1
|
Wang M, Zhang Y, Ni S, Sun M, Wu Q, Wu X, Chen Q, Wang S. The anti-cancer activity of Dioscin: an update and future perspective. Med Oncol 2025; 42:63. [PMID: 39899128 PMCID: PMC11790812 DOI: 10.1007/s12032-024-02572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/18/2024] [Indexed: 02/04/2025]
Abstract
Natural drugs have the advantages of multi-pathway, multi-target, low toxicity, and high efficiency, which make them widely used and effective in anti-tumor therapy. Dioscin is a steroidal saponin compound that can be extracted from Dioscaceae plants. In recent years, it has been found that Dioscin has potent anti-tumor effects, can inhibit tumor cell proliferation, induce apoptosis and autophagy, inhibits tumor cell metastasis, reverses multidrug resistance, and increases sensitivity to anticancer drugs, and thus inhibit tumor progression. Meanwhile, the construction of Dioscin nanocarriers can improve the efficiency of drug use, reduce drug toxicity, realize the precise delivery of drugs, and improve the bioavailability of Dioscin. In this paper, the anticancer mechanism and targets of Dioscin in recent years were reviewed, thereby providing new ideas and a theoretical basis for further research and promotion of Dioscin.
Collapse
Affiliation(s)
- MengYue Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - YaNan Zhang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - SongLin Ni
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Mo Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - QiaoLan Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - XiaoLin Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Qian Chen
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| | - ShiJun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
2
|
Chen X, Song Y, Tian Y, Dong X, Chang Y, Wang W. miR-149-3p Enhances Drug Sensitivity of AML Cells by Inhibiting Warburg Effect Through PI3K/AKT Pathway. Cell Biochem Biophys 2024; 82:3287-3296. [PMID: 39154128 DOI: 10.1007/s12013-024-01412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/19/2024]
Abstract
Acute myeloid leukemia (AML) is a kind of heterogeneous hematologic malignancy with high incidence, which is usually treated by intensive and maintenance treatment with large dose of conventional chemotherapy drugs. However, cell resistance is still an unsolved problem. The abnormal expression of miRNAs is closely related to the pathogenesis and progression of AML, and affects the drug resistance of cancer cells. miR-149-3p plays an important role in the resistance of cancer cells to cisplatin, and plays an excellent anti-tumor activity. By studying the function of miR-149-3p, it is expected to find new therapeutic methods to reverse chemotherapy resistance. In order to explore the mechanism of action of miR-149-3p on AML chemotherapeutic drug sensitivity, we explored the relationship between the Warburg effect and AML chemotherapeutic drug resistance. Based on AML cells, transfection of miR-149-3p inhibitor/NC and Warburg effect inhibitor (2DG) and PI3K/AKT pathway inhibitor (LY294002) were used to investigate the mechanism of IFN-γ regulating chemotherapy resistance of AML cells through Warburg effect. Down-regulation of miR-149-3p significantly inhibited drug sensitivity of AML cells. Down-regulation of miR-149-3p significantly promoted proliferation and invasion of AML cells while inhibiting apoptosis by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax. Down-regulation of miR-149-3p significantly promoted the expression of Warburg effect-related proteins hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), and Glucose transporter 1 (GLUT1), glucose consumption, lactic acid, and intracellular ATP production. After inhibiting the Warburg effect with 2DG, the effect of miR-149-3p was inhibited, suggesting that upregulation of miR-149-3p reversed AML cell resistance by inhibiting the Warburg effect. In addition, miR-149-3p interacted with AKT1. Down-regulation of miR-149-3p increased the expression of inosine phosphate 3 kinase (PI3K), protein kinase B (AKT), and multi-drug resistance protein (MDR1). LY294002 inhibited the expression of these proteins, and down-regulation of miR-149-3p reversed the effect of LY294002 and improved the drug resistance of cells. Upregulation of miR-149-3p expression may potentially be a therapeutic target for AML resistance. It has been shown to inhibit PI3K/AKT pathway activation, thereby inhibiting the Warburg effect, and affecting cell proliferation, apoptosis, and drug resistance.
Collapse
MESH Headings
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Humans
- Proto-Oncogene Proteins c-akt/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Signal Transduction/drug effects
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Apoptosis/drug effects
- Antineoplastic Agents/pharmacology
- Cisplatin/pharmacology
- Warburg Effect, Oncologic/drug effects
- Morpholines/pharmacology
- Hexokinase/metabolism
- Hexokinase/genetics
- Chromones/pharmacology
- HL-60 Cells
Collapse
Affiliation(s)
- Xi Chen
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Song
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaoyao Tian
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiushuai Dong
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuying Chang
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Wang
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Wang F, Liang L, Yu M, Wang W, Badar IH, Bao Y, Zhu K, Li Y, Shafi S, Li D, Diao Y, Efferth T, Xue Z, Hua X. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155432. [PMID: 38518645 DOI: 10.1016/j.phymed.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.
Collapse
Affiliation(s)
- Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR, PR China
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Kai Zhu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yanlin Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Saba Shafi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yongchao Diao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
4
|
Li XL, Zhang XX, Ma RH, Ni ZJ, Thakur K, Cespedes-Acuña CL, Zhang JG, Wei ZJ. Integrated miRNA and mRNA omics reveal dioscin suppresses migration and invasion via MEK/ERK and JNK signaling pathways in human endometrial carcinoma in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116027. [PMID: 36503030 DOI: 10.1016/j.jep.2022.116027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonatum sibiricum Redouté (PS, also called Huangjing in traditional Chinese medicine), is a perennial herb as homology of medicine and food. According to the traditional Chinese medicine theory "Special Records of Famous Doctors", its functions include invigorating qi and nourishing yin, tonifying spleen and kidney. Traditionally, qi and blood therapy has been believed as most applicable to the treatment of uterine disease. The current research has focused on the effect and mechanism of dioscin, the main active component of PS, on Endometrial carcinoma (EC). AIM OF THE STUDY To study the efficacy of dioscin on proliferation and migration of Endometrial carcinoma cell line, we conducted experiments by using xenograft model and Ishikawa cells, and explored the potential molecular mechanism. MATERIALS AND METHODS mRNA and miRNA omics techniques were employed to investigate the regulatory mechanism of dioscin on EC Ishikawa cells. Based on in vivo and in vitro experiments, cell clone formation, cell scratching, Transwell, H&E staining, immunohistochemistry, q-PCR, and Western blot techniques were used to determine the molecular effects and mechanisms of dioscin on cell migration. RESULTS Integrated miRNA and mRNA omics data showed that 513 significantly different genes marked enrichment in MAPK signaling pathway. The in vivo data showed that dioscin (24 mg/kg) significantly inhibited tumor growth. The in vitro proliferation and invasiveness of dioscin on Ishikawa cells showed that dioscin could significantly decrease the colony numbers, and suppress the Ishikawa cell wound healing, migration and invasion. Molecular data revealed that dioscin decreased the MMP2 and MMP9 expression in vitro and in vivo. The p-MEK, p-ERK, and p-JNK expression levels were also confirmed to be significantly reduced. Key regulators in the MAPK signaling pathway were further validated in xenograft tumors. CONCLUSION Our data indicated that dioscin inhibited Ishikawa cell migration and invasion mediated through MEK/ERK and JNK signaling. More importantly, screened hub miRNAs and genes can be regarded as potential molecular targets for future EC treatment.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Xiu-Xiu Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Zhi-Jing Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | | | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
5
|
Yang Y, Chen Y, Wu JH, Ren Y, Liu B, Zhang Y, Yu H. Targeting regulated cell death with plant natural compounds for cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death, and necroptosis. Phytother Res 2023; 37:1488-1525. [PMID: 36717200 DOI: 10.1002/ptr.7738] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
Regulated cell death (RCD) refers to programmed cell death regulated by various protein molecules, such as apoptosis, autophagy-dependent cell death, and necroptosis. Accumulating evidence has recently revealed that RCD subroutines have several links to many types of human cancer; therefore, targeting RCD with pharmacological small-molecule compounds would be a promising therapeutic strategy. Moreover, plant natural compounds, small-molecule compounds synthesized from plant sources, and their derivatives have been widely reported to regulate different RCD subroutines to improve potential cancer therapy. Thus, in this review, we focus on updating the intricate mechanisms of apoptosis, autophagy-dependent cell death, and necroptosis in cancer. Moreover, we further discuss several representative plant natural compounds and their derivatives that regulate the above-mentioned three subroutines of RCD, and their potential as candidate small-molecule drugs for the future cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmei Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Hao Wu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yueting Ren
- Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Zhao G, Wang Q, Zhang Y, Gu R, Liu M, Li Q, Zhang J, Yuan H, Feng T, Ou D, Li S, Li S, Li K, Mo C, Lin P. DDX17 induces epithelial-mesenchymal transition and metastasis through the miR-149-3p/CYBRD1 pathway in colorectal cancer. Cell Death Dis 2023; 14:1. [PMID: 36593242 PMCID: PMC9807641 DOI: 10.1038/s41419-022-05508-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
DEAD box helicase 17 (DDX17) has been reported to be involved in the initiation and development of several cancers. However, the functional role and mechanisms of DDX17 in colorectal cancer (CRC) malignant progression and metastasis remain unclear. Here, we reported that DDX17 expression was increased in CRC tissues compared with noncancerous mucosa tissues and further upregulated in CRC liver metastasis compared with patient-paired primary tumors. High levels of DDX17 were significantly correlated with aggressive phenotypes and worse clinical outcomes in CRC patients. Ectopic expression of DDX17 promoted cell migration and invasion in vitro and in vivo, while the opposite results were obtained in DDX17-deficient CRC cells. We identified miR-149-3p as a potential downstream miRNA of DDX17 through RNA sequencing analysis, and miR-149-3p displayed a suppressive effect on the metastatic potential of CRC cells. We demonstrated that CYBRD1 (a ferric reductase that contributes to dietary iron absorption) was a direct target of miR-149-3p and that miR-149-3p was required for DDX17-mediated regulation of CYBRD1 expression. Moreover, DDX17 contributed to the metastasis and epithelial to mesenchymal transition (EMT) of CRC cells via downregulation of miR-149-3p, which resulted in increased CYBRD1 expression. In conclusion, our findings not only highlight the significance of DDX17 in the aggressive development and prognosis of CRC patients, but also reveal a novel mechanism underlying DDX17-mediated CRC cell metastasis and EMT progression through manipulation of the miR-149-3p/CYBRD1 pathway.
Collapse
Affiliation(s)
- Gang Zhao
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qijing Wang
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yue Zhang
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Rui Gu
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Min Liu
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jie Zhang
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hang Yuan
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tianyu Feng
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Deqiong Ou
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Siqi Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shan Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kai Li
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chunfen Mo
- Department of General Surgery, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan Province, China.
| | - Ping Lin
- Lab of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
7
|
da Silva KR, Veronez LC, Correa CAP, Lira RCP, Baroni M, de Paula Silva Queiroz R, Antonini SRR, Yunes JA, Brandalise SR, Tone LG, Scrideli CA. MicroRNA-149-3p expression correlates with outcomes of adrenocortical tumor patients and affects proliferation and cell cycle progression of H295A adrenocortical cancer cell line. Hum Cell 2022; 35:1952-1960. [PMID: 36053456 DOI: 10.1007/s13577-022-00778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022]
Abstract
Pediatric adrenocortical tumor (ACT) is a rare and aggressive neoplasm, with incidence in southern and southeastern Brazil 10-15 times higher than worldwide. Although microRNAs (miRNAs) have been reported to act as tumor suppressors or oncogenes in several cancers, the role of miR-149-3p in ACT remains unknown. In this study, we evaluated the expression of miR-149-3p in 67 pediatric ACT samples and 19 non-neoplastic adrenal tissues. The overexpression of miR-149-3p was induced in H295A cell line, and cell viability, proliferation, colony formation, and cell cycle were assessed by in miR-149-3p mimic or mimic control. In silico analysis were used to predict miR-149-3p putative target genes. CDKN1A expression at the mRNA and protein levels was evaluated by qRT-PCR and western blot, respectively. Higher miR-149-3p expression was associated with unfavorable ACT outcomes. Compared to the mimic control, miR-149-3p overexpression increased cell viability and colony formation, and affected cell cycle progression. Also, we identified CDKN1A as a potential miR-149-3p target gene, with decreased expression at both the gene and protein levels in miR-149-3p mimic cells. Collectively, these findings suggest that miR-149-3p promotes H295A cell viability by downregulating CDKN1A and provide evidence that miR-149-3p may be useful as a novel therapeutic target for pediatric ACT.
Collapse
Affiliation(s)
- Keteryne Rodrigues da Silva
- Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luciana Chain Veronez
- Departments of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Carolina Alves Pereira Correa
- Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Régia Caroline Peixoto Lira
- Departments of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,Division of General Pathology, Federal University of Triângulo Mineiro, Campus I, Uberaba, MG, 38025-200, Brazil
| | - Mirella Baroni
- Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Rosane de Paula Silva Queiroz
- Departments of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Sonir Roberto Rauber Antonini
- Departments of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | | | | | - Luiz Gonzaga Tone
- Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,Departments of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Carlos Alberto Scrideli
- Departments of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil. .,Departments of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
8
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 414] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Effects of TP53 Mutations and miRs on Immune Responses in the Tumor Microenvironment Important in Pancreatic Cancer Progression. Cells 2022; 11:cells11142155. [PMID: 35883598 PMCID: PMC9318640 DOI: 10.3390/cells11142155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Approximately 90% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is the fourth leading cause of cancer death world-wide. Therapies for PDAC are largely ineffective due to the dense desmoplastic tumor microenvironment which prevents chemotherapeutic drugs and small molecule inhibitors from exerting effective anti-cancer effects. In this review, we will discuss the roles of TP53 and miRs on the PDAC tumor microenvironment and how loss of the normal functions of TP53 promote tumor progression. The TP53 gene is mutated in approximately 50% of pancreatic cancers. Often, these TP53 mutations are point mutations which confer additional functions for the TP53 proteins. These are called gain of function (GOF) mutations (mut). Another class of TP53 mutations are deletions which result in loss of the TP53 protein; these are referred to TP53-null mutations. We have organized this review into various components/properties of the PDAC microenvironment and how they may be altered in the presence of mutant TP53 and loss of certain miR expression.
Collapse
|
10
|
Zhang W, Yang Y, Xiang Z, Cheng J, Yu Z, Wang W, Hu L, Ma F, Deng Y, Jin Z, Hu X. MRTF-A-mediated protection against amyloid-β-induced neuronal injury correlates with restoring autophagy via miR-1273g-3p/mTOR axis in Alzheimer models. Aging (Albany NY) 2022; 14:4305-4325. [PMID: 35604830 PMCID: PMC9186769 DOI: 10.18632/aging.203883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
Myocardia-Related Transcription Factors-A (MRTF-A), which is enriched in the hippocampus and cerebral cortex, has been shown to have a protective function against ischemia hypoxia-induced neuronal apoptosis. However, the function of MRTF-A on β-amyloid peptide (Aβ)-induced neurotoxicity and autophagy dysfunction in Alzheimer's disease is still unclear. This study shows that the expression of MRTF-A in the hippocampus of Tg2576 transgenic mice is reduced, and the overexpression of MRTF-A mediated by lentiviral vectors carrying MRTF-A significantly reduces the accumulation of hippocampal β-amyloid peptide and reduces cognition defect. Overexpression of MRTF-A inhibits neuronal apoptosis, increases the protein levels of microtubule-associated protein 1 light chain 3-II (MAP1LC3/LC3-II) and Beclin1, reduces the accumulation of SQSTM1/p62 protein, and promotes autophagosomes-Lysosomal fusion in vivo and in vitro. Microarray analysis and bioinformatics analysis show that MRTF-A reverses Aβ-induced autophagy impairment by up-regulating miR-1273g-3p level leading to negative regulation of the mammalian target of rapamycin (mTOR), which is confirmed in Aβ1-42-treated SH-SY5Y cells. Further, overexpression of MRTF-A reduces Aβ1-42-induced neuronal apoptosis. And the effect was abolished by miR-1273g-3p inhibitor or MHY1485 (mTOR agonist), indicating that the protection of MRTF-A on neuronal damage is through targeting miR-1273g-3p/mTOR axis. Targeting this signaling may be a promising approach to protect against Aβ-induced neuronal injury.
Collapse
Affiliation(s)
- Wei Zhang
- Affiliated Wuhan Resources and Wisco General Hospital, University of Science and Technology, Wuhan, Hubei, China
| | - Yuewang Yang
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zifei Xiang
- College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jinping Cheng
- Affiliated Wuhan Resources and Wisco General Hospital, University of Science and Technology, Wuhan, Hubei, China
| | - Zhijun Yu
- College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wen Wang
- Affiliated Wuhan Resources and Wisco General Hospital, University of Science and Technology, Wuhan, Hubei, China
| | - Ling Hu
- College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Fuyun Ma
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Youping Deng
- Bioinformatics Core Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Zhigang Jin
- Affiliated Wuhan Resources and Wisco General Hospital, University of Science and Technology, Wuhan, Hubei, China
| | - Xiamin Hu
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
11
|
Exploration of the System-Level Mechanisms of the Herbal Drug FDY003 for Pancreatic Cancer Treatment: A Network Pharmacological Investigation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7160209. [PMID: 35591866 PMCID: PMC9113891 DOI: 10.1155/2022/7160209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Pancreatic cancer (PC) is the most lethal cancer with the lowest survival rate globally. Although the prescription of herbal drugs against PC is gaining increasing attention, their polypharmacological therapeutic mechanisms are yet to be fully understood. Based on network pharmacology, we explored the anti-PC properties and system-level mechanisms of the herbal drug FDY003. FDY003 decreased the viability of human PC cells and strengthened their chemosensitivity. Network pharmacological analysis of FDY003 indicated the presence of 16 active phytochemical components and 123 PC-related pharmacological targets. Functional enrichment analysis revealed that the PC-related targets of FDY003 participate in the regulation of cell growth and proliferation, cell cycle process, cell survival, and cell death. In addition, FDY003 was shown to target diverse key pathways associated with PC pathophysiology, namely, the PIK3-Akt, MAPK, FoxO, focal adhesion, TNF, p53, HIF-1, and Ras pathways. Our network pharmacological findings advance the mechanistic understanding of the anti-PC properties of FDY003 from a system perspective.
Collapse
|
12
|
Jin S, Guan T, Wang S, Hu M, Liu X, Huang S, Liu Y. Dioscin Alleviates Cisplatin-Induced Mucositis in Rats by Modulating Gut Microbiota, Enhancing Intestinal Barrier Function and Attenuating TLR4/NF-κB Signaling Cascade. Int J Mol Sci 2022; 23:ijms23084431. [PMID: 35457248 PMCID: PMC9025408 DOI: 10.3390/ijms23084431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin-based chemotherapy causes intestinal mucositis, which causes patients immense suffering and hinders the process of cancer treatment. Dioscin is a natural steroid saponin that exhibits strong anti-inflammatory and immunomodulatory properties. Herein, we investigate the protective effect of dioscin on cisplatin induced mucositis in rats from the perspective of gut microbiota and intestinal barrier. We established a rat model of intestinal mucositis by tail vein injection of cisplatin, and concurrently treated with dioscin oral administration. Parameters, such as body weight, diarrheal incidence, and D-Lactate levels, were assessed in order to evaluate the effects of dioscin on intestinal mucositis in rats. Furthermore, biological samples were collected for microscopic gut microbiota, intestinal integrity, and immune inflammation analyses to elucidate the protective mechanisms of dioscin on intestinal mucositis. The results revealed that administration of dioscin significantly attenuated clinical manifestations, histological injury and inflammation in mucositis rats. Besides this, dioscin markedly inhibited the gut microbiota dysbiosis induced by cisplatin. Meanwhile, dioscin partially alleviated junctions between ileum epithelial cells and increased mucus secretion. Moreover, dioscin effectively inhibited the TLR4-MyD88-NF-κB signal transduction pathway and reduced the secretion of subsequent inflammatory mediators. These results suggested that dioscin effectively attenuated cisplatin-induced mucositis in part by modulating the gut microflora profile, maintaining ileum integrity and inhibiting the inflammatory response through the TLR4-MyD88-NF-κB pathway.
Collapse
Affiliation(s)
- Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (S.J.); (T.G.); (S.W.); (M.H.); (X.L.); (S.H.)
| | - Tongxu Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (S.J.); (T.G.); (S.W.); (M.H.); (X.L.); (S.H.)
| | - Shuang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (S.J.); (T.G.); (S.W.); (M.H.); (X.L.); (S.H.)
| | - Mengxin Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (S.J.); (T.G.); (S.W.); (M.H.); (X.L.); (S.H.)
| | - Xingyao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (S.J.); (T.G.); (S.W.); (M.H.); (X.L.); (S.H.)
| | - Siqi Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (S.J.); (T.G.); (S.W.); (M.H.); (X.L.); (S.H.)
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (S.J.); (T.G.); (S.W.); (M.H.); (X.L.); (S.H.)
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China
- Correspondence:
| |
Collapse
|
13
|
Bandopadhyay S, Anand U, Gadekar VS, Jha NK, Gupta PK, Behl T, Kumar M, Shekhawat MS, Dey A. Dioscin: A review on pharmacological properties and therapeutic values. Biofactors 2022; 48:22-55. [PMID: 34919768 DOI: 10.1002/biof.1815] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Dioscin has gained immense popularity as a natural, bioactive steroid saponin, which offers numerous medical benefits. The growing global incidence of disease-associated morbidity and mortality continues to compromise human health, facilitating an increasingly urgent need for nontoxic, noninvasive, and efficient treatment alternatives. Natural compounds can contribute vastly to this field. Over recent years, studies have demonstrated the remarkable protective actions of dioscin against a variety of human malignancies, metabolic disorders, organ injuries, and viral/fungal infections. The successful usage of this phytocompound has been widely seen in medical treatment procedures under traditional Chinese medicine, and it is becoming progressively prevalent worldwide. This review provides an insight into the wide spectrum of pharmacological activities of dioscin, as reported and compiled in recent literature. The various novel approaches and applications of dioscin also verify the advantages exhibited by plant extracts against commercially available drugs, highlighting the potential of phytochemical agents like dioscin to be further incorporated into clinical practice.
Collapse
Affiliation(s)
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vijaykumar Shivaji Gadekar
- Zoology Department, Sangola College (affiliated to Punyashlok Ahilyadevi Holkar Solapur University), Solapur, Maharashtra, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
14
|
Shen Q, Xiong P, Yang D, Chen L. Downregulated microRNA-149-3p triggers malignant development and predicts worse prognosis in oral squamous cell carcinoma. Arch Oral Biol 2021; 134:105336. [PMID: 34891100 DOI: 10.1016/j.archoralbio.2021.105336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Accumulating evidence reveals that aberrant expression of microRNAs contributes to the tumorigenesis and development of diverse human cancers. In the current study, we aimed to evaluate the functional role and prognostic value of miR-149-3p in oral squamous cell carcinoma (OSCC). METHODS Real-time polymerase chain reaction (PCR) analysis was performed to detect the expression of miR-149-3p in 70 OSCC patients (64.10 ± 11.97 years; 31 males and 39 females). The prognostic ability of miR-149-3p in OSCC patients was assessed by Kaplan-Meier survival analysis. Transwell assays and cell adhesion assays were used to investigate the impact of miR-149-3p on cell migration and invasion. The regulation of MMP2 expression by miR-149-3p was determined by real-time PCR, western blotting and dual luciferase reporter assay. RESULTS Our results revealed a lower level of miR-149-3p in OSCC tissues than in adjacent normal tissues. Downregulation of miR-149-3p was correlated with malignant development and poor outcomes in patients with OSCC. MiR-149-3p repressed the migratory and invasive abilities of OSCC cells. We confirmed that miR-149-3p targeted the 3'-untranslated region of MMP2 mRNA to suppress MMP2 expression. Moreover, the miR-149-3p-mediated decrease in metastasis was reversed by overexpression of MMP2 in OSCC cells. CONCLUSION Our findings provide an important molecular mechanism by which miR-149-3p inhibits OSCC cell migration and invasion via negative regulation of MMP2 and implicate miR-149-3p as a prospective biomarker and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Qin Shen
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518100 Guangdong, People's Republic of China.
| | - Peiying Xiong
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518100 Guangdong, People's Republic of China
| | - Dajiang Yang
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518100 Guangdong, People's Republic of China
| | - Luyuan Chen
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518100 Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Tian Y, Jiang Y, Dong X, Chang Y, Chi J, Chen X. miR-149-3p suppressed epithelial-mesenchymal transition and tumor development in acute myeloid leukemia. Hematology 2021; 26:840-847. [PMID: 34674612 DOI: 10.1080/16078454.2021.1990502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Acute myeloid leukemia (AML) is a form of primary acute leukemia with high mortality. Our previous study demonstrated that miR-149-3p was down-regulated in chemoresistant acute leukemia cells. However, the biological function of miR-149-3p in AML needs to be further explored. METHODS Herein, the expression of miR-149-3p was overexpressed/silenced in U-937 human AML cells via transfection with miR-149-3p agomir/antagomir. The effect of miR-149-3p on U-937-induced tumor growth was investigated using a xenograft nude mouse model. RESULTS The results showed that miR-149-3p overexpression inhibited the proliferation and increased the apoptosis of U-937 cells. In addition, miR-149-3p suppressed epithelial-mesenchymal transition in U-937 cells, as demonstrated by the miR-149-3p agomir-induced increase in E-cadherin expression and decrease in vimentin expression. The in vivo experiments demonstrated that miR-149-3p suppressed tumor progression. CONCLUSION In conclusion, the findings revealed the association of miR-149-3p with the development of AML and suggest that miR-149-3p is a potential therapeutic candidate for AML.
Collapse
Affiliation(s)
- Yaoyao Tian
- Department of Hematology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yongfang Jiang
- Department of Hematology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Xiushuai Dong
- Department of Hematology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yuying Chang
- Department of Hematology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jia Chi
- Department of Hematology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Xi Chen
- Department of Hematology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
16
|
Lai AN, Zhou R, Chen B, Guo L, Dai YY, Jia YP. MiR-149-3p can improve the osteogenic differentiation of human adipose-derived stem cells via targeting AKT1. Kaohsiung J Med Sci 2021; 37:1077-1088. [PMID: 34382740 DOI: 10.1002/kjm2.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
The study aims to investigate the role of microRNA-149-3p (miR-149-3p) in regulating osteogenic differentiation of human adipose-derived stem cells (hADSCs) by targeting v-akt murine thymoma viral oncogene homolog 1 (AKT1). Bioinformatics websites and a dual luciferase reporter assay were used to predict and verify the targeting relationship between miR-149-3p and AKT1. The hADSCs were divided into the blank, negative control (NC), mimic, control siRNA, AKT1 siRNA, and miR-149-3p inhibitors + AKT1 siRNA groups and then subjected to Alizarin Red staining, Alkaline phosphatase (ALP) staining, ALP activity detections, MTT assay, and EdU cell proliferation assay. Gene or protein expression was quantified using quantitative real-time PCR (qRT-PCR) or Western blotting, respectively. The miR-149-3p expression increased gradually and AKT1 expression decreased gradually during osteogenic differentiation of hADSCs. The prediction of bioinformatics websites miRTarBase and TargetScan and the dual luciferase reporter assay indicated that miR-149-3p can directly target AKT1. After hADSCs were transfected with miR-149-3p mimic, AKT1 expression was significantly downregulated. However, transfection with AKT1 siRNA did not have an impact on miR-149-3p in hADSCs. In comparison with the AKT1 siRNA group, the miR-149-3p inhibitors + AKT1 siRNA group showed decreased miR-149-3p expression but increased AKT1 expression. In addition, AKT1 siRNA enhanced the cell viability and proliferation of hADSCs and increased mineral calcium deposition and ALP activity, resulting in higher expression of osteogenic differentiation-related genes, which was reversed by miR-149-3p inhibition. The miR-149-3p can increase the expression of osteogenic differentiation-related genes by targeting AKT1 and thereby enhance the osteogenic differentiation of hADSCs.
Collapse
Affiliation(s)
- Ai-Ning Lai
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Rong Zhou
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Bin Chen
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Long Guo
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Yu-Ya Dai
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Yong-Peng Jia
- Section V, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| |
Collapse
|
17
|
Fan RZ, Chen L, Su T, Li W, Huang JL, Sang J, Tang GH, Yin S. Discovery of 8,9-seco- ent-Kaurane Diterpenoids as Potential Leads for the Treatment of Triple-Negative Breast Cancer. J Med Chem 2021; 64:9926-9942. [PMID: 34236840 DOI: 10.1021/acs.jmedchem.1c00166] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Triple-negative breast cancer (TNBC) is a lethal malignancy without safe and effective therapeutic drugs. In this study, the anti-TNBC bioassay-guided isolation of the medicinal plant Croton kongensis followed by the structural modification led to the construction of a small ent-kaurane diterpenoid library (1-25). With subsequent biological screening, 20 highly potent compounds (IC50s < 3 μM) were identified. Among them, 8,9-seco-ent-kaurane 6 displayed comparable activity (IC50s ∼ 80 nM) to doxorubicin but with better selectivity. The analysis of structure-activity relationships suggested that the cleavage of the C8-C9 bond and the presence of α,β-unsaturated ketone moiety were essential for the activity. The mechanistic study revealed that 6 induced apoptosis, autophagy, and metastasis suppression in TNBC cells via inhibition of Akt. In vivo, 6 significantly suppressed the TNBC tumor growth without causing side effects. All these results suggested that 6 may serve as a promising lead for the development of novel anti-TNBC agents in the future.
Collapse
Affiliation(s)
- Run-Zhu Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Lin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Tong Su
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jia-Luo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jun Sang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
18
|
Zhou L, Xu XL. Long Non-Coding RNA ARAP1-AS1 Facilitates the Progression of Cervical Cancer by Regulating miR-149-3p and POU2F2. Pathobiology 2021; 88:301-312. [PMID: 33965958 DOI: 10.1159/000507830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/12/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. METHODS Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. RESULTS The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. CONCLUSION ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Obstetrics and Gynecology, Liyang People's Hospital, Liyang, China
| | - Xiao-Li Xu
- Department of Obstetrics and Gynecology, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Suzhou University), Changzhou, China
| |
Collapse
|
19
|
Tian H, Chen X, Zhang Y, Wang Y, Fu X, Gu W, Wen Y. Dioscin inhibits SCC15 cell proliferation via the RASSF1A/MST2/YAP axis. Mol Med Rep 2021; 23:414. [PMID: 33786612 PMCID: PMC8025490 DOI: 10.3892/mmr.2021.12053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Dioscin, an extract from traditional Chinese herbal plants, displays various biological and pharmacological effects on tumors, including inhibition of cell proliferation and induction of DNA damage. However, the effects of dioscin on oral squamous cell carcinoma (OSCC) cells are not completely understood. The present study aimed to evaluate the impact of dioscin on OSCC cell proliferation. Cell Counting Kit-8 and 5-ethynyl-2′-deoxyuridine incorporation assays were performed to assess cell proliferation. Flow cytometry was conducted to detect alterations in the cell cycle and cell apoptosis. Western blotting and coimmunoprecipitation were performed to determine protein expression levels. In SCC15 cells, dioscin treatment significantly induced cell cycle arrest, increased apoptosis and inhibited proliferation compared with the control group. Mechanistically, the tumor suppressor protein Ras association domain-containing protein 1A (RASSF1A) was activated and oncoprotein yes-associated protein (YAP) was phosphorylated by dioscin. Furthermore, YAP overexpression and knockdown reduced and enhanced the inhibitory effects of dioscin on SCC15 cells, respectively. In summary, the results demonstrated that, compared with the control group, dioscin upregulated RASSF1A expression in OSCC cells, which resulted in YAP phosphorylation, thus weakening its transcriptional coactivation function, enhancing cell cycle arrest and apoptosis, and inhibiting cell proliferation. The present study indicated that dioscin may serve as a therapeutic agent for OSCC.
Collapse
Affiliation(s)
- Hui Tian
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiyan Chen
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yafei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ying Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xucheng Fu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Weiting Gu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yong Wen
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
20
|
Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers (Basel) 2021; 13:cancers13020304. [PMID: 33467668 PMCID: PMC7830727 DOI: 10.3390/cancers13020304] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Anticancer therapeutic approaches based solely on apoptosis induction are often unsuccessful due to the activation of resistance mechanisms. The identification and characterization of compounds capable of triggering non-apoptotic, also called non-canonical cell death pathways, could represent an important strategy that may integrate or offer alternative approaches to the current anticancer therapies. In this review, we critically discuss the promotion of ferroptosis, necroptosis, and pyroptosis by natural compounds as a new anticancer strategy. Abstract Apoptosis has been considered the main mechanism induced by cancer chemotherapeutic drugs for a long time. This paradigm is currently evolving and changing, as increasing evidence pointed out that antitumor agents could trigger various non-canonical or non-apoptotic cell death types. A considerable number of antitumor drugs derive from natural sources, both in their naturally occurring form or as synthetic derivatives. Therefore, it is not surprising that several natural compounds have been explored for their ability to induce non-canonical cell death. The aim of this review is to highlight the potential antitumor effects of natural products as ferroptosis, necroptosis, or pyroptosis inducers. Natural products have proven to be promising non-canonical cell death inducers, capable of overcoming cancer cells resistance to apoptosis. However, as discussed in this review, they often lack a full characterization of their antitumor activity together with an in-depth investigation of their toxicological profile.
Collapse
|
21
|
Long non-coding RNA maternally expressed gene regulates cigarette smoke extract induced lung inflammation and human bronchial epithelial apoptosis via miR-149-3p. Exp Ther Med 2020; 21:60. [PMID: 33365060 PMCID: PMC7716647 DOI: 10.3892/etm.2020.9492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has become a significant public health risk. Long non-coding RNAs (lncRNAs) have been identified as important factors involved in the proliferation, apoptosis and inflammatory cytokine expression of lung cells. Peripheral blood samples from 66 subjects (18 non-smokers, 24 smokers without COPD and 28 smokers with COPD) and HBE135-E6E7 cell treated with cigarette smoke extract (CSE) or not were used as the research object. The aim of the present study was to investigate the underlying mechanism of lncRNA maternally expressed gene 3 (MEG3) in COPD. Following transfection with microRNA (miR)-149-3p mimics, miR-negative control mimics, miR-149-3p inhibitor, miR-negative control inhibitor, small interfering (si)RNA targeting MEG3 (si-MEG3) and si-negative control (si-NC), levels of MEG3 and microRNA (miR)-149-3p were detected using reverse transcription-quantitative PCR, Proliferation and apoptosis were examined using the Cell Counting Kit-8 and flow cytometry assays, respectively. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Protein levels of B-cell lymphoma-2 (Bcl-2), cleaved-caspase-3, cleaved-caspase-9, phosphorylated (p)-p65, total (t)-p65, p-lkBα and t-lkBα were measured by western blotting. Luciferase assay was conducted to examine the relationship between MEG3 and miR-149-3p. LncRNA MEG3 was highly expressed, whereas miR-149-3p expression was downregulated in smokers with COPD peripheral blood samples, compared with non-smokers and smokers without COPD samples. Compared with untreated human bronchial epithelial (HBE) cells, MEG3 expression was increased in cigarette smoke extract (CSE)-treated HBE cells. Compared with CSE-treated HBE cells transfected with si-NC, MEG3 knockdown promoted cell proliferation and inhibited apoptosis in CSE-treated HBE cells transfected with si-MEG3, and it also decreased the levels of IL-6, TNF-α, Bcl-2 and increased cleaved-caspase-3 and cleaved-caspase-9 in CSE-treated HBE cells transfected with si-MEG3. The luciferase assay demonstrated that miR-149-3p has target sites for MEG3. MEG3 was demonstrated to regulate the NF-κB signaling pathway by sponging miR-149-3p in CSE-treated HBE cells. In conclusion, these findings suggested that MEG3 promoted proliferation and inhibited apoptosis by regulating the NF-κB signal pathway via miR-149-3p in CSE-treated HBE cells. These results provide an insight for further verification and understanding of the molecular basis of COPD.
Collapse
|
22
|
Wang P, Wang C, Liu C. Antitumor effects of dioscin in A431 cells via adjusting ATM/p53-mediated cell apoptosis, DNA damage and migration. Oncol Lett 2020; 21:59. [PMID: 33281970 PMCID: PMC7709553 DOI: 10.3892/ol.2020.12321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/26/2020] [Indexed: 11/27/2022] Open
Abstract
Skin cancer is the deadliest type of malignant disease and causes primary mortality worldwide. Dioscin, which exists in medicinal plants, has potent anticancer effects. However, its effects on skin cancer remain unknown. In the present study, the activity and mechanism of dioscin on the human skin cancer A431 cell line were investigated, MTT, colony formation, Transwell, wound-healing, TUNEL, Comet, immunofluorescence and western blot assays were used to assess the effects of dioscin on A431 cells. The results of MTT, colony formation, Transwell and wound-healing assays revealed that dioscin suppressed proliferation, colony formation and invasion of the cancer cells. TUNEL and comet assays demonstrated that dioscin exhibited significant effects on cell apoptosis and DNA damage. Investigations into the mechanism revealed that the expression levels of phosphorylated Ataxia telangiectasia-mutated (ATM) were considerably activated by dioscin, which significantly upregulated the expression levels of p53 to activate mitochondrial apoptosis signaling. Furthermore, the expression levels of BAX, cleaved caspase-3/9 and cleaved poly (ADP-ribose) polymerase were upregulated, and the expression levels of BCL-2 were downregulated by dioscin. Additionally, dioscin markedly downregulated the expression levels of matrix metalloproteinase 2 (MMP2), MMP9, RHO and cdc42, which are all associated with tumor invasion. In addition, p53-small interfering RNA transfection experiments indicated that dioscin exhibited excellent activity against skin cancer in vitro by decreasing p53 expression. Overall, the present results suggested that dioscin inhibited skin cancer cell proliferation via adjusting ATM/p53-mediated cell apoptosis, migration and DNA damage, which should be considered as a potential option for future treatments of skin cancer.
Collapse
Affiliation(s)
- Peng Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Chun Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Chunying Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| |
Collapse
|
23
|
Wang N, Zhou P, Chen Y, Qu H, Lu K, Xia J. MicroRNA-149: A review of its role in digestive system cancers. Pathol Res Pract 2020; 216:153266. [PMID: 33197838 DOI: 10.1016/j.prp.2020.153266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a group of highly conserved, short (18-25 nucleotide long) non-coding RNAs which play important functional roles in cellular differentiation, biological development, pathogenesis and disease susceptibility and have been linked to both tumorigenesis and the malignant progression of various cancers. miRNAs primarily exert their function through the negative regulation of their target gene's transcription via the specific recognition of their 3' untranslated region. A single miRNA can regulate multiple target genes and most miRNAs are controlled by several factors. Recent studies have shown that microRNA-149 (miR-149) plays a pivotal role in the pathogenesis of digestive system cancers and may act as a potential diagnostic marker and therapeutic target. In this review, we summarize and discuss the most recent reports describing miR-149 in digestive system cancers, including its single nucleotide polymorphisms, expression levels, target genes, drug sensitivity and clinical significance.
Collapse
Affiliation(s)
- Ning Wang
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Peng Zhou
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Yigang Chen
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Huiheng Qu
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Keyu Lu
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China
| | - Jiazeng Xia
- Department of General Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wu Xi, Jiangsu, China.
| |
Collapse
|
24
|
Shopit A, Li X, Tang Z, Awsh M, Shobet L, Niu M, Wang H, Mousa H, Alshwmi M, Tesfaldet T, Gamallat Y, Li H, Chu P, Ahmad N, Jamalat Y, Ai J, Qaed E, Almoiliqy M, Wang S, Tang Z. miR-421 up-regulation by the oleanolic acid derivative K73-03 regulates epigenetically SPINK1 transcription in pancreatic cancer cells leading to metabolic changes and enhanced apoptosis. Pharmacol Res 2020; 161:105130. [PMID: 32818653 DOI: 10.1016/j.phrs.2020.105130] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
SPINK1 overexpression promotes cancer cell aggressiveness and confers chemo-resistance to multiple drugs in pancreatic cancer. Oleanolic acid (OA) derivatives possess active effects against different cancers. Here we report the effect of K73-03, a new novel OA derivative, against pancreatic cancer through mitochondrial dysfunction via miR-421/SPINK1 regulation. We examined the binding ability of miR-421 with SPINK1-3'UTR Luciferase reporter assays. Moreover, miR-421/SPINK1 expressions in pancreatic cancer, with or without K73-03 treatment, were evaluated. Cells viability, migration, autophagy, mitochondrial function and apoptosis were examined with or without K73-03 treatment. We established that the K73-03 effect on the miR-421 that plays a crucial role in the regulation of SPINK1 in pancreatic cancer. Our findings indicated that K73-03 inhibited the mitochondrial function that led to inducing autophagy and apoptosis through epigenetic SPINK1 down-regulation via miR-421 up-regulation in pancreatic cancer. Furthermore, the inhibition of miR-421 expression in pancreatic cancer cells abolished the efficacy of K73-03 against SPINK1 oncogenic properties. We found an interesting finding that the interaction between miR-421 and SPINK1 is related to mitochondrial function through the effect of K73-03. Further, SPINK1 appear to be the molecular targets of K73-03 especially more than gemcitabine.
Collapse
Affiliation(s)
- Abdullah Shopit
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xiaodong Li
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongyuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, China
| | - Mohammed Awsh
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Loubna Shobet
- Department of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengyue Niu
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Hongyan Wang
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Haithm Mousa
- Clinical Diagnostic Laboratory Department, Dalian Medical University, Dalian, China
| | - Mohammed Alshwmi
- Clinical Diagnostic Laboratory Department, Dalian Medical University, Dalian, China
| | - Tsehaye Tesfaldet
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yaser Gamallat
- Department of Biochemistry, Dalian Medical University, Dalian, China
| | - Hailong Li
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Peng Chu
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Nisar Ahmad
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yazeed Jamalat
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jie Ai
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Eskandar Qaed
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Marwan Almoiliqy
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Shisheng Wang
- College of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Zeyao Tang
- Acad Integrated Med & Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian, China.
| |
Collapse
|
25
|
Chen D, Zhang M, Ruan J, Li X, Wang S, Cheng X, Zhao H, Zeng Y, Liu J, He K, Zhao P. The long non-coding RNA HOXA11-AS promotes epithelial mesenchymal transition by sponging miR-149-3p in Colorectal Cancer. J Cancer 2020; 11:6050-6058. [PMID: 32922545 PMCID: PMC7477413 DOI: 10.7150/jca.49809] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Metastasis is the primary cause of death in colorectal cancer (CRC); the underlying mechanisms remain partly unknown. In this study, we aim to investigate the value of HOXA11-AS in survival evaluation and the potential role of HOXA11-AS/miR-149-3p axis in the CRC metastasis. Methods: The expressions of HOXA11-AS, both in obtained CRC samples and adjacent noncancerous tissues, were analyzed in survival evaluation. Competing endogenous RNAs (CeRNAs) Analysis were employed to reveal the potential relationship between HOXA11-AS and miR-149-3p. It was further confirmed by Quantitative real-time polymerase chain reaction (qRT-PCR) and Dual-luciferase reporter assay. Migration and invasion assay were used to verify the potential role of HOXA11-AS and miR-149-3p in the regulation of CRC metastasis. The potential pathway was explored by Western blot analysis. Results: The expression of HOXA11-AS in the CRC tissue is significantly higher than the expression in adjacent noncancerous tissue (p<0.0001). High expressions of HOXA11-AS were noticeably correlated with clinicopathologic characteristics including advanced clinical stage (p=0.021), larger tumor size (p<0.001) and frequent tumor recurrence (p=0.001). The overall survival in HOXA11-AS-High group was significantly shorter than the HOXA11-AS-Low group (p<0.001). Advanced clinical stage, tumor size and high expression of HOXA11-AS were showed as independent prognostic prediction factors for the 5-year tumor relapse of CRC patients (p<0.001). HOXA11-AS acts as a potential molecular sponge for miR-149-3p, in the promotion of CRC metastasis. In the miR-149-3p mimic-treated group, the expression of E-cadherin was increased, whereas the expression of N-cadherin, Snail, Slug, TGF-β1, Wnt2b, Twist and C/EBPβ was decreased. Conclusion: This study demonstrates that high expression of HOXA11-AS is correlated with CRC progression and poor prognosis and may promote metastasis via EMT by modulating miR-149-3p.
Collapse
Affiliation(s)
- Dong Chen
- Department of Colorectal Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Min Zhang
- College of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jian Ruan
- Department of Medical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xiaolin Li
- Department of Emergency, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Saisai Wang
- Department of Colorectal Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xiaofei Cheng
- Department of Colorectal Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Huiying Zhao
- Department of Colorectal Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ying Zeng
- Department of Colorectal Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Jingjing Liu
- Department of Colorectal Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Kangxin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Peng Zhao
- Department of Medical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
26
|
Parama D, Boruah M, Yachna K, Rana V, Banik K, Harsha C, Thakur KK, Dutta U, Arya A, Mao X, Ahn KS, Kunnumakkara AB. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci 2020; 260:118182. [PMID: 32781063 DOI: 10.1016/j.lfs.2020.118182] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic diseases are a major cause of mortality worldwide, and despite the recent development in treatment modalities, synthetic drugs have continued to show toxic side effects and development of chemoresistance, thereby limiting their application. The use of phytochemicals has gained attention as they show minimal side effects. Diosgenin is one such phytochemical which has gained importance for its efficacy against the life-threatening diseases, such as cardiovascular diseases, cancer, nervous system disorders, asthma, arthritis, diabetes, and many more. AIM To evaluate the literature available on the potential of diosgenin and its analogs in modulating different molecular targets leading to the prevention and treatment of chronic diseases. METHOD A detailed literature search has been carried out on PubMed for gathering information related to the sources, biosynthesis, physicochemical properties, biological activities, pharmacokinetics, bioavailability and toxicity of diosgenin and its analogs. KEY FINDINGS The literature search resulted in many in vitro, in vivo and clinical trials that reported the efficacy of diosgenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK, etc., which play a crucial role in the development of most of the diseases. Reports have also revealed the safety of the compound and the adaptation of nanotechnological approaches for enhancing its bioavailability and pharmacokinetic properties. SIGNIFICANCE Thus, the review summarizes the efficacy of diosgenin and its analogs for developing as a potent drug against several chronic diseases.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Monikongkona Boruah
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Kumari Yachna
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
27
|
Wang X, Lin Y, Zheng Y. Antitumor effects of aconitine in A2780 cells via estrogen receptor β‑mediated apoptosis, DNA damage and migration. Mol Med Rep 2020; 22:2318-2328. [PMID: 32705198 PMCID: PMC7411431 DOI: 10.3892/mmr.2020.11322] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 03/31/2020] [Indexed: 01/27/2023] Open
Abstract
Ovarian cancer (OVCA) is the deadliest type of malignant gynecological disease, and previous studies have demonstrated that estrogen receptor β (ERβ) serves important roles in this disease. Aconitine, a toxin produced by the Aconitum plant, displays potent effects against cancers. The aim of the study was to investigate the pharmacological activities and mechanisms of aconitum on OVCA. In the present study, the activity of aconitine in the human OVCA A2780 cell line was investigated. The results revealed that aconitine suppressed cell viability, colony formation and motility. Terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling, mitochondria membrane potential and comet assays showed that aconitine induced mitochondria apoptosis and DNA damage in A2780 cells. Investigation of the mechanism revealed that a high expression of ERβ and prolyl hydroxylase 2 was detected after aconitine treatment, and aconitine significantly suppressed the expression of vascular endothelial growth factor and hypoxia-inducible factor 1α to activate ERβ signaling. Moreover, the expression levels of p53, Bax, apoptotic peptidase activating factor 1, cytochrome C, cleaved caspase-3/9 and cleaved poly (ADP-ribose) polymerase were upregulated, and the expression levels of Bcl-2, Bcl-xl and phosphorylated ATM serine/threonine kinase were downregulated by aconitine. Interestingly, aconitine also markedly downregulated the expression of matrix metalloproteinase 2 (MMP2) and MMP9, which are associated with tumor invasion. In addition, a molecular docking assay revealed that aconitine exerted strong affinity towards ERβ mainly through hydrogen bonding and hydrophobic effects. Collectively, these results suggested that aconitine suppressed OVCA cell growth by adjusting ERβ-mediated apoptosis, DNA damage and migration, which should be considered a potential option for the future treatment of OVCA.
Collapse
Affiliation(s)
- Xiuying Wang
- Pharmaceutical Preparation Section, People's Hospital of Weifang High‑tech Zone, Weifang, Shangdong 261205, P.R. China
| | - Yuanyuan Lin
- Department of Nursing, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261031, P.R. China
| | - Yi Zheng
- Department of Medical Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
28
|
Jin J, Huang Z, Lu X, Wu S, Jia M, Li X, Li Z, He X. Bioinformatics analysis of aberrantly expressed exosomal lncRNAs in oral squamous cell carcinoma (CAL-27 vs. oral epithelial) cells. Oncol Lett 2020; 20:2378-2386. [PMID: 32782555 PMCID: PMC7400702 DOI: 10.3892/ol.2020.11764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent form of malignant tumour in the oral cavity and its early detection is critical for improving the prognosis of affected patients. The present study aimed to isolate and confirm exosomes derived from the supernatant of the OSCC cell line CAL-27 and human oral epithelial cells (HOECs), analyze long non-coding RNA (lncRNA) expression profiles and determine the diagnostic value based on bioinformatics analyses. The results indicated that the particles isolated from the supernatant of CAL-27 and HOECs were either round or oval, had a size range of 30–150 nm and were enriched with ALG-2 interacting protein X (ALIX) and tumour susceptibility 101 proteins (TSG101). These characteristics confirmed that these particles were exosomes. Three lncRNAs (NR-026892.1, NR-126435.1 and NR-036586.1) were selected as potential diagnostic biomarkers for OSCC. The expression levels of the selected lncRNAs were significantly different in CAL-27-exo vs. HOEC-exo, as well as in whole cells (CAL-27 vs. HOECs) (P<0.001). The expression levels of the three lncRNAs confirmed by quantitative PCR were consistent with the sequencing data. In conclusion, various lncRNAs were aberrantly expressed between cancerous and non-cancerous exosomes, suggesting that they may serve as biomarkers for cancer.
Collapse
Affiliation(s)
- Jiajia Jin
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Stomatology, Xi'an Daxing Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Zixiao Huang
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiaoyan Lu
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shengrong Wu
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Mei'E Jia
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xin Li
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhiyong Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Xiangyi He
- Department of Prosthodontics, School of Dentistry, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Group of Molecular Biology, Key Laboratory of Functional Genomic and Molecular Diagnosis of Gansu Province, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
29
|
Cai S, Chen J, Li Y. Dioscin protects against diabetic nephropathy by inhibiting renal inflammation through TLR4/NF-κB pathway in mice. Immunobiology 2020; 225:151941. [PMID: 32359778 DOI: 10.1016/j.imbio.2020.151941] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
Abstract
Diabetic nephropathy (DN) is a chronic kidney disease caused by the long-term loss of renal function, which occurs in 20% - 40% of all diabetes and is also the primary cause of end-stage renal diseases. DN is related with other lethal diseases, particularly cardiovascular diseases, leading to an increased risk of death. Therefore, an effective treatment for DN is required. Here we tested the protective effect of dioscin in a mouse model of streptozocin (STZ)-induced DN. First, STZ was intraperitoneally injected into C57BL/6 J mice and TLR4-/- mice respectively, on a daily basis for 5 days to induce diabetes. Dioscin was then orally administered into diabetic mice daily for 8 weeks. Our results show that STZ injection effectively induced diabetes in mice as indicated by the increased blood glucose levels in C57BL/6 J mice, whereas it did not cause diabetes in TLR4-/- mice. Dioscin significantly ameliorated STZ-induced renal damage via reducing inflammatory responses in diabetic mice and antagonizing the activation of TLR4/NF-κB pathway and the production of inflammatory cytokines. In conclusion, our study highlights the potential of dioscin as a novel approach to treat DN in diabetic patients.
Collapse
Affiliation(s)
- Shengyu Cai
- The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, No. 601, Huangpu Road West, Guangzhou 510632, Guangdong, China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, No. 601, Huangpu Road West, Guangzhou 510632, Guangdong, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11, East Road of Third North Ring, Chaoyang District, Beijing 100029, China.
| | - Yousheng Li
- The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
30
|
Liu D, Qiu M, Jiang L, Liu K. Long Noncoding RNA HOXB-AS1 Is Upregulated in Endometrial Carcinoma and Sponged miR-149-3p to Upregulate Wnt10b. Technol Cancer Res Treat 2020; 19:1533033820967462. [PMID: 33073693 PMCID: PMC7592328 DOI: 10.1177/1533033820967462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
The functions of Long noncoding RNA (lncRNA) HOXB-AS1 have been investigated in glioblastoma and multiple myeloma. However, the role of lncRNA HOXB-AS1 in endometrial carcinoma (EC) remains largely unknown. This study investigated the underlying mechanisms of the lncRNA HOXB-AS1 on the progression of EC. In this study, We found that HOXB-AS1 expression was significantly upregulated in EC tissue samples and was associated with shorter survival time. Furthermore, upregulation of HOXB-AS1 promoted proliferation, invasion, and migration of EC cell. HOXB-AS1 and Wnt10b directly bound to miR-149-3p. HOXB-AS1 increased the expression of Wnt10b by binding to miR-149-3p. We further verified the upregulation of β-catenin, cyclin D1, and c-myc induced by HOXB-AS1. In conclusion, our results indicated that HOXB-AS1 exerted oncogenic function as competing endogenous RNA (ceRNA) of miR-149-3p to release Wnt10b and activated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Min Qiu
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
31
|
Liu Y, Yang C, Zhao Y, Chi Q, Wang Z, Sun B. Overexpressed methyltransferase-like 1 (METTL1) increased chemosensitivity of colon cancer cells to cisplatin by regulating miR-149-3p/S100A4/p53 axis. Aging (Albany NY) 2019; 11:12328-12344. [PMID: 31866582 PMCID: PMC6949057 DOI: 10.18632/aging.102575] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/24/2019] [Indexed: 11/25/2022]
Abstract
Methyltransferase-like 1 (METTL1) mediated 7-methylguanosine (m7G) is crucial for the regulation of chemoresistance in cancer treatment. However, the role of METTL1 in regulating chemoresistance of colon cancer (CC) cells to cisplatin is still unclear. This study established the cisplatin-resistant CC (CR-CC) cells and found that METTL1 was low-expressed in CR-CC cells compared to their paired cisplatin-sensitive CC (CS-CC) cells. Besides, overexpressed METTL1 enhanced the cytotoxic effects of cisplatin on CR-CC cells. In addition, miR-149-3p was the downstream target of METTL1, which could be positively regulated by METTL1. Further results validated that miR-149-3p was low-expressed in CR-CC cells comparing to the CS-CC cells. In addition, the promoting effects of overexpressed METTL1 on cisplatin induced CR-CC cell death were abrogated by synergistically knocking down miR-149-3p. Furthermore, S100A4/p53 axis was the downstream target of METTL1 and miR-149-3p, and either overexpressed METTL1 or miR-149-3p increased p53 protein levels in CR-CC cells, which were reversed by upregulating S100A4. Similarly, the promoting effects of overexpressed METTL1 on cisplatin-induced CR-CC cell death were abrogated by overexpressing S100A4. Taken together, overexpression of METTL1 sensitized CR-CC cells to cisplatin by modulating miR-149-3p/S100A4/p53 axis.
Collapse
Affiliation(s)
- Yang Liu
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Chunyan Yang
- Department of Oral and Maxillofacial Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Yong Zhao
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Qiang Chi
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Zhen Wang
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Boshi Sun
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| |
Collapse
|
32
|
Yao J, Wu X. Upregulation Of miR-149-3p Suppresses Spinal Chordoma Malignancy By Targeting Smad3. Onco Targets Ther 2019; 12:9987-9997. [PMID: 31819495 PMCID: PMC6875263 DOI: 10.2147/ott.s222380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose Dysregulation of miRNAs plays an important role in the malignancy of different tumors including chordoma. Expression of miR-149-3p was earlier reported to be downregulated in chordoma tissue. However, its biological role remains to be unrevealed in chordoma, especially in spinal chordoma. Methods Expression of miR-149-3p and Smad3 was detected by RT-qPCR and Western blot. Chordoma malignancy was evaluated by cell proliferation, migration, invasion, and apoptosis using MTT assay, transwell assay, flow cytometry analyzing apoptosis rate, and Western blot-determined expression of Bcl-2, Bax, and cleaved caspase 3, respectively. The target binding between miR-149-3p and Smad3 was predicted by TargetScan Human website and confirmed by luciferase reporter assay and RNA immunoprecipitation. Xenograft tumors were generated, and expression of miR-149-3p and Smad3 was investigated in vivo. Results miR-149-3p was downregulated in spinal chordoma tissues and cells, and its overexpression promoted chordoma cell apoptosis and inhibited proliferation, migration, and invasion in U-CH1 and MUG-Chor1 cells. Unexpectedly, Smad3 was a downstream target of miR-149-3p and negatively correlated with miR-149-3p expression in chordoma tissues. Besides, Smad3 was upregulated in chordoma tissues and its silencing had a similar effect as miR-149-3p overexpression in U-CH1 and MUG-Chor1 cells. Moreover, Smad3 upregulation could partially reverse the tumor-suppressive effect of miR-149-3p in chordoma cells. In vivo, the tumorigenesis of U-CH1 and MUG-Chor1 cells was impaired by upregulated miR-149-3p through decreasing Smad3 expression. Conclusion miR-149-3p could serve as a tumor suppressor in spinal chordoma through targeting and downregulating Smad3.
Collapse
Affiliation(s)
- Jie Yao
- Department of Spine, The Orthopedic Hospital of Zhengzhou, Zhengzhou, Henan 450099, People's Republic of China
| | - Xuejian Wu
- Department of Orthopaedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| |
Collapse
|
33
|
Li Y, Li Y, Yang T, Wang M. Dioscin attenuates oxLDL uptake and the inflammatory reaction of dendritic cells under high glucose conditions by blocking p38 MAPK. Mol Med Rep 2019; 21:304-310. [PMID: 31746382 PMCID: PMC6896274 DOI: 10.3892/mmr.2019.10806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022] Open
Abstract
Dioscin has been shown to affect the regulation of metabolic diseases, including diabetes; however, the mechanism of action is still unclear. Under high glucose (HG) conditions, the expression of scavenger receptors and the uptake of oxidized low‑density lipoprotein (oxLDL) are upregulated in dendritic cells (DCs), which are critical steps in atherogenesis and inflammation. In this study, the focus was on the impact of dioscin on the function of DCs. Immature DCs were cultured with: 5.5 mM glucose medium (control group); 30 mM glucose medium (HG group); HG + 10 mM dioscin; HG + 20 mM dioscin; HG + 30 mM dioscin; and HG + 40 mM dioscin. For subsequent experiments, 30 mM dioscin was used as the experimental concentration. Dichlorodihydrofluorescein fluorescence was used to measure the intracellular production of reactive oxygen species (ROS) in DCs. The expression levels of the scavenger receptors, including class A scavenger receptors (SR‑A), CD36 and lectin‑like oxidized low‑density lipoprotein receptor‑1 (LOX‑1) were determined via quantitative PCR. The protein expression of p38 mitogen‑activated protein kinase (MAPK) was determined by western blotting. Furthermore, ELISA was used to detect the levels of interleukin (IL)‑6, IL‑10 and IL‑12. Finally, DCs were incubated with diOlistic (Dil)‑labeled oxLDL, and flow cytometry analysis was used to investigate the Dil‑oxLDL‑incorporated fraction. The incubation of DCs with dioscin inhibited the induction of ROS production, in a dose‑dependent manner, under HG conditions. The upregulation of SR‑A, CD36 and LOX‑1 genes was partially abolished by dioscin, which also partially reversed p38 MAPK protein upregulation. Furthermore, increased secretion of IL‑6 and IL‑12, and decreased secretion of IL‑10 in DCs, induced by HG, was also reversed by dioscin. To conclude, dioscin could attenuate the production of ROS, inflammatory cytokine secretion and oxLDL uptake by DCs in HG conditions by preventing the expression of scavenger receptors and p38 MAPK, thus playing a positive role in preventing atherogenesis.
Collapse
Affiliation(s)
- Ying Li
- Cardiovascular Department, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China
| | - Yong Li
- Cardiovascular Department, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China
| | - Te Yang
- Cardiovascular Department, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China
| | - Ming Wang
- Cardiovascular Department, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, P.R. China
| |
Collapse
|
34
|
Liang Y, Hou L, Li L, Li L, Zhu L, Wang Y, Huang X, Hou Y, Zhu D, Zou H, Gu Y, Weng X, Wang Y, Li Y, Wu T, Yao M, Gross I, Gaiddon C, Luo M, Wang J, Meng X. Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway. Oncogene 2019; 39:469-485. [PMID: 31597953 PMCID: PMC6949190 DOI: 10.1038/s41388-019-1035-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
The development of chemoresistance remains a major challenge that accounts for colorectal cancer (CRC) lethality. Dichloroacetate (DCA) was originally used as a metabolic regulator in the treatment of metabolic diseases; here, DCA was assayed to identify the mechanisms underlying the chemoresistance of CRC. We found that DCA markedly enhanced chemosensitivity of CRC cells to fluorouracil (5-FU), and reduced the colony formation due to high levels of apoptosis. Using the microarray assay, we noted that miR-149-3p was involved in the chemoresistance of CRC, which was modulated by wild-type p53 after DCA treatment. In addition, PDK2 was identified as a direct target of miR-149-3p. Mechanistic analyses showed that overexpression of miR-149-3p enhanced 5-FU-induced apoptosis and reduced glucose metabolism, similar to the effects of PDK2 knockdown. In addition, overexpression of PDK2 partially reversed the inhibitory effect of miR-149-3p on glucose metabolism. Finally, both DCA treatment and miR-149-3p overexpression in 5-FU-resistant CRC cells were found to markedly sensitize the chemotherapeutic effect of 5-FU in vivo, and this effect was also validated in a small retrospective cohort of CRC patients. Taken together, we determined that the p53/miR-149-3p/PDK2 signaling pathway can potentially be targeted with DCA treatment to overcome chemoresistant CRC.
Collapse
Affiliation(s)
- Yu Liang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lidan Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linjing Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liming Zhu
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danxi Zhu
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Zou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Gu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Weng
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Ningbo Aitagene Technology Co. LTD, Shanghai, China
| | - Yingying Wang
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Li
- Pathology Center, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianqi Wu
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Mengfei Yao
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Isabelle Gross
- INSERM UMR_S1113, Strasbourg, F-67200, France.,FMTS, Universite de Strasbourg Strasbourg, Strasbourg, F-67000, France
| | - Christian Gaiddon
- Universite de Strasbourg, Inserm IRFAC UMR_S1113, Laboratory Stress Response and Innovative Therapy "Streinth", Strasbourg, 67200, France.,CLCC Paul Strauss, Strasbourg, France
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianhua Wang
- Cancer institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Song S, Chu L, Liang H, Chen J, Liang J, Huang Z, Zhang B, Chen X. Protective Effects of Dioscin Against Doxorubicin-Induced Hepatotoxicity Via Regulation of Sirt1/FOXO1/NF-κb Signal. Front Pharmacol 2019; 10:1030. [PMID: 31572199 PMCID: PMC6753638 DOI: 10.3389/fphar.2019.01030] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (Dox), an antitumor antibiotic, has therapeutic effects on many kinds of tumors. However, Dox can produce some serious side effects that limit its clinical application. Thus, exploration of effective drug targets or active lead compounds against Dox-induced organ damage is necessary. Dioscin, one natural product, has potent effects against Dox-induced renal injury and cardiotoxicity. However, the effects of dioscin on Dox-induced hepatotoxicity have not been reported. In this study, the results showed that dioscin significantly ameliorated Dox-induced cell injury, reduced reactive oxygen species (ROS) level, and suppressed cell apoptosis in alpha mouse liver 12 (AML-12) cells caused by Dox. In vivo, dioscin evidently decreased the levels of alanine transaminase (ALT), aspartate transaminase (AST), malondialdehyde (MDA); increased the levels of superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-Px); and alleviated liver injury. Mechanism study showed that dioscin remarkably up-regulated the expression levels of silent information regulator 1 (Sirt1) and heme oxygenase-1 (HO-1) via increase of the nuclear translocation of NF-E2-related factor 2 (Nrf2) and suppressed the expression levels of forkhead box protein O1 (FOXO1) and kelch-like ECH-associated protein-1 (Keap1) to inhibit oxidative stress. Furthermore, dioscin obviously decreased the nuclear translocation of nuclear factor κB (NF-κB) and the mRNA levels of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6) to suppress inflammation. Meanwhile, dioscin significantly regulated tumor suppressor P53 (P53) expression level and BCL-2-associated X (BAX)/BCL-2 apoptosis regulator (BCL-2) ratio to inhibit cell apoptosis. These results were further validated by knockdown of Sirt1 using siRNA silencing in AML-12 cells, which confirmed that the target of dioscin against Dox-induced hepatotoxicity was Sirt1/FOXO1/NF-κB signal. In short, our findings showed that dioscin exhibited protective effects against Dox-induced liver damage via suppression of oxidative stress, inflammation, and apoptosis, which should be developed as one new candidate for the prevention of Dox-induced liver injury in the future.
Collapse
Affiliation(s)
- Shasha Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| |
Collapse
|
36
|
Wu ZL, Wang J. Dioscin attenuates Bleomycin-Induced acute lung injury via inhibiting the inflammatory response in mice. Exp Lung Res 2019; 45:236-244. [PMID: 31452411 DOI: 10.1080/01902148.2019.1652370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhao-Li Wu
- Department of Integrated Chinese and Western Medicine, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Hunan Normal University, Changsha, China
| | - Jia Wang
- Scientific Research Office, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Hunan Normal University, Changsha, China
| |
Collapse
|
37
|
Yang L, Ren S, Xu F, Ma Z, Liu X, Wang L. Recent Advances in the Pharmacological Activities of Dioscin. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5763602. [PMID: 31511824 PMCID: PMC6710808 DOI: 10.1155/2019/5763602] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
Abstract
Dioscin is a typical saponin with multiple pharmacological activities. The past few years have seen an emerging interest in and growing research on this pleiotropic saponin. Here, we review the emerging pharmacological activities reported recently, with foci on its antitumor, antimicrobial, anti-inflammatory, antioxidative, and tissue-protective properties. The potential use of dioscin in therapies of diverse clinical disorders is also discussed.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shengnan Ren
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Fei Xu
- Department of Acupuncture and Moxibustion, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Lufei Wang
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| |
Collapse
|
38
|
Fan T, He J, Yin Y, Wen K, Kang Y, Zhao H, Chen S, Li X. Dioscin inhibits intimal hyperplasia in rat carotid artery balloon injury model through inhibition of the MAPK-FoxM1 pathway. Eur J Pharmacol 2019; 854:213-223. [DOI: 10.1016/j.ejphar.2019.03.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/26/2022]
|
39
|
Integrating microRNA and mRNA expression in rapamycin-treated T-cell acute lymphoblastic leukemia. Pathol Res Pract 2019; 215:152494. [PMID: 31229277 DOI: 10.1016/j.prp.2019.152494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/24/2019] [Accepted: 06/08/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) has a relatively improved remission rate, but the poor outcomes are primarily due to resistance and relapse. Moreover, organs infiltration trends to occur during remission. Rapamycin was applied to treat malignancies for decades. In this investigation, we aimed to explore the molecular mechanisms and pathway changes during the T-ALL therapeutic process. T-ALL cell line Molt-4 cells were treated with rapamycin and performed microarray analysis to identify the deregulated miRNAs and mRNAs (log2 fold change>2 or <-2). To obtain regulatory miRNA/mRNA network, miRNA target prediction softwares and Cytoscape were used to plot and modularize the rapamycin treatment-related network. Surprisingly, the enriched pathways were not involved in mediating either cell death or apoptosis but were responsible for angiogenesis, cell survival, and anti-apoptosis, which is consistent with the Gene Ontology analysis and PPI network based on all deregulated mRNAs, indicating that these elements likely play a role in promoting Molt-4 cell survival or escaping from rapamycin. The expression of 3 miRNAs (miR-149-3p, miR-361-3p, and miR-944) and their putative targets, which play central roles in their module, were validated by qRT-PCR. These results provide novel insight into potentially relevant biological pathways for T-ALL cells escaping from chemotherapy or developing central nervous system infiltration.
Collapse
|
40
|
Wu H, Liu HY, Liu WJ, Shi YL, Bao D. miR-377-5p inhibits lung cancer cell proliferation, invasion, and cell cycle progression by targeting AKT1 signaling. J Cell Biochem 2019; 120:8120-8128. [PMID: 30485528 DOI: 10.1002/jcb.28091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
Lung carcinoma is the most common type of malignant tumors globally, and its molecular mechanisms remained unclear. With the aim to investigate the effects of microRNA (miR)-377-5p on the cell development, invasion, metastasis, and cycle of lung carcinoma, this study was performed. We evaluated miR-377-5p expression levels in lung cancer tissues and cell models. Cell viability, proliferation, migration, invasion abilities, and cell cycle distribution were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, crystal violet, transwell, and flow cytometry assay. Furthermore, expression levels of protein kinase B α subunit (AKT1) and proteins related to cell cycle and epithelial-mesenchymal transition (EMT) were assessed using Western blot analysis and quantitative real-time polymerase chain reaction. These results suggested that miR-377-5p was downregulated in vivo and in cell models, and miR-377-5p overexpression inhibited cell viability, proliferation, migration, invasion, and induced cell-cycle arrest. In addition, as a target of miR-377-5p, AKT1 alleviated the decreases of cell viability, proliferation, migration, invasion, the S-phase cells, the expression of cyclin D1, fibronectin, and vimentin, as well as the increases of the G0/G1-phase cells, the expression of Foxo1, p27 kip1 , p21 Cip1 and E-cadherin when miR-377-5p overexpressed. In conclusion, miR-377-5p inhibited cell development and regulated cell cycle distribution and EMT by targeting AKT1, which provided a theoretical basis for further study of lung carcinoma therapeutics.
Collapse
Affiliation(s)
- Han Wu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Hai Yan Liu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Wen Jie Liu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Yong Li Shi
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Dawei Bao
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
41
|
Lee HR, Kong SY, Sung SH, Kim HJ. DA-9801 and its saponins, dioscin and protodioscin, protect primary cortical neurons from hyperglycemia-induced neurotoxicity. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
42
|
Shao Q, Jiang C, Xia Y, Zhao M, Zhang Q, Jin B, Liu J. Dioscin ameliorates peritoneal fibrosis by inhibiting epithelial-to-mesenchymal transition of human peritoneal mesothelial cells via the TLR4/MyD88/NF-κB signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:867-875. [PMID: 31933895 PMCID: PMC6945188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/09/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the effect of dioscin on lipopolysaccharide (LPS)-induced peritoneal fibrosis and its underlying mechanism. METHODS The human peritoneal mesothelial cell line (HMrSV5) was treated with LPS, followed by treatment with different concentrations of dioscin (0.25, 0.5 or 1.0 μg/ml). Toll-like receptor (TLR) 4 gene transfection was performed and dioscin (0.5 μg/ml) was used in mechanism research. Then morphological observation was carried out, and LPS-related markers of epithelial mesenchymal transition (EMT) as well as fibrosis markers were detected by western blotting. qRT-PCR and ELISA assay were applied to measure inflammatory factors. Furthermore, TLR4/MyD88/NF-κB pathway related proteins were assessed. RESULTS Dioscin inhibited LPS-induced morphologic changes, significantly reduced the levels of markers of EMT including N-cadherin, matrix metalloproteinase-2 (MMP-2), MMP-9 and vimentin, and elevated the levels of E-cadherin and zonula occludens protein 1 (ZO-1). Decreased levels of fibrosis markers α-smooth muscle actin (α-SMA), collagen I and fibronectin were found in dioscin groups. Additionally, dioscin downregulated interleukin-6 (IL-6), IL-1β and tumor necrosis factor alpha (TNF-α). Dioscin inhibited EMT and fibrosis through triggering the TLR4/MyD88/NF-κB signaling pathway by decreasing expressions of TLR4, myeloid differentiation factor 88 (MyD88), nuclear factor κB (NF-κB), transforming growth factor-β1 (TGF-β1), phosphorylated Smad2 (p-Smad2), α-SMA, collagen I and fibronectin. CONCLUSION This study provides a novel and efficient remedy to alleviate PD-associated fibrosis for patients undergoing long-term peritoneal dialysis.
Collapse
Affiliation(s)
- Qiuyuan Shao
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| | - Chunming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| | - Yangyang Xia
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| | - Min Zhao
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| | - Qingyan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| | - Bo Jin
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| | - Jin Liu
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| |
Collapse
|
43
|
Zhang R, Zhou W, Yu Z, Yang L, Liu G, Yu H, Zhou Q, Min Z, Zhang C, Wu Q, Hu XM, Yuan Q. miR-1247-3p mediates apoptosis of cerebral neurons by targeting caspase-2 in stroke. Brain Res 2019; 1714:18-26. [PMID: 30779911 DOI: 10.1016/j.brainres.2019.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 11/28/2022]
Abstract
Brain stroke is one of the leading causes of death worldwide. We explored a potential stroke-related role for a newly found microRNA, miR-1247-3p, and one of its target genes, caspase-2, predicted by TargetScanVert. In the present study, we found that miR-1247-3p was downregulated during ischemia/reperfusion (I/R) and that LV-miR-1247-3p overexpression attenuated brain impairment induced by I/R. Similar results were observed in neuro2a (N2a) cells treated with oxygen-glucose deprivation/reoxygenation (OGD/R). Caspase-2 was upregulated in the I/R and OGD/R model, while Z-VDVAD-FMK - the inhibitor of caspase-2-inhibited apoptosis of N2a cells induced by OGD/R. An miR-1247-3p mimic inhibited caspase-2 expression and attenuated apoptosis of N2a cells induced by OGD/R. Myocardin-related transcription factor-A (MRTF-A) overexpression upregulated miR-1247 and mature miR-1247-3p levels and attenuated apoptosis induced by OGD/R, whereas its anti-apoptotic function could be blocked by a miR-1247-3p inhibitor. Hence, we conclude that miR-1247-3p may protect cells during brain stroke. This study offers insights for the development of effective therapeutics for promoting the survival of cerebral neurons during brain I/R injury.
Collapse
Affiliation(s)
- Rong Zhang
- New Drug Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China; Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, USA
| | - Weipin Zhou
- New Drug Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhijun Yu
- New Drug Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Ling Yang
- New Drug Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Guangqi Liu
- New Drug Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Haotian Yu
- New Drug Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qianyi Zhou
- New Drug Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhenli Min
- New Drug Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Chunxiang Zhang
- New Drug Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China; Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, USA; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qingming Wu
- New Drug Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xia-Min Hu
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Qiong Yuan
- New Drug Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China; Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, USA; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
44
|
Dioscin Inhibits Virulence Factors of Candida albicans. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4651726. [PMID: 30598996 PMCID: PMC6287159 DOI: 10.1155/2018/4651726] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Candida albicans infections present a heavy burden upon public health, with only a few drugs available, while biofilms formed by C. albicans worsen this situation. Dioscin has antitumor, anti-inflammatory, and hepatoprotective effects, and this study was conducted to evaluate the effects of dioscin on the biofilm formation and development, as well as other virulence factors of C. albicans such as morphological transition, adhesion, and extracellular secreted phospholipase. Our results showed dioscin inhibits these virulence factors and has low cytotoxicity against mammalian cells. Considering protective effects of dioscin against damage on liver and kidney, dioscin may be used as a potential candidate for antifungal development.
Collapse
|
45
|
Tao X, Yin L, Xu L, Peng J. Dioscin: A diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections. Pharmacol Res 2018; 137:259-269. [PMID: 30315966 DOI: 10.1016/j.phrs.2018.09.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/11/2023]
Abstract
Currently, the numbers of patients with cancer, fibrosis, diabetes, chronic kidney disease, stroke and osteoporosis are increasing fast and fast. It's critical necessary to discovery lead compounds for new drug development. Dioscin, one active compound in some medicinal plants, has anti-inflammation, immunoregulation, hypolipidemic, anti-viral, anti-fungal and anti-allergic effects. In recent years, dioscin has reached more and more attention with its potent effects to treat liver, kidney, brain, stomach and intestine damages, and metabolic diseases including diabetes, osteoporosis, obesity, hyperuricemia as well as its anti-cancer activities through adjusting multiple targets and multiple signals. Therefore, dioscin is a promising multi-target candidate to treat various diseases. This review paper summarized the progress on pharmacological activities and mechanisms of dioscin, which may provide useful data for development and exploration of this natural product in the further.
Collapse
Affiliation(s)
- Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China.
| |
Collapse
|
46
|
Li Y, Liu C, Liao Y, Wang W, Hu B, Lu X, Cui J. Characterizing the landscape of peritoneal exosomal microRNAs in patients with ovarian cancer by high-throughput sequencing. Oncol Lett 2018; 17:539-547. [PMID: 30655799 DOI: 10.3892/ol.2018.9558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
In the present study, differentially expressed microRNAs (miRNAs) in peritoneal exosomes that were isolated from 10 patients with epithelial ovarian cancer (EOC) with metastasis in the abdominal cavity and 10 participants without cancer (NC) were identified. These differentially expressed miRNAs that were revealed by next-generation sequencing were categorized by Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of their target genes. Notably, two miRNAs that were associated with EOC-miR-149-3p and miR-222-5p-were identified. There were significant differences in expression of miR-149-3p and miR-222-5p between EOC and NC samples, and the effect of the expression level of the two miRNAs on the patient survival was identified using publicly available data from The Cancer Genome Atlas. There is an association between these two miRNAs and EOC, that was further verified by reverse transcription-quantitative polymerase chain reaction in peritoneal exosomes from 10 patients with EOC and NC participants. These results indicated that miR-149-3p and miR-222-5p might be novel biomarkers for evaluating the prognosis of patients with EOC and that these two miRNAs might have potential therapeutic values.
Collapse
Affiliation(s)
- Yuankun Li
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Cuihua Liu
- Department of Gynecology, Zhengzhou First People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Yumei Liao
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wuliang Wang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Bin Hu
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Xiaoqin Lu
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jinquan Cui
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
47
|
Dioscin ameliorates cardiac hypertrophy through inhibition of the MAPK and Akt/GSK3β/mTOR pathways. Life Sci 2018; 209:420-429. [DOI: 10.1016/j.lfs.2018.08.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 11/17/2022]
|
48
|
Zhi Y, Zhou H, Mubalake A, Chen Y, Zhang B, Zhang K, Chu X, Wang R. Regulation and functions of MicroRNA-149 in human cancers. Cell Prolif 2018; 51:e12465. [PMID: 29999552 DOI: 10.1111/cpr.12465] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that play critical roles in the regulatory mechanisms involving cell differentiation, proliferation, apoptosis and tumorigenesis. Recent research efforts have been conducted to apply these discoveries into clinical functions, including the early diagnosis and therapeutic outcome of patients with cancer. Previous studies have shown that microRNA-149 (miR-149) is dysregulated in various human cancers and exerts its effects on tumorigenesis and tumour progression. In this review, we summarized the potential roles of miR-149 dysregulation and its target genes during tumorigenesis and clinical treatment of human cancers.
Collapse
Affiliation(s)
- Yingru Zhi
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hao Zhou
- Nanjing Medical University, Nanjing, China
| | - Abudoureyimu Mubalake
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Ying Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Bei Zhang
- Nanjing Medical University, Nanjing, China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
49
|
Dioscin inhibits colon cancer cells' growth by reactive oxygen species-mediated mitochondrial dysfunction and p38 and JNK pathways. Anticancer Drugs 2018; 29:234-242. [PMID: 29389802 DOI: 10.1097/cad.0000000000000590] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dioscin is a natural steroid saponin derived from several plants that shows potent anticancer effects against a variety of cancer cells. Here, we investigated the antitumor effect of dioscin against human colon cancer cells and evaluated the molecular mechanism involved in this process. The cell cytotoxicity was studied by the MTT assay and BrdU incorporation. The proapoptotic mechanism of dioscin was characterized by flow cytometry analysis. A western blot and an immunofluorescence staining were used to investigate how dioscin induces apoptosis in vitro. In our study, dioscin could significantly inhibit the growth of colon cancer cells in a time-dependent and dose-dependent manner. Dioscin induces apoptosis and reactive oxygen species (ROS) generation, promoting the disruption of mitochondrial membrane potential, Bax translocation to the mitochondria, cytochrome C release to cytosol, activations of caspase-9/3, PARP cleavage, and subsequent apoptosis. Dioscin-induced apoptosis was accompanied by sustained phosphorylation of JNK, p38-MAPK. N-acetyl-L-cysteine, a scavenger of ROS, significantly reversed dioscin-induced cell death and activation of JNK and p38. Collectively, the data indicate that the induction of apoptosis by dioscin is mediated through ROS proteins, which are critical upstream signals for JNK/p38-MAPK activation.
Collapse
|
50
|
Zeng J, Yi X, Liu H, Yang Y, Duan Y, Chen H. Polymorphisms in four microRNAs and risk of oral squamous cell cancer: a meta-analysis. Oncotarget 2018; 9:8695-8705. [PMID: 29492228 PMCID: PMC5823596 DOI: 10.18632/oncotarget.24211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023] Open
Abstract
Objectives Single nucleotide polymorphisms in microRNAs (microRNA-196a2 rs11614913, microRNA-146a rs2910164, microRNA-149 rs2292832 and microRNA-499 rs3746444) have been inconsistently associated with risk for oral squamous cell cancer (OSCC). This meta-analysis aimed to assess the correlation between microRNA polymorphisms and susceptibility to OSCC. Materials and Methods Free words were used to search for the relevant studies without language limitations in electronic databases including PubMed, Embase, Web of Science and SCOPUS through June 15, 2017. Odds ratios (ORs) were calculated to investigate the effects of microRNA polymorphisms on oral cancer risk. Results Eleven studies were included. Analysis under the recessive model of microRNA-146a (CC vs GG+CG) showed significant differences (ORs = 0.874, P = 0.041). The G allele and the GG genotype of microRNA-499 were associated with OSCC risk (ORs >1, P < 0.05). MicroRNA-196a2 rs11614913 and microRNA-149 polymorphisms appeared to have no relationship with OSCC risk (P > 0.05). In the sensitivity analysis, there was a significant association between the TT genotype of microRNA-196a2 and OSCC risk (TT vs TC + CC, ORs < 1, P < 0.05). Conclusions There may be no significant relationship between microRNA-149 polymorphisms and OSCC risk, and the CC genotype of microRNA-146a may have protective effects against oral cancer. However, the G allele and the GG genotype of microRNA-499 may increase OSCC risk.
Collapse
Affiliation(s)
- Junfeng Zeng
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaowei Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu,610041, China
| | - Hao Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuchen Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|