c-5p positively correlated with the severity of allodynia. The administration of a miR-30c-5p inhibitor into the cisterna magna of the brain delayed neuropathic pain development and reversed fully established allodynia in rodents. The mechanism was mediated by TGF-β and involved the endogenous opioid system. In patients with neuropathic pain associated with leg ischemia, the expression of miR-30c-5p was increased in plasma and CSF compared to control patients without pain. Logistic regression analysis in our cohort of patients showed that the expression of miR-30c-5p in plasma and CSF, in combination with other clinical variables, might be useful to help to predict neuropathic pain occurrence in patients with chronic peripheral ischemia.
Collapse
Affiliation(s)
- Mónica Tramullas
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, E-39011 Santander, Spain.,Instituto de Investigación Valdecilla, E-39011 Santander, Spain
| | - Raquel Francés
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, E-39011 Santander, Spain.,Instituto de Investigación Valdecilla, E-39011 Santander, Spain
| | - Roberto de la Fuente
- Instituto de Investigación Valdecilla, E-39011 Santander, Spain.,Servicio de Anestesiología, Hospital Universitario Valdecilla, E-39008 Santander, Spain
| | - Sara Velategui
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, E-39011 Santander, Spain
| | - María Carcelén
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, E-39011 Santander, Spain.,Instituto de Investigación Valdecilla, E-39011 Santander, Spain
| | - Raquel García
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, E-39011 Santander, Spain.,Instituto de Investigación Valdecilla, E-39011 Santander, Spain
| | - Javier Llorca
- Instituto de Investigación Valdecilla, E-39011 Santander, Spain.,Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Cantabria, E-39011 Santander, Spain.,CIBER de Epidemiología y Salud Pública, Spain
| | - María A Hurlé
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, E-39011 Santander, Spain. .,Instituto de Investigación Valdecilla, E-39011 Santander, Spain
| |
Collapse
|
31
|
Li L, Shao J, Wang J, Liu Y, Zhang Y, Zhang M, Zhang J, Ren X, Su S, Li Y, Cao J, Zang W. MiR-30b-5p attenuates oxaliplatin-induced peripheral neuropathic pain through the voltage-gated sodium channel Nav1.6 in rats. Neuropharmacology 2019; 153:111-120. [DOI: 10.1016/j.neuropharm.2019.04.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
|
32
|
Mao Q, Wu S, Gu X, Du S, Mo K, Sun L, Cao J, Bekker A, Chen L, Tao YX. DNMT3a-triggered downregulation of K 2p 1.1 gene in primary sensory neurons contributes to paclitaxel-induced neuropathic pain. Int J Cancer 2019; 145:2122-2134. [PMID: 30684388 DOI: 10.1002/ijc.32155] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/18/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022]
Abstract
Antineoplastic drugs induce dramatic transcriptional changes in dorsal root ganglion (DRG) neurons, which may contribute to chemotherapy-induced neuropathic pain. K2p 1.1 controls neuronal excitability by setting the resting membrane potential. Here, we report that systemic injection of the chemotherapy agent paclitaxel time-dependently downregulates the expression of K 2p 1.1 mRNA and its coding K2p 1.1 protein in the DRG neurons. Rescuing this downregulation mitigates the development and maintenance of paclitaxel-induced mechanical allodynia and heat hyperalgesia. Conversely, in the absence of paclitaxel administration, mimicking this downregulation decreases outward potassium current and increases excitability in the DRG neurons, leading to the enhanced responses to mechanical and heat stimuli. Mechanically, the downregulation of DRG K 2p 1.1 mRNA is attributed to paclitaxel-induced increase in DRG DNMT3a, as blocking this increase reverses the paclitaxel-induced the decrease of DRG K2p 1.1 and mimicking this increase reduces DRG K2p 1.1 expression. In addition, paclitaxel injection increases the binding of DNMT3a to the K 2p 1.1 gene promoter region and elevates the level of DNA methylation within this region in the DRG. These findings suggest that DNMT3a-triggered downregulation of DRG K2p 1.1 may contribute to chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Qingxiang Mao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ.,Department of Anesthesiology, Daping Hospital, Institute of Surgery Research, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Xiyao Gu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Kai Mo
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Linlin Sun
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Jing Cao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, Henan, China
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Liyong Chen
- Department of Anesthesiology, Daping Hospital, Institute of Surgery Research, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| |
Collapse
|
33
|
Wen J, He T, Qi F, Chen H. MiR-206-3p alleviates chronic constriction injury-induced neuropathic pain through targeting HDAC4. Exp Anim 2018; 68:213-220. [PMID: 30587671 PMCID: PMC6511522 DOI: 10.1538/expanim.18-0091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
It was identified that microRNAs were involved in the regulation of chronic neuropathic pain. However, the role of miR-206-3p in neuropathic pain was still unclear. In the current study, the role of miR-206-3p, a type of mature miR-206, in neuropathic pain was investigated. The potential mechanisms were also explored. We found that the expression of miR-206-3p decreased in the dorsal root ganglion (DRG) of chronic constriction sciatic nerve injury (CCI) rats, whereas the While histone deacetylase 4 (HDAC4) level increased. Further exploration showed that administration of a miR-206-3p mimic alleviated neuropathic pain and reduced the level of HDAC4, a predicted target of miR-206-3p. Overexpression of HDAC4 attenuated the effects of miR-206-3p on neuropathic pain. Our data revealed a miR-206-3p-HDAC4 signal that played a potentially important role in CCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Jing Wen
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China
| | - Tao He
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.,Nanchang Joint Programme, Queen Mary University of London, London E1 4NS, UK
| | - Fangfang Qi
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.,Nanchang Joint Programme, Queen Mary University of London, London E1 4NS, UK
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, People's Republic of China.,Jiangxi Province Key Laboratory of Tumor Pathogen's and Molecular Pathology, Nanchang 330006, People's Republic of China
| |
Collapse
|
34
|
Jiang W, Wang Q, Yu X, Lu T, Zhang P. MicroRNA-217 relieved neuropathic pain through targeting toll-like receptor 5 expression. J Cell Biochem 2018; 120:3009-3017. [PMID: 30548304 DOI: 10.1002/jcb.27269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Abstract
Neuropathic pain is the most common chronic pain that is caused by nerve injury or disease that influences the nervous system. Increasing evidence suggested that microRNAs (miRNAs) play a crucial role in neuropathic pain and neuroinflammation development. However, the functional role of miR-217 in the development of neuropathic pain remains unknown. In this study, we used rats to establish a neuropathic pain model and showed that the miR-217 expression level was upregulated in the spinal dorsal horn of bilateral sciatic nerve chronic constriction injury (bCCI). However, the expression of miR-217 was not changed in the anterior cingulated cortex (ACC), hippocampus, and dorsal root ganglion (DRG) of bCCI rats. Ectopic expression of miR-217 attenuated neuropathic pain and suppressed neuroinflammation expression in vivo. We identified toll-like receptor 5 (TLR5) as a direct target gene of miR-217 in the PC12 cell. In addition, we demonstrated that the expression level of TLR5 was upregulated in bCCI rats. Moreover, restoration of TLR5 rescued the inhibitory roles induced by miR-217 overexpression on neuropathic pain and neuroinflammation development. These data suggested that miR-217 played a pivotal role in the development of neuropathic pain partly through regulating TLR5 expression.
Collapse
Affiliation(s)
- Wanwei Jiang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qinghui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuemei Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Lu
- The Second Department of Anesthesiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
35
|
miR-15b reduces amyloid-β accumulation in SH-SY5Y cell line through targetting NF-κB signaling and BACE1. Biosci Rep 2018; 38:BSR20180051. [PMID: 29961672 PMCID: PMC6239251 DOI: 10.1042/bsr20180051] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the multifactorial neurodegenerative disorder causing progressive memory loss and cognitive impairment. The aberrant accumulation of amyloid-β (Aβ) and neuroinflammation are two major events in AD. BACE1 is required for the cleavage of amyloid precursor protein (APP) to generate Aβ, which stimulates the nuclear transcription factor κB (NF-κB) signaling, leading to the secretion of inflammatory cytokines. And NF-κB can up-regulate the expression of BACE1. miRNAs are small non-coding RNAs that regulate gene transcription. miR-15b down-regulates BACE1 expression while it is unclear whether miR-15b can regulate Aβ in human neuronal cells, and if so, whether it is by targetting NF-κB. SH-SY5Y cell line was transfected with Swedish APP mutant (APPswe) as an in vitro AD model. Quantitative PCR (qPCR), WB, and ELISA were used to detected related gene expression intracellularly or in supernatant. Dual luciferase assay was used to validate miRNA and targets binding. miR-15b inhibits expression of BACE1and APP. Moreover, the reduced level of Aβ was observed in response to miR-15b mimics in SH-SH5Y/APPswe cells. miR-15b directly targetted the conserved Bace1 3′UTR to regulate its expression. In addition, the inhibition of APPswe-induced secretion of inflammatory cytokines and the suppression of NF-κB activation by miR-15b were validated. And miR-15b directly targetted the 3′UTRs of NF-κB1 and inhibitor of NF-κB (IκB) kinase α (IKK-α), encoding NF-κB1 and IKK-α, respectively. Our study suggests that miR-15b inhibits Aβ accumulation through targetting NF-κB signaling and BACE1 and serves as a potential molecular target for AD therapy.
Collapse
|
36
|
Chu P, Liang A, Jiang A, Zong L. miR-205 regulates the proliferation and invasion of ovarian cancer cells via suppressing PTEN/SMAD4 expression. Oncol Lett 2018; 15:7571-7578. [PMID: 29725462 PMCID: PMC5920363 DOI: 10.3892/ol.2018.8313] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are non-coding RNAs that post-transcriptionally control target genes, and are involved in tumorigenesis, apoptosis, proliferation, invasion, metastasis and chemoresistance. However, data concerning miRNAs in ovarian cancer remain incomplete. The present study aimed to identify miRNAs that affected the malignant phenotype of ovarian cancer, and to analyze their potential mechanisms. The data demonstrated that miR-205 promoted cell proliferation and invasion of ovarian cancer cells via suppressing Phosphatase and tensin homolog (PTEN)/mothers against decapentaplegic homolog 4 (SMAD4) expression. Based on the Cancer Genome Atlas database analysis results, it was identified that miR-205 was significantly upregulated in ovarian cancer tissues and markedly correlated with poor prognosis in patients with ovarian cancer; its abnormal expression was also confirmed in tissues from patients with ovarian cancer by reverse transcription quantitative polymerase chain reaction. Additional Gene Ontology analysis revealed that the target genes of miR-205 were associated with cell proliferation and invasion. Consistent with the database analysis, miR-205 overexpression significantly promoted ovarian cancer cell proliferation and invasion in vitro. To additionally explore the mechanism by which miR-205 was associated with proliferation and invasion of ovarian cancer cells, a protein-protein interaction network was constructed based on miR-205 target genes associated with proliferation and invasion, and it was revealed that PTEN and SMAD4 were key target genes of miR-205. In ovarian cancer tissues, the expression levels of PTEN and SMAD4 were significantly downregulated, suggesting that miR-205 may suppress the expression of PTEN and SMAD4 in vivo. In vitro, miR-205 overexpression markedly suppressed the expression of SMAD4 and PTEN, additionally verifying that PTEN and SMAD4 were the target genes of miR-205 in ovarian cancer cells. These results elucidated the tumor-promoting role of miR-205 and established miR-205 as a potential treatment target for ovarian cancer.
Collapse
Affiliation(s)
- Ping Chu
- Department of Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Aihua Liang
- Department of Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Aili Jiang
- Department of Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Lu Zong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
37
|
Jin H, Du XJ, Zhao Y, Xia DL. XIST/miR-544 axis induces neuropathic pain by activating STAT3 in a rat model. J Cell Physiol 2018; 233:5847-5855. [PMID: 29219175 DOI: 10.1002/jcp.26376] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/29/2017] [Indexed: 01/02/2023]
Abstract
An increasing number of studies have reported that lncRNAs are responsible for the development of neuropathic pain. In our current study, chronic constriction injury (CCI) rat models were established and we observed that lncRNA XIST was greatly increased. Knockdown of XIST can relieve pain characteristics including both mechanical and thermal hyperalgesia in CCI rats. Meanwhile, XIST down-regulation could inhibit neuro-inflammation by reducing expression of inflammatory cytokines including tumor necrosis factor (TNF)-α, IL-1β, and IL-6 and in CCI rats. By performing bioinformatics technology, miR-544 was predicted to have interactions with XIST and dual-luciferase reporter assays validated the correlation between them. A negative correlation between miR-544 and XIST was observed by carrying out XIST loss or gain of function tests. miR-544 markedly alleviated neuropathic pain development in CCI rats via targeting inflammatory cytokines, which was reversed by XIST over-expression. Moreover, STAT3 was manifested to be a target gene of miR-544 by bioinformatics predictions and it was activated in CCI rats. Over-expression of STAT3 was able to induce neuropathic pain and miR-544 inhibited this process in vivo. Furthermore, XIST increased STAT3 expression by sponging miR-544 in neuropathic pain development. To conclude, our present study indicated that XIST can contribute to neuropathic pain progression in rats through down-regulating miR-544 and up-regulating STAT3. Our results suggested that XIST/miR-544/STAT3 axis can serve as a novel therapeutic target in neuropathic pain development.
Collapse
Affiliation(s)
- Hui Jin
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xian-Jin Du
- Department of Emergency, Renmin Hospital of Wuhan University, Wuchang, Wuhan, China
| | - Ying Zhao
- Department of Neurology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Dao-Lin Xia
- Department of Anesthesiology, Peoples Hospital of Xuyi, Xuyi, Jiangsu province, China
| |
Collapse
|
38
|
Zhang Y, Mou J, Cao L, Zhen S, Huang H, Bao H. MicroRNA-142-3p relieves neuropathic pain by targeting high mobility group box 1. Int J Mol Med 2017; 41:501-510. [PMID: 29115575 DOI: 10.3892/ijmm.2017.3222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 10/06/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA) are emerging as critical regulators of neuropathic pain development. Neuroinflammation contributes to the development of neuropathic pain. miR‑142‑3p has been characterized as an inflammation‑related miRNA in various pathological processes. However, little is known about the role of miR‑142‑3p in neuroinflammation and neuropathic pain. The present study aimed to investigate the function of miR‑142‑3p in neuropathic pain by creating a murine model using spinal nerve ligation (SNL). A significant reduction in miR‑142‑3p expression was observed in the dorsal root ganglion of mice with SNL (P<0.05) compared with control mice. Overexpression of miR‑142‑3p significantly inhibited neuropathic pain and neuroinflammation in mice with SNL (P<0.05). High mobility group box 1 (HMGB1) was identified as a direct target gene of miR‑142‑3p by bioinformatic analysis and dual‑luciferase reporter assays. Overexpression of miR‑142‑3p significantly reduced the mRNA and protein expression levels of HMGB1 in vitro and in vivo (P<0.05). In addition, HMGB1 mRNA expression and miR‑142‑3p expression were inversely correlated in mice with SNL. Furthermore, overexpression of HMGB1 significantly reversed the inhibitory effect of miR‑142‑3p on neuroinflammation and neuropathic pain development (P<0.05). Overall, these results suggest that miR‑142‑3p functions as a negative regulator of neuropathic pain development through the downregulation of HMGB1, indicating that miR‑142‑3p may serve as a potential therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Junying Mou
- Department of Anesthesiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| | - Li Cao
- Department of Internal Medicine, Suizhou Zengdu Hospital, Suizhou, Hubei 441300, P.R. China
| | - Su Zhen
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hongjuan Huang
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
39
|
A causal relationship between the neurotherapeutic effects of miR182/7a and decreased expression of PRDM5. Biochem Biophys Res Commun 2017; 490:1-7. [PMID: 28552531 DOI: 10.1016/j.bbrc.2017.05.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/10/2017] [Accepted: 05/24/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is terrible damage resulting in the deficiencies and necrosis of neurology and causes infinite inconvenience to sufferers. The therapy of SCI still meets a larger number of problems. Therefore, the underlying mechanism and novel therapy of acute SCI (ASCI) are urgent to explore. MATERIALS AND METHODS The SCI model was established in rats. The expression of miR-182/miR-7a and PRDM5 at mRNA level was detected by quantitative real-time PCR and the protein expression of PRDM5 and c-caspase 3 was assessed by western blotting assays. The apoptosis of spinal cord neurons (SCN) was assessed on flow cytometry. The transfection of cells was performed by Lipofectamine 2000 kit. The relationship between PRDM5 and miR-182/miR-7a was examined by Luciferase assay. RESULTS The expression of PRDM5 was up-regulated at either mRNA (2.212 folds) or protein level after SCI in rats, and knockdown of PRDM5 in SCN declined the c-caspase3 expression. In addition, the expression of miR-182 and miR-7a was decreased by 44.6% and 39.3% after SCI in rats. Moreover, the expression of miR-182 and miR-7a were negatively correlated with the level of PRDM5 expression, and the expression of PRDM5 was inhibited due to the increase of miR-182 and/or miR-7a expression. Moreover, both miR-182 and miR-7a could regulate PRDM5 to control SCN apoptosis. According to the BBB score increased 2 folds, the intrathecal injection of miR-182 and miR-7a improved the neurological function of rats. CONCLUSION Inhibition of PRDM5 which was apparently negative correlation with miR-182 and miR-7a could suppress the neurons apoptosis to attenuate acute spinal cord injury in rats.
Collapse
|
40
|
Ito N, Sakai A, Miyake N, Maruyama M, Iwasaki H, Miyake K, Okada T, Sakamoto A, Suzuki H. miR-15b mediates oxaliplatin-induced chronic neuropathic pain through BACE1 down-regulation. Br J Pharmacol 2017; 174:386-395. [PMID: 28012171 DOI: 10.1111/bph.13698] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/11/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Although oxaliplatin is an effective anti-cancer platinum compound, it can cause painful chronic neuropathy, and its molecular mechanisms are poorly understood. MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression in a sequence-specific manner. Although miRNAs have been increasingly recognized as important modulators in a variety of pain conditions, their involvement in chemotherapy-induced neuropathic pain is unknown. EXPERIMENTAL APPROACH Oxaliplatin-induced chronic neuropathic pain was induced in rats by i.p. injections of oxaliplatin (2 mg·kg-1 ) for five consecutive days. The expression levels of miR-15b and β-site amyloid precursor protein-cleaving enzyme 1 (BACE1 also known as β-secretase 1) were examined in the dorsal root ganglion (DRG). To examine the function of miR-15b, an adeno-associated viral vector encoding miR-15b was injected into the DRG in vivo. KEY RESULTS Among the miRNAs examined in the DRG in the late phase of oxaliplatin-induced neuropathic pain, miR-15b was most robustly increased. Our in vitro assay results determined that BACE1 was a target of miR-15b. BACE1 and miR-15b were co-expressed in putative myelinated and unmyelinated DRG neurons. Overexpression of miR-15b in DRG neurons caused mechanical allodynia in association with reduced expression of BACE1. Consistent with these results, a BACE1 inhibitor dose-dependently induced significant mechanical allodynia. CONCLUSIONS AND IMPLICATIONS These findings suggest that miR-15b contributes to oxaliplatin-induced chronic neuropathic pain at least in part through the down-regulation of BACE1.
Collapse
Affiliation(s)
- Naomi Ito
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan.,Department of Anesthesiology, Nippon Medical School, Tokyo, Japan
| | - Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Noriko Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Motoyo Maruyama
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan.,Division of Laboratory Animal Science, Nippon Medical School, Tokyo, Japan
| | - Hirotoshi Iwasaki
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan.,Department of Anesthesiology, Nippon Medical School, Tokyo, Japan
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|