1
|
Premeti K, Tsipa D, Nadalis AE, Papanikolaou MG, Syropoulou V, Karagkiozeli KD, Aggelis G, Iordanidou E, Labrakakis C, Pappas P, Keramidas AD, Antoniou K, Doulias PT, Kabanos TA, Leondaritis G. First generation vanadium-based PTEN inhibitors: Comparative study in vitro and in vivo and identification of a novel mechanism of action. Biochem Pharmacol 2025; 233:116756. [PMID: 39824468 DOI: 10.1016/j.bcp.2025.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/29/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
PTEN, a tumor suppressor phosphatase, regulates cellular functions by antagonizing the growth promoting PI3K/Akt/mTOR pathway through the dephosphorylation of the second messenger PIP3. Many preclinical cellular and animal studies have used PTEN inhibitors to highlight specific disease contexts where acute activation of PI3K/Akt/mTOR pathway might offer therapeutic advantages. In the present study we have re-evaluated first-generation PTEN inhibitors, including established bisperoxo-vanadium(V) complexes (bpVs). In vitro, all compounds tested inhibited PTEN with IC50 values between 0.2-0.8 μM, although their activity diminished under reducing conditions. bpV(phen) and bpV(HΟpic) significantly increased pSer473Akt levels in PTEN wild-type cells while bpV(phen) induced phosphorylation in PTEN null cells upon re-expression of functional PTEN. bpV(ΗΟpic) was less specific since it also triggered PTEN-independent Erk1/2 phosphorylation. In vivo, bpV(phen) administration in Wistar rats enhanced pS6 levels in kidney and liver tissues, but not in several CNS tissues, and led to reduced locomotion and exploratory behaviour in the open field test. The consensus mechanism of action of first generation PTEN inhibitors appears to be oxidative inhibition, however bpV(phen) does not induce oxidation of cellular endogenous PTEN. Instead, our findings suggest that the inhibition of PTEN by bpV(phen) in cells and in vivo may proceed through a mechanism involving non-specific S-nitrosylation of PTEN. Our study highlights the complexity of PTEN inhibition by first-generation compounds and their limitations, such as low specificity, adverse effects and non-specific mechanisms of action, and emphasizes the need for developing more selective and potent PTEN inhibitors with improved efficacy and well-defined mechanisms of actions.
Collapse
Affiliation(s)
- Kyriaki Premeti
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitra Tsipa
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Antonios E Nadalis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Michael G Papanikolaou
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Department of Chemistry, University of Cyprus, Nicosia 2109, Cyprus
| | - Vasiliki Syropoulou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantina-Danai Karagkiozeli
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - George Aggelis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eleni Iordanidou
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Charalampos Labrakakis
- Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
| | - Periklis Pappas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | | | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
| | - Paschalis-Thomas Doulias
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
| | | | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
2
|
Ren J, Gao J, Yao X, Wang X, Kong X, Lin T, Wang H, Ma W, Glebov OO, Wan Q. Bilateral transcranial direct-current stimulation confers neuroprotection through suppression of PKM2 after mouse cerebral ischemia injury. Brain Res 2025; 1849:149353. [PMID: 39603317 DOI: 10.1016/j.brainres.2024.149353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND In its tetrameric form, pyruvate kinase M2 isoform (PKM2) catalyzes the last step of glycolysis and plays a key role in the metabolic reprogramming via regulating the signaling of pentose phosphate pathway (PPP). But the role of PKM2 in cerebral ischemia-reperfusion (I/R) injury remains unknown. METHODS Mice model of middle cerebral artery occlusion (MCAO) and model of oxygen-glucose deprivation (OGD) injury in cultured neurons were established. PKM2 activator or inhibitor were used to test the effects of PKM2 in wild-type and PKM2 (-/-) mice after I/R injury. Biochemical and molecular approach were used to detect the level of PKM2 tetramers and PPP metabolites. RESULTS We showed for the first time that ischemia-induced increase of PKM2 activity promoted neuronal death via the suppression of PPP-dependent antioxidant capacity. To identify therapeutic approach that suppresses ischemia-induced increase of PKM2 activity, we tested the effect of bilateral transcranial direct-current stimulation (BtDCS), a newly established BtDCS approach by us, on PKM2 activity after mouse I/R. Our data demonstrated that BtDCS inhibited PKM2 activity in the ischemic neurons. BtDCS also reduced the cerebral infarct volume and the neurological deficits in stroke mice. We found that BtDCS-induced neuroprotection was mediated through the suppression of PKM2 activity after I/R. CONCLUSIONS Together, this study provided novel evidence that supported PKM2 as a crucial regulator of neuronal metabolism after cerebral I/R injury, and revealed the molecular mechanism by which BtDCS protects against mouse cerebral I/R injury through regulating PKM2-mediated metabolic reprogramming.
Collapse
Affiliation(s)
- Jinyang Ren
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Xujin Yao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Xiyuran Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Tao Lin
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Wenlong Ma
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Oleg O Glebov
- Department of Old Age Psychiatry, The Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, United Kingdom.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, Qingdao University, 308 Ningxia Street, Qingdao 266071, China; Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, 7 Fenglong Road, Qingdao High-tech Industrial Development District, Qingdao, China.
| |
Collapse
|
3
|
Gonzalez-Cano SI, Peña-Rosas U, Muñoz-Arenas G, Torres-Cinfuentes DM, Treviño S, Moran-Raya C, Flores G, Guevara J, Diaz A. Neuroprotective Effect of Curcumin-Metavanadate in the Hippocampus of Aged Rats. Synapse 2025; 79:e70008. [PMID: 39748146 DOI: 10.1002/syn.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
Brain aging is a multifactorial process that includes a reduction in the biological and metabolic activity of individuals. Oxidative stress and inflammatory processes are characteristic of brain aging. Given the current problems, the need arises to implement new therapeutic approaches. Polyoxidovanadates (POV), as well as curcumin, have stood out for their participation in a variety of biological activities. This work aimed to evaluate the coupling of metavanadate and curcumin (Cuma-MV) on learning, memory, redox balance, neuroinflammation, and cell death in the hippocampal region (CA1 and CA3) and dentate gyrus (DG) of aged rats. Rats 18 months old were administered a daily dose of curcumin (Cuma), sodium metavanadate (MV), or Cuma-MV for two months. The results demonstrated that administration of Cuma-MV for 60 days in aged rats improved short- and long-term recognition memory, decreased reactive oxygen species, and substantially improved lipoperoxidation in the hippocampus. Furthermore, the activity of superoxide dismutase and catalase increased in animals treated with Cuma-MV. It is important to highlight that the treatment with Cuma-MV exhibited a significantly greater effect than the treatments with MV or Cuma in all the parameters evaluated. Finally, we conclude that Cuma-MV represents a potential therapeutic option in the prevention and treatment of cognitive decline associated with aging.
Collapse
Affiliation(s)
| | - Ulises Peña-Rosas
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Guadalupe Muñoz-Arenas
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | | | - Samuel Treviño
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Carolina Moran-Raya
- Institute of Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
4
|
Zheng Y, Gu H, Kong Y. Targeting PTEN in ischemic stroke: From molecular mechanisms to therapeutic potentials. Exp Neurol 2025; 383:115023. [PMID: 39461709 DOI: 10.1016/j.expneurol.2024.115023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Ischemic stroke remains a leading cause of mortality and disability worldwide, driven by complex pathophysiological mechanisms, including excitotoxicity, oxidative stress, apoptosis, and neuroinflammation. PTEN (Phosphatase and tensin homolog deleted on chromosome 10) plays a crucial role in these processes, influencing key signaling pathways such as PI3K/Akt and mTOR. This review aims to explore PTEN's multifaceted functions in ischemic stroke, examining its interactions with non-coding RNAs, involvement in mitophagy and immune suppression, and overall impact on cellular homeostasis. We will investigate various therapeutic strategies targeting PTEN, including synthetic drugs, natural products, and exosome-based therapies enriched with specific miRNAs. Additionally, we will assess the potential of non-pharmaceutical interventions such as electroacupuncture, exercise, transcranial direct current stimulation (tDCS), and therapeutic hypothermia in modulating PTEN activity to enhance cererbroprotection and functional recovery. By elucidating these aspects, this review aims to inspire and motivate the audience in their research and clinical practice, highlighting PTEN as a promising therapeutic target and paving the way for developing effective treatments for ischemic stroke.
Collapse
Affiliation(s)
- Yane Zheng
- Department of Neurology, Shanghai Jiangong Hospital, Shanghai 200083, China.
| | - Huiying Gu
- Department of Internal Medicine, Tangqiao Community Health Service Center, Shanghai 200127, China
| | - Yuming Kong
- Department of Neurology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200438, China
| |
Collapse
|
5
|
Xie XD, Dong SS, Liu RJ, Shi LL, Zhu T. Mechanism of Efferocytosis in Determining Ischaemic Stroke Resolution-Diving into Microglia/Macrophage Functions and Therapeutic Modality. Mol Neurobiol 2024; 61:7583-7602. [PMID: 38409642 DOI: 10.1007/s12035-024-04060-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
After ischaemic cerebral vascular injury, efferocytosis-a process known as the efficient clearance of apoptotic cells (ACs) by various phagocytes in both physiological and pathological states-is crucial for maintaining central nervous system (CNS) homeostasis and regaining prognosis. The mechanisms of efferocytosis in ischaemic stroke and its influence on preventing inflammation progression from secondary injury were still not fully understood, despite the fact that the fundamental process of efferocytosis has been described in a series of phases, including AC recognition, phagocyte engulfment, and subsequent degradation. The genetic reprogramming of macrophages and brain-resident microglia after an ischaemic stroke has been equated by some researchers to that of the peripheral blood and brain. Based on previous studies, some molecules, such as signal transducer and activator of transcription 6 (STAT6), peroxisome proliferator-activated receptor γ (PPARG), CD300A, and sigma non-opioid intracellular receptor 1 (SIGMAR1), were discovered to be largely associated with aspects of apoptotic cell elimination and accompanying neuroinflammation, such as inflammatory cytokine release, phenotype transformation, and suppressing of antigen presentation. Exacerbated stroke outcomes are brought on by defective efferocytosis and improper modulation of pertinent signalling pathways in blood-borne macrophages and brain microglia, which also results in subsequent tissue inflammatory damage. This review focuses on recent researches which contain a number of recently discovered mechanisms, such as studies on the relationship between benign efferocytosis and the regulation of inflammation in ischaemic stroke, the roles of some risk factors in disease progression, and current immune approaches that aim to promote efferocytosis to treat some autoimmune diseases. Understanding these pathways provides insight into novel pathophysiological processes and fresh characteristics, which can be used to build cerebral ischaemia targeting techniques.
Collapse
Affiliation(s)
- Xiao-Di Xie
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
| | - Shan-Shan Dong
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ru-Juan Liu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu-Liu Shi
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Zhu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
6
|
Kong X, Lyu W, Lin X, Feng H, Xu L, Li C, Sun X, Lin C, Li J, Wei P. Transcranial direct current stimulation enhances the protective effect of isoflurane preconditioning on cerebral ischemia/reperfusion injury: A new mechanism associated with the nuclear protein Akirin2. CNS Neurosci Ther 2024; 30:e70033. [PMID: 39267282 PMCID: PMC11393012 DOI: 10.1111/cns.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
AIMS Ischemic stroke is a major cause of disability and mortality worldwide. Transcranial direct current stimulation (tDCS) and isoflurane (ISO) preconditioning exhibit neuroprotective properties. However, it remains unclear whether tDCS enhances the protective effect of ISO preconditioning on ischemic stroke, and the underlying mechanisms are yet to be clarified. METHOD A model of middle cerebral artery occlusion (MCAO), a rat ischemia-reperfusion (I/R) injury model, and an in vitro oxygen-glucose deprivation/re-oxygenation (O/R) model of ischemic injury were developed. ISO preconditioning and tDCS were administered daily for 7 days before MCAO modeling. Triphenyltetrazolium chloride staining, modified neurological severity score, and hanging-wire test were conducted to assess infarct volume and neurological outcomes. Untargeted metabolomic experiments, adeno-associated virus, lentiviral vectors, and small interfering RNA techniques were used to explore the underlying mechanisms. RESULTS tDCS/DCS enhanced the protective effects of ISO pretreatment on I/R injury-induced brain damage. This was evidenced by reduced infarct volume and improved neurological outcomes in rats with MCAO, as well as decreased cortical neuronal death after O/R injury. Untargeted metabolomic experiments identified oxidative phosphorylation (OXPHOS) as a critical pathological process for ISO-mediated neuroprotection from I/R injury. The combination of tDCS/DCS with ISO preconditioning significantly inhibited I/R injury-induced OXPHOS. Mechanistically, Akirin2, a small nuclear protein that regulates cell proliferation and differentiation, was found to decrease in the cortex of rats with MCAO and in cortical primary neurons subjected to O/R injury. Akirin2 functions upstream of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). tDCS/DCS was able to further upregulate Akirin2 levels and activate the Akirin2/PTEN signaling pathway in vivo and in vitro, compared with ISO pretreatment alone, thereby contributing to the improvement of cerebral I/R injury. CONCLUSION tDCS treatment enhances the neuroprotective effects of ISO preconditioning on ischemic stroke by inhibiting oxidative stress and activating Akirin2-PTEN signaling pathway, highlighting potential of combination therapy in ischemic stroke.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaojie Lin
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hao Feng
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chengwei Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xinyi Sun
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chunlong Lin
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Cheng J, Yu H, Zhang ZF, Jiang HX, Wu P, Wang ZG, Chen ZB, Wu LQ. Mxene-bpV plays a neuroprotective role in cerebral ischemia-reperfusion injury by activating the Akt and promoting the M2 microglial polarization signaling pathways. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:42. [PMID: 39073469 PMCID: PMC11286715 DOI: 10.1007/s10856-024-06811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/29/2024] [Indexed: 07/30/2024]
Abstract
Studies have shown that the inhibition of phosphatase and tensin homolog deleted on chromosome 10 (PTEN)was neuroprotective against ischemia/reperfusion(I/R) injury. Bisperoxovanadium (bpV), a derivative of vanadate, is a well-established inhibitor of PTEN. However, its function islimited due to its general inadequacy in penetrating cell membranes. Mxene(Ti3C2Tx) is a novel two-dimensional lamellar nanomaterial with an excellent ability to penetrate the cell membrane. Yet, the effects of this nanomaterial on nervous system diseases have yet to be scrutinized. Here, Mxene(Ti3C2Tx) was used for the first time to carry bpV(HOpic), creating a new nanocomposite Mxene-bpV that was probed in a cerebral I/R injury model. The findings showed that this synthetic Mxene-bpV was adequately stable and can cross the cell membraneeasily. We observed that Mxene-bpV treatment significantly increased the survival rate of oxygen glucose deprivation/reperfusion(OGD/R)--insulted neurons, reduced infarct sizes and promoted the recovery of brain function after mice cerebral I/R injury. Crucially, Mxene-bpV treatment was more therapeutically efficient than bpV(HOpic) treatment alone over the same period. Mechanistically, Mxene-bpV inhibited the enzyme activity of PTEN in vitro and in vivo. It also promoted the expression of phospho-Akt (Ser473) by repressing PTEN and then activated the Akt pathway to boost cell survival. Additionally, in PTEN transgenic mice, Mxene-bpV suppressed I/R-induced inflammatory response by promoting M2 microglial polarization through PTEN inhibition. Collectively, the nanosynthetic Mxene-bpV inhibited PTEN' enzymatic activity by activating Akt pathway and promoting M2 microglial polarization, and finally exerted neuroprotection against cerebral I/R injury.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China
| | - Han Yu
- Department of Pathology, Xiangyang No.1 People's Hospital, Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Hubei University of Medicine, Xiangyang, 441000, China
| | - Zhi-Feng Zhang
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Hong-Xiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China
| | - Ping Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhou-Guang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Zhi-Biao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China.
| | - Li-Quan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China.
| |
Collapse
|
8
|
Ratto A, Honek JF. Oxocarbon Acids and their Derivatives in Biological and Medicinal Chemistry. Curr Med Chem 2024; 31:1172-1213. [PMID: 36915986 DOI: 10.2174/0929867330666230313141452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 03/15/2023]
Abstract
The biological and medicinal chemistry of the oxocarbon acids 2,3- dihydroxycycloprop-2-en-1-one (deltic acid), 3,4-dihydroxycyclobut-3-ene-1,2-dione (squaric acid), 4,5-dihydroxy-4-cyclopentene-1,2,3-trione (croconic acid), 5,6-dihydroxycyclohex- 5-ene-1,2,3,4-tetrone (rhodizonic acid) and their derivatives is reviewed and their key chemical properties and reactions are discussed. Applications of these compounds as potential bioisosteres in biological and medicinal chemistry are examined. Reviewed areas include cell imaging, bioconjugation reactions, antiviral, antibacterial, anticancer, enzyme inhibition, and receptor pharmacology.
Collapse
Affiliation(s)
- Amanda Ratto
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
9
|
Yao X, Kong X, Ren J, Cui Y, Chen S, Cheng J, Gao J, Sun J, Xu X, Hu W, Li H, Che F, Wan Q. Transcranial direct-current stimulation confers neuroprotection by regulating isoleucine-dependent signalling after rat cerebral ischemia-reperfusion injury. Eur J Neurosci 2023; 58:3330-3346. [PMID: 37452630 DOI: 10.1111/ejn.16091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Isoleucine is a branched chain amino acid. The role of isoleucine in cerebral ischemia-reperfusion injury remains unclear. Here, we show that the concentration of isoleucine is decreased in cerebrospinal fluid in a rat model of cerebral ischemia-reperfusion injury, the rat middle cerebral artery occlusion (MCAO). To our surprise, the level of intraneuronal isoleucine is increased in an in vitro model of cerebral ischemia injury, the oxygen-glucose deprivation (OGD). We found that the increased activity of LAT1, an L-type amino acid transporter 1, leads to the elevation of intraneuronal isoleucine after OGD insult. Reducing the level of intraneuronal isoleucine promotes cell survival after cerebral ischemia-reperfusion injury, but supplementing isoleucine aggravates the neuronal damage. To understand how isoleucine promotes ischemia-induced neuronal death, we reveal that isoleucine acts upstream to reduce the expression of CBFB (core binding factor β, a transcript factor involved in cell development and growth) and that the phosphatase PTEN acts downstream of CBFB to mediate isoleucine-induced neuronal damage after OGD insult. Interestingly, we demonstrate that direct-current stimulation reduces the level of intraneuronal isoleucine in cortical cultures subjected to OGD and that transcranial direct-current stimulation (tDCS) decreases the cerebral infarct volume of MCAO rat through reducing LAT1-depencent increase of intraneuronal isoleucine. Together, these results lead us to conclude that LAT1 over activation-dependent isoleucine-CBFB-PTEN signal transduction pathway may mediate ischemic neuronal injury and that tDCS exerts its neuroprotective effect by suppressing LAT1 over activation-dependent signalling after cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xujin Yao
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Xiangyi Kong
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Jinyang Ren
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Songfeng Chen
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Jing Cheng
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Jingchen Gao
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Jiangdong Sun
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Xiangyu Xu
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjie Hu
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Huanting Li
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, Qingdao University, Linyi, Shandong, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
- Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, Qingdao, China
| |
Collapse
|
10
|
Lei R, Wang S, Liu A, Cheng J, Zhang Z, Ren J, Yao X, Kong X, Ma W, Che F, Chen J, Wan Q. Bilateral transcranial direct-current stimulation promotes migration of subventricular zone-derived neuroblasts toward ischemic brain. FASEB Bioadv 2023; 5:277-286. [PMID: 37415929 PMCID: PMC10320846 DOI: 10.1096/fba.2023-00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 07/08/2023] Open
Abstract
Ischemic insult stimulates proliferation of neural stem cells (NSCs) in the subventricular zone (SVZ) after stroke. However, only a fraction of NSC-derived neuroblasts from SVZ migrate toward poststroke brain region. We have previously reported that direct-current stimulation guides NSC migration toward the cathode in vitro. Accordingly, we set up a new method of transcranial direct-current stimulation (tDCS), in which the cathodal electrode is placed on the ischemic hemisphere and anodal electrode on the contralateral hemisphere of rats subjected to ischemia-reperfusion injury. We show that the application of this bilateral tDCS (BtDCS) promotes the migration of NSC-derived neuroblasts from SVZ toward the cathode direction into poststroke striatum. Reversing the position of the electrodes blocks the effect of BtDCS on the migration of neuroblasts from SVZ. BtDCS protects against neuronal death and improves the functional recovery of stroke animals. Thus, the migration of NSC-derived neuroblasts from SVZ toward poststroke brain region contributes to the effect of BtDCS against ischemia-induced neuronal death, supporting a potential development of noninvasive BtDCS as an endogenous neurogenesis-based stroke therapy.
Collapse
Affiliation(s)
- Ruixue Lei
- Department of Pathology, Anyang Tumour HospitalThe Affiliated Anyang Tumor Hospital of Henan University of Science and TechnologyAnyangHenanChina
- Department of Physiology, School of MedicineWuhan UniversityWuhanChina
| | - Shu Wang
- Department of Physiology, School of MedicineWuhan UniversityWuhanChina
| | - Anchun Liu
- Department of Physiology, School of MedicineWuhan UniversityWuhanChina
| | - Jing Cheng
- Department of Physiology, School of MedicineWuhan UniversityWuhanChina
| | - Zhifeng Zhang
- Department of Physiology, School of MedicineWuhan UniversityWuhanChina
| | - Jinyang Ren
- Institute of Neuroregeneration & Neurorehabilitation, Department of NeurosurgeryQingdao UniversityQingdaoChina
| | - Xujin Yao
- Institute of Neuroregeneration & Neurorehabilitation, Department of NeurosurgeryQingdao UniversityQingdaoChina
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of NeurosurgeryQingdao UniversityQingdaoChina
| | - Wenlong Ma
- Institute of Neuroregeneration & Neurorehabilitation, Department of NeurosurgeryQingdao UniversityQingdaoChina
| | - Fengyuan Che
- Central Laboratory, Department of NeurologyLinyi People's Hospital, Qingdao UniversityLinyiShandongChina
| | - Juan Chen
- Department of Neurology, the Central Hospital of Wuhantongji medical collof Huazhong University of Science & TechnologyWuhanChina
| | - Qi Wan
- Department of Physiology, School of MedicineWuhan UniversityWuhanChina
- Institute of Neuroregeneration & Neurorehabilitation, Department of NeurosurgeryQingdao UniversityQingdaoChina
- Qingdao Gui‐Hong Intelligent Medical Technology Co. LtdQingdaoChina
| |
Collapse
|
11
|
Femi-Akinlosotu OM, Olopade FE, Obiako J, Olopade JO, Shokunbi MT. Vanadium improves memory and spatial learning and protects the pyramidal cells of the hippocampus in juvenile hydrocephalic mice. Front Neurol 2023; 14:1116727. [PMID: 36846142 PMCID: PMC9947794 DOI: 10.3389/fneur.2023.1116727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Background Hydrocephalus is a neurological condition known to cause learning and memory disabilities due to its damaging effect on the hippocampal neurons, especially pyramidal neurons. Vanadium at low doses has been observed to improve learning and memory abilities in neurological disorders but it is uncertain whether such protection will be provided in hydrocephalus. We investigated the morphology of hippocampal pyramidal neurons and neurobehavior in vanadium-treated and control juvenile hydrocephalic mice. Methods Hydrocephalus was induced by intra-cisternal injection of sterile-kaolin into juvenile mice which were then allocated into 4 groups of 10 pups each, with one group serving as an untreated hydrocephalic control while others were treated with 0.15, 0.3 and 3 mg/kg i.p of vanadium compound respectively, starting 7 days post-induction for 28 days. Non-hydrocephalic sham controls (n = 10) were sham operated without any treatment. Mice were weighed before dosing and sacrifice. Y-maze, Morris Water Maze and Novel Object Recognition tests were carried out before the sacrifice, the brains harvested, and processed for Cresyl Violet and immunohistochemistry for neurons (NeuN) and astrocytes (GFAP). The pyramidal neurons of the CA1 and CA3 regions of the hippocampus were assessed qualitatively and quantitatively. Data were analyzed using GraphPad prism 8. Results Escape latencies of vanadium-treated groups were significantly shorter (45.30 ± 26.30 s, 46.50 ± 26.35 s, 42.99 ± 18.44 s) than untreated group (62.06 ± 24.02 s) suggesting improvements in learning abilities. Time spent in the correct quadrant was significantly shorter in the untreated group (21.19 ± 4.15 s) compared to control (34.15 ± 9.44 s) and 3 mg/kg vanadium-treated group (34.35 ± 9.74 s). Recognition index and mean % alternation were lowest in untreated group (p = 0.0431, p=0.0158) suggesting memory impairments, with insignificant improvements in vanadium-treated groups. NeuN immuno-stained CA1 revealed loss of apical dendrites of the pyramidal cells in untreated hydrocephalus group relative to control and a gradual reversal attempt in the vanadium-treated groups. Astrocytic activation (GFAP stain) in the untreated hydrocephalus group were attenuated in the vanadium-treated groups under the GFAP stain. Pyknotic index in CA1 pyramidal layer of untreated (18.82 ± 2.59) and 0.15mg/kg vanadium-treated groups (18.14 ± 5.92) were significantly higher than control (11.11 ± 0.93; p = 0.0205, p = 0.0373) while there was no significant difference in CA3 pyknotic index across all groups. Conclusion Our results suggest that vanadium has a dose-dependent protective effect on the pyramidal cells of the hippocampus and on memory and spatial learning functions in juvenile hydrocephalic mice.
Collapse
Affiliation(s)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Jane Obiako
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Matthew Temitayo Shokunbi
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria,Division of Neurological Surgery, Department of Surgery, University of Ibadan, Ibadan, Nigeria,*Correspondence: Matthew Temitayo Shokunbi ✉
| |
Collapse
|
12
|
Kong X, Hu W, Cui Y, Gao J, Yao X, Ren J, Lin T, Sun J, Gao Y, Li X, Wang H, Li H, Che F, Wan Q. Transcranial Direct-Current Stimulation Regulates MCT1-PPA-PTEN-LONP1 Signaling to Confer Neuroprotection After Rat Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2022; 59:7423-7438. [PMID: 36190692 PMCID: PMC9616768 DOI: 10.1007/s12035-022-03051-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Propionic acid (PPA) is a critical metabolite involved in microbial fermentation, which functions to reduce fat production, inhibit inflammation, and reduce serum cholesterol levels. The role of PPA in the context of cerebral ischemia-reperfusion (I/R) injury has yet to be clarified. Increasing evidence indicate that transcranial direct-current stimulation (tDCS) is a safe approach that confers neuroprotection in cerebral ischemia injury. Here, we show that the levels of PPA were reduced in the ischemic brain following a rat cerebral I/R injury and in the cultured rat cortical neurons after oxygen-glucose deprivation (OGD), an in vitro model of ischemic injury. We found that the decreased levels of transporter protein monocarboxylate transporter-1 (MCT1) were responsible for the OGD-induced reduction of PPA. Supplementing PPA reduced ischemia-induced neuronal death after I/R. Moreover, our results revealed that the neuroprotective effect of PPA is mediated through downregulation of phosphatase PTEN and subsequent upregulation of Lon protease 1 (LONP1). We demonstrated that direct-current stimulation (DCS) increased MCT1 expression and PPA level in OGD-insulted neurons, while tDCS decreased the brain infarct volume in the MCAO rats via increasing the levels of MCT1 expression and PPA. This study supports a potential application of tDCS in ischemic stroke.
Collapse
Affiliation(s)
- Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
- Department of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Yu Cui
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Xujin Yao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Jinyang Ren
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Tao Lin
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Jiangdong Sun
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Yunyi Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Xiaohua Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Huanting Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, Qingdao University, 27 East Jiefang Road, Linyi, Shandong, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China.
- Qingdao High-tech Industrial Development District, Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, 7 Fenglong Road, Qingdao, China.
| |
Collapse
|
13
|
Chen J, Zhuang Y, Zhang Y, Liao H, Liu R, Cheng J, Zhang Z, Sun J, Gao J, Wang X, Chen S, Zhang L, Che F, Wan Q. A synthetic BBB-permeable tripeptide GCF confers neuroprotection by increasing glycine in the ischemic brain. Front Pharmacol 2022; 13:950376. [PMID: 36046828 PMCID: PMC9420865 DOI: 10.3389/fphar.2022.950376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Background: We and others have previously demonstrated that glycine is neuroprotective in cerebral ischemia-reperfusion injury. But glycine has low permeability to the blood–brain barrier (BBB). To deliver glycine into the ischemic brain to confer neuroprotection, we designed a novel glycine-containing and BBB-permeable tripeptide, the H-glycine-cysteine-phenylalanine-OH (GCF). Methods: For the synthesis of GCF, phenylalanine was included to increase the BBB permeability of the tripeptide. Cysteine was conjugated with glycine to enable the release of glycine from GCF. With the use of immunofluorescence labeling and HPLC assays, we measured the distribution and level of GCF. We used TTC labeling, LDH release, and MTT assays to evaluate the neuroprotective effect of GCF. Results: Following intravenous injection in a rat model of cerebral ischemia-reperfusion injury, GCF was intensively distributed in the ischemic neurons. Intravenous injection of GCF, but not the non-cleavable acetyl-GCF, resulted in the elevation of glycine in the ischemic brain. GCF but not acetyl-GC conferred neuroprotection in ischemic stroke animals. Conclusion: GCF protects against cerebral ischemia-reperfusion injury in the rat. In contrast to peptide drugs that exert therapeutic effect by interfering with signaling interaction, GCF acts as a BBB shuttle and prodrug to deliver glycine to confer neuroprotection, representing a novel therapeutic strategy for acute ischemic stroke.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Yang Zhuang
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Ya Zhang
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Huabao Liao
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Rui Liu
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Jing Cheng
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Zhifeng Zhang
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Jiangdong Sun
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Jingchen Gao
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Xiyuran Wang
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Shujun Chen
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Liang Zhang
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People’s Hospital, Qingdao University, Linyi, China
- *Correspondence: Qi Wan, ; Fengyuan Che,
| | - Qi Wan
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
- Qingdao Gui-Hong Intelligent Medical Technology Co., Ltd., Qingdao, China
- *Correspondence: Qi Wan, ; Fengyuan Che,
| |
Collapse
|
14
|
Bu Y, Wu H, Deng R, Wang Y. Geniposide restricts angiogenesis in experimentary arthritis via inhibiting Dnmt1-mediated PTEN hypermethylation. Int Immunopharmacol 2022; 111:109087. [PMID: 35908504 DOI: 10.1016/j.intimp.2022.109087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022]
Abstract
Neovascularization in rheumatoid arthritis (RA) is a key bridge between malignant proliferative synovial tissue and pannus. In view of previous studies on the efficacy of Geniposide (GE) in experimentary arthritis, the purpose of this study was to investigate the possible mechanism of GE inhibiting angiogenesis by regulating the gene of phosphate and tension homology deleted on chromosome ten (PTEN). In this study, human umbilical vein endothelial cells (HUVEC) and adjuvant arthritis (AA) rat models were performed to research in vitro and in vivo. The results showed that GE treatment significantly reduced synovitis and angiogenesis in AA rats, which may be associated with the increased expression of PTEN with GE treatment. Meanwhile, the hypermethylation of PTEN accompanied by the over-expression of DNA methyltransferases (Dnmts) was demonstrated in TNF-α-induced HUVEC and AA rats. Knockdown of Dnmt1 by Dnmt1- siRNA significantly inhibited the tube formation of HUVEC in vitro. GE significantly restricted the angiogenesis of HUVEC by inhibiting DNA methylation, which was attributed to the down-regulation of Dnmt1 rather than Dnmt3a and Dnmt3b. The anti-angiogenesis effect of GE was further verified in AA model by the inhibition of Dnmt1. These results indicate that GE exhibited anti-angiogenesis effects in experimentary arthritis by inhibiting Dnmt1-mediated PTEN gene hypermethylation, which may brings new insights for the prevention and research of RA.
Collapse
Affiliation(s)
- Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
15
|
Liu X, Cui Y, Li J, Guan C, Cai S, Ding J, Shen J, Guan Y. Phosphatase and Tensin Homology Deleted on Chromosome 10 Inhibitors Promote Neural Stem Cell Proliferation and Differentiation. Front Pharmacol 2022; 13:907695. [PMID: 35774615 PMCID: PMC9237411 DOI: 10.3389/fphar.2022.907695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Phosphatase and tensin homology deleted on chromosome 10 (PTEN) is a tumor suppressor gene. Its encoded protein has phosphatase and lipid phosphatase activities, which regulate the growth, differentiation, migration, and apoptosis of cells. The catalytic activity of PTEN is crucial for controlling cell growth under physiological and pathological conditions. It not only affects the survival and proliferation of tumor cells, but also inhibits a variety of cell regeneration processes. The use of PTEN inhibitors is being explored as a potentially beneficial therapeutic intervention for the repair of injuries to the central nervous system. PTEN influences the proliferation and differentiation of NSCs by regulating the expression and phosphorylation of downstream molecular protein kinase B (Akt) and the mammalian target of rapamycin (mTOR). However, the role of PTEN inhibitors in the Akt/mTOR signaling pathway in NSC proliferation and differentiation is unclear. Dipotassium bisperoxo (picolinoto) oxovanadate (V) [bpv(pic)] is a biologically active vanadium compound that blocks PTEN dephosphorylation and suppresses its activity, and has been used as a PTEN lipid phosphatase inhibitor. Here, bpv(pic) intervention was found to significantly increase the number of rat NSCs, as determined by bromodeoxyuridine staining and the cell counting kit-8, and to increase the percentage of neurons undergoing differentiation, as shown by immunofluorescence staining. Bpv(pic) intervention also significantly increased PTEN and mTOR expression, as shown by real-time PCR analysis and western blotting. In conclusion, PTEN inhibitor bpv(pic) promotes the proliferation and differentiation of NSCs into neurons.
Collapse
Affiliation(s)
- Xiaojiang Liu
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Yiqiu Cui
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Jun Li
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Cheng Guan
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Shu Cai
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Jinrong Ding
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yixiang Guan
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
- *Correspondence: Yixiang Guan,
| |
Collapse
|
16
|
Overview of Research on Vanadium-Quercetin Complexes with a Historical Outline. Antioxidants (Basel) 2022; 11:antiox11040790. [PMID: 35453475 PMCID: PMC9029821 DOI: 10.3390/antiox11040790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/27/2023] Open
Abstract
The present review was conducted to gather the available literature on some issues related to vanadium-quercetin (V-QUE) complexes. It was aimed at collecting data from in vitro and in vivo studies on the biological activity, behavior, antioxidant properties, and radical scavenging power of V-QUE complexes. The analysis of relevant findings allowed summarizing the evidence for the antidiabetic and anticarcinogenic potential of V-QUE complexes and suggested that they could serve as pharmacological agents for diabetes and cancer. These data together with other well-documented biological properties of V and QUE (common for both), which are briefly summarized in this review as well, may lay the groundwork for new therapeutic treatments and further research on a novel class of pharmaceutical molecules with better therapeutic performance. Simultaneously, the results compiled in this report point to the need for further studies on complexation of V with flavonoids to gain further insight into their behavior, identify species responsible for their physiological activity, and fully understand their mechanism of action.
Collapse
|
17
|
Nieuwenhuis B, Eva R. Promoting axon regeneration in the central nervous system by increasing PI3-kinase signaling. Neural Regen Res 2021; 17:1172-1182. [PMID: 34782551 PMCID: PMC8643051 DOI: 10.4103/1673-5374.327324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system. Axons in the central nervous system fail to regenerate, meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences. In 2008, genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve. PTEN is a phosphatase that opposes the actions of PI3-kinase, a family of enzymes that function to generate the membrane phospholipid PIP3 from PIP2 (phosphatidylinositol (3,4,5)-trisphosphate from phosphatidylinositol (4,5)-bisphosphate). Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase, and was initially demonstrated to promote axon regeneration by signaling through mTOR. More recently, additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability. This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3, and considers them in relation to both developmental and regenerative axon growth. We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability, and describe how these are affected by signaling through PI3-kinase. We highlight the recent finding of a developmental decline in the generation of PIP3 as a key reason for regenerative failure, and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system. Finally, we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Center for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Richard Eva
- John van Geest Center for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Diaz A, Muñoz-Arenas G, Venegas B, Vázquez-Roque R, Flores G, Guevara J, Gonzalez-Vergara E, Treviño S. Metforminium Decavanadate (MetfDeca) Treatment Ameliorates Hippocampal Neurodegeneration and Recognition Memory in a Metabolic Syndrome Model. Neurochem Res 2021; 46:1151-1165. [PMID: 33559829 DOI: 10.1007/s11064-021-03250-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/02/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
The consumption of foods rich in carbohydrates, saturated fat, and sodium, accompanied by a sedentary routine, are factors that contribute to the progress of metabolic syndrome (MS). In this way, they cause the accumulation of body fat, hypertension, dyslipidemia, and hyperglycemia. Additionally, MS has been shown to cause oxidative stress, inflammation, and death of neurons in the hippocampus. Consequently, spatial and recognition memory is affected. It has recently been proposed that metformin decavanadate (MetfDeca) exerts insulin mimetic effects that enhance metabolism in MS animals; however, what effects it can cause on the hippocampal neurons of rats with MS are unknown. The objective of the work was to evaluate the effect of MetfDeca on hippocampal neurodegeneration and recognition memory in rats with MS. Administration of MetfDeca for 60 days in MS rats improved object recognition memory (NORt). In addition, MetfDeca reduced markers of oxidative stress and hippocampal neuroinflammation. Accompanied by an increase in the density and length of the dendritic spines of the hippocampus of rats with MS. We conclude that MetfDeca represents an important therapeutic agent to treat MS and induce neuronal and cognitive restoration mechanisms.
Collapse
Affiliation(s)
- Alfonso Diaz
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Pue, Mexico
| | - Guadalupe Muñoz-Arenas
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Pue, Mexico
| | - Berenice Venegas
- Faculty of Biological Sciences, Benemerita Autonomous University of Puebla, Puebla, Pue, Mexico
| | - Rubén Vázquez-Roque
- Laboratory of Neuropsychiatry, Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Pue, Mexico
| | - Gonzalo Flores
- Laboratory of Neuropsychiatry, Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Pue, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Samuel Treviño
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Pue, Mexico.
| |
Collapse
|
19
|
Zhu X, Li J, Wang H, Gasior FM, Lee C, Lin S, Zhu Z, Wang Y, Justice CN, O'Donnell JM, Vanden Hoek TL. TAT delivery of a PTEN peptide inhibitor has direct cardioprotective effects and improves outcomes in rodent models of cardiac arrest. Am J Physiol Heart Circ Physiol 2021; 320:H2034-H2043. [PMID: 33834871 DOI: 10.1152/ajpheart.00513.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently shown that pharmacologic inhibition of PTEN significantly increases cardiac arrest survival in a mouse model, however, this protection required pretreatment 30 min before the arrest. To improve the onset of PTEN inhibition during cardiac arrest treatment, we have designed a TAT fused cell-permeable peptide (TAT-PTEN9c) based on the C-terminal PDZ binding motif of PTEN for rapid tissue delivery and protection. Western blot analysis demonstrated that TAT-PTEN9c peptide significantly enhanced Akt activation in mouse cardiomyocytes in a concentration- and time-dependent manner. Mice were subjected to 8 min asystolic arrest followed by CPR, and 30 mice with successful CPR were then randomly assigned to receive either saline or TAT-PTEN9c treatment. Survival was significantly increased in TAT-PTEN9c-treated mice compared with that of saline control at 4 h after CPR. The treated mice had increased Akt phosphorylation at 30 min resuscitation with significantly decreased sorbitol content in heart or brain tissues and reduced release of taurine and glutamate in blood, suggesting improved glucose metabolism. In an isolated rat heart Langendorff model, direct effects of TAT-PTEN9c on cardiac function were measured for 20 min following 20 min global ischemia. Rate pressure product was reduced by >20% for both TAT vehicle and nontreatment groups following arrest. Cardiac contractile function was completely recovered with TAT-PTEN9c treatment given at the start of reperfusion. We conclude that TAT-PTEN9c enhances Akt activation and decreases glucose shunting to the polyol pathway in critical organs, thereby preventing osmotic injury and early cardiovascular collapse and death.NEW & NOTEWORTHY We have designed a cell-permeable peptide, TAT-PTEN9c, to improve cardiac arrest survival. It blocked endogenous PTEN binding to its adaptor and enhanced Akt signaling in mouse cardiomyocytes. It improved mouse survival after cardiac arrest, which is related to improved glucose metabolism and reduced glucose shunting to sorbitol in critical organs.
Collapse
Affiliation(s)
- Xiangdong Zhu
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Jing Li
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Huashan Wang
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | | | - Chunpei Lee
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Shaoxia Lin
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Zhiyi Zhu
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Youhua Wang
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Cody N Justice
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois.,Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - J Michael O'Donnell
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | | |
Collapse
|
20
|
Montaño-Rendón F, Grinstein S, Walpole GFW. Monitoring Phosphoinositide Fluxes and Effectors During Leukocyte Chemotaxis and Phagocytosis. Front Cell Dev Biol 2021; 9:626136. [PMID: 33614656 PMCID: PMC7890364 DOI: 10.3389/fcell.2021.626136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
The dynamic re-organization of cellular membranes in response to extracellular stimuli is fundamental to the cell physiology of myeloid and lymphoid cells of the immune system. In addition to maintaining cellular homeostatic functions, remodeling of the plasmalemma and endomembranes endow leukocytes with the potential to relay extracellular signals across their biological membranes to promote rolling adhesion and diapedesis, migration into the tissue parenchyma, and to ingest foreign particles and effete cells. Phosphoinositides, signaling lipids that control the interface of biological membranes with the external environment, are pivotal to this wealth of functions. Here, we highlight the complex metabolic transitions that occur to phosphoinositides during several stages of the leukocyte lifecycle, namely diapedesis, migration, and phagocytosis. We describe classical and recently developed tools that have aided our understanding of these complex lipids. Finally, major downstream effectors of inositides are highlighted including the cytoskeleton, emphasizing the importance of these rare lipids in immunity and disease.
Collapse
Affiliation(s)
- Fernando Montaño-Rendón
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Li L, Lu S, Fan X. Silencing of miR-302b-3p alleviates isoflurane-induced neuronal injury by regulating PTEN expression and AKT pathway. Brain Res Bull 2020; 168:89-99. [PMID: 33370590 DOI: 10.1016/j.brainresbull.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Isoflurane (ISO) is an anesthesia and can result in neuron injury. A previous study has indicated that microRNA-302b-3p (miR-302b-3p) exerts a crucial function in modulating cerebral ischemia/reperfusion damage-induced neuronal injury. We sought to examine the role of miR-302b-3p in ISO-induced neuronal injury. In the present study, the effects of miR-302b-3p on ISO-induced neuron injury were investigated by MTT and TUNEL assays. We discovered that ISO stimulation led to miR-302b-3p upregulation and neuronal injury. MiR-302b-3p silencing exerted protective effects against ISO induced neuronal injury. In addition, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was a direct downstream target gene of miR-302b-3p. MiR-302b-3p targets the 3'UTR of PTEN to inhibit its mRNA expression, and further reduces its protein expression. Silencing of PTEN partially reversed the protecting effects of silenced miR-302b-3p on ISO-induced injury of hippocampal neurons. Further, miR-302b-3p activated the AKT signaling pathway in neurons exposed to ISO by downregulation of PTEN. Finally, in vivo studies revealed that silencing of miR-302b-3p alleviates ISO-induced injury and spatial memory impairment of rats partly by upregulation of PTEN. Overall, our findings indicated that miR-302b-3p targets PTEN to activate the AKT pathway, and silencing of miR-302b-3p plays a neuroprotective role in ISO-induced neuronal injury by the PTEN/AKT pathway, suggesting miR-302b-3p as a crucial target for ISO-induced neuronal injury.
Collapse
Affiliation(s)
- Linlin Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Shan Lu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Xiaodi Fan
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126 Xiantai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
22
|
Agnew-Francis KA, Williams CM. Squaramides as Bioisosteres in Contemporary Drug Design. Chem Rev 2020; 120:11616-11650. [DOI: 10.1021/acs.chemrev.0c00416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kylie A. Agnew-Francis
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
23
|
Treviño S, Diaz A. Vanadium and insulin: Partners in metabolic regulation. J Inorg Biochem 2020; 208:111094. [PMID: 32438270 DOI: 10.1016/j.jinorgbio.2020.111094] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Since the 1970s, the biological role of vanadium compounds has been discussed as insulin-mimetic or insulin-enhancer agents. The action of vanadium compounds has been investigated to determine how they influence the insulin signaling pathway. Khan and coworkers proposed key proteins for the insulin pathway study, introducing the concept "critical nodes". In this review, we also considered critical kinases and phosphatases that participate in this pathway, which will permit a better comprehension of a critical node, where vanadium can act: a) insulin receptor, insulin receptor substrates, and protein tyrosine phosphatases; b) phosphatidylinositol 3'-kinase, 3-phosphoinositide-dependent protein kinase and mammalian target of rapamycin complex, protein kinase B, and phosphatase and tensin homolog; and c) insulin receptor substrates and mitogen-activated protein kinases, each node having specific negative modulators. Additionally, leptin signaling was considered because together with insulin, it modulates glucose and lipid homeostasis. Even in recent literature, the possibility of vanadium acting against metabolic diseases or cancer is confirmed although the mechanisms of action are not well understood because these critical nodes have not been systematically investigated. Through this review, we establish that vanadium compounds mainly act as phosphatase inhibitors and hypothesize on their capacity to affect kinases, which are critical to other hormones that also act on common parts of the insulin pathway.
Collapse
Affiliation(s)
- Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, Puebla, C.P. 72560, Mexico.
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, 22 South, FCQ9, University City, Puebla, C.P. 72560, Mexico.
| |
Collapse
|
24
|
Cheng J, Tang JC, Pan MX, Chen SF, Zhao D, Zhang Y, Liao HB, Zhuang Y, Lei RX, Wang S, Liu AC, Chen J, Zhang ZH, Li HT, Wan Q, Chen QX. l-lysine confers neuroprotection by suppressing inflammatory response via microRNA-575/PTEN signaling after mouse intracerebral hemorrhage injury. Exp Neurol 2020; 327:113214. [DOI: 10.1016/j.expneurol.2020.113214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
|
25
|
Chen SF, Pan MX, Tang JC, Cheng J, Zhao D, Zhang Y, Liao HB, Liu R, Zhuang Y, Zhang ZF, Chen J, Lei RX, Li SF, Li HT, Wang ZF, Wan Q. Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol Brain 2020; 13:63. [PMID: 32321555 PMCID: PMC7175589 DOI: 10.1186/s13041-020-00601-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 01/04/2023] Open
Abstract
Neuroinflammation is a secondary response following ischemia stroke. Arginine is a non-essential amino acid that has been shown to inhibit acute inflammatory reaction. In this study we show that arginine treatment decreases neuronal death after rat cerebral ischemia/reperfusion (I/R) injury and improves functional recovery of stroke animals. We also show that arginine suppresses inflammatory response in the ischemic brain tissue and in the cultured microglia after OGD insult. We further provide evidence that the levels of HIF-1α and LDHA are increased after rat I/R injury and that arginine treatment prevents the elevation of HIF-1α and LDHA after I/R injury. Arginine inhibits inflammatory response through suppression of HIF-1α and LDHA in the rat ischemic brain tissue and in the cultured microglia following OGD insult, and protects against ischemic neuron death after rat I/R injury by attenuating HIF-1α/LDHA-mediated inflammatory response. Together, these results indicate a possibility that arginine-induced neuroprotective effect may be through the suppression of HIF-1α/LDHA-mediated inflammatory response in microglia after cerebral ischemia injury.
Collapse
Affiliation(s)
- Song-Feng Chen
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Meng-Xian Pan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Jun-Chun Tang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, China
| | - Dan Zhao
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000, Hubei, China
| | - Ya Zhang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Hua-Bao Liao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Rui Liu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Yang Zhuang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Zhi-Feng Zhang
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, 30 South Renmin Road, Shiyan, 442000, Hubei, China
| | - Juan Chen
- Department of Neurology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, 26 Shengli Street, Wuhan, 430013, China
| | - Rui-Xue Lei
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Shi-Fang Li
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Huan-Ting Li
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Ze-Fen Wang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China.
| | - Qi Wan
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China.
| |
Collapse
|
26
|
Borges GA, Webber LP, M Marques AE, Guerra EN, Castilho RM, Squarize CH. Pharmacological PTEN inhibition: potential clinical applications and effects in tissue regeneration. Regen Med 2020; 15:1329-1344. [PMID: 32223643 DOI: 10.2217/rme-2019-0065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although the human body can heal, it takes time, and slow healing and chronic wounds often occur. Thus, identifying novel therapies to aid regeneration is needed. Here, we conducted a systematic review following the Preferred Reporting Items for Systematic Reviews guidelines and assessed preclinical studies on phosphatase and tensin homolog (PTEN) inhibitors and their effects on tissue repair and regeneration. In conditions associated with neurodegeneration, tissue injury and ischemia, the PTEN-regulated PI3K/AKT signaling pathway is activated. The use of PTEN inhibitors resulted in better tissue response by reducing the healing time and lesion sizes or inducing neuronal regeneration. Notably, all studies included in this systematic review indicated that pharmacological inhibition of PTEN enhanced the repair process of the eye, lung, muscle and nervous system.
Collapse
Affiliation(s)
- Gabriel A Borges
- Laboratory of Epithelial Biology, Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.,Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Liana P Webber
- Laboratory of Epithelial Biology, Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Ana Elizia M Marques
- Laboratory of Epithelial Biology, Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.,Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Eliete Ns Guerra
- Laboratory of Epithelial Biology, Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.,Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.,The Michigan Medicine Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA.,The Michigan Medicine Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Diao MY, Zhu Y, Yang J, Xi SS, Wen X, Gu Q, Hu W. Hypothermia protects neurons against ischemia/reperfusion-induced pyroptosis via m6A-mediated activation of PTEN and the PI3K/Akt/GSK-3β signaling pathway. Brain Res Bull 2020; 159:25-31. [PMID: 32200003 DOI: 10.1016/j.brainresbull.2020.03.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 01/14/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) injury often leads to irreversible neuronal injury and even death, and hypothermia is the only therapeutic method that has been proven to be effective. However, the molecular mechanisms underlying the effect of hypothermia treatment on I/R injury have not been fully elucidated. In the present study, we aimed to evaluate the neuroprotective effects and mechanisms of hypothermia against hypoxia/reoxygenation (H/R)-induced neuronal damage. Primary hippocampal neurons were exposed to H/R and were then treated with hypothermia. We observed that hypothermia significantly increased cellular viability, downregulated the expression of pyroptosis-related proteins-including NLR pyrin domain containing 3 (NLRP3), apoptotic speck-like protein containing CARD (ASC), cleaved Caspase-1, and Gasdermin-D (GsdmD) p30-and reduced secretion of the pro-inflammatory cytokines, IL-1β and IL-18. Additionally, pretreatment with MCC950, a specific small-molecule inhibitor of the NLRP3 inflammasome, yielded a protective effect on cellular viability that was comparable to that of hypothermia treatment. Furthermore, hypothermia also significantly elevated the expression level of phosphatase and tensin homologous protein (PTEN) and activated the phosphorylation levels of protein kinase B (Akt) and glycogen synthase kinase-3β (GSK-3β). These protective effects of hypothermia on pyroptosis-related proteins and pro-inflammatory cytokines were partially reversed by the specific PI3K/Akt inhibitor, LY294002. Moreover, the methylated level of PTEN mRNA was elevated in hippocampal neurons upon H/R, whereas this level remained stable in the hypothermia group. Therefore, our findings suggest that hypothermia protects neurons against neuronal H/R-induced pyroptosis, and that m6A-mediated activation of PTEN and the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/GSK-3β signaling pathway may play crucial roles during this process.
Collapse
Affiliation(s)
- Meng-Yuan Diao
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
| | - Ying Zhu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
| | - Jing Yang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
| | - Shao-Song Xi
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
| | - Xin Wen
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
| | - Qiao Gu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, People's Republic of China.
| |
Collapse
|
28
|
Sha R, Han X, Zheng C, Peng J, Wang L, Chen L, Huang X. The Effects of Electroacupuncture in a Rat Model of Cerebral Ischemia-Reperfusion Injury Following Middle Cerebral Artery Occlusion Involves MicroRNA-223 and the PTEN Signaling Pathway. Med Sci Monit 2019; 25:10077-10088. [PMID: 31883264 PMCID: PMC6946047 DOI: 10.12659/msm.919611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background In China, electroacupuncture (EA) is used to treat the symptoms of ischemic stroke. However, the mechanisms involved in the effects of EA in cerebral ischemia remain to be investigated. This study aimed to investigate the molecular mechanism underlying the effects of EA in a rat model of cerebral ischemia-reperfusion injury (CIRI) induced by middle cerebral artery occlusion (MCAO). Material/Methods Seventy-five male Sprague-Dawley rats were divided into five groups: the sham group (with sham surgery), the model group (the MCAO model), the EA group (treated with EA), the EA control group, and the EA+antagomir-223-3p group. Rats in the model of CIRI underwent MCAO for 90 minutes. EA was performed on the second postoperative day and was performed at the Waiguan (TE5) and Zusanli (ST36) acupoints. The rat brains were evaluated for structural and molecular markers. Results EA treatment significantly upregulated the expression of microRNA-223 (miR-223), NESTIN, and NOTCH1, and downregulated the expression of PTEN in the subventricular zone (SVZ) and hippocampus. The luciferase reporter assay supported that PTEN was a direct target of miR-223, and antagomiR-223-3p reversed the effects of EA and reduced the increase in NESTIN and inhibition of PTEN expression associated with EA treatment. There was a negative correlation between PTEN expression and the number of neural stem cells (NSCs). Conclusions In a rat model of CIRI following MCAO, EA activated the NOTCH pathway, promoted the expression of miR-223, increased the number of NSCs, and reduced the expression of PTEN.
Collapse
Affiliation(s)
- Rong Sha
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Xiaohua Han
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Caixia Zheng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jiaojiao Peng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Li Wang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Luting Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
29
|
Zhao D, Qin XP, Chen SF, Liao XY, Cheng J, Liu R, Lei Y, Zhang ZF, Wan Q. PTEN Inhibition Protects Against Experimental Intracerebral Hemorrhage-Induced Brain Injury Through PTEN/E2F1/β-Catenin Pathway. Front Mol Neurosci 2019; 12:281. [PMID: 31866820 PMCID: PMC6906195 DOI: 10.3389/fnmol.2019.00281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with highest mortality and morbidity. We have previously demonstrated that dipotassium bisperoxo (picolinato) oxovanadate (V), (bpV[pic]) inhibits phosphatase and tensin homolog (PTEN) and activates extracellular signal-regulated kinase (ERK)1/2. In this study, we examined the effect of bpV[pic] in the rat ICH model in vivo and the hemin-induced injury model in rat cortical cultures. The rat model of ICH was created by injecting autologous blood into the striatum, and bpV[pic] was intraperitoneally injected. The effects of bpV[pic] were evaluated by neurological tests, Fluoro-Jade C (FJC) staining, and Nissl staining. We demonstrate that bpV[pic] attenuates ICH-induced brain injury in vivo and hemin-induced neuron injury in vitro. The expression of E2F1 was increased, but β-catenin expression was decreased after ICH, and the altered expressions of E2F1 and β-catenin after ICH were blocked by bpV[pic] treatment. Our results further show that bpV[pic] increases β-catenin expression through downregulating E2F1 in cortical neurons and prevents hemin-induced neuronal damage through E2F1 downregulation and subsequent upregulation of β-catenin. By testing the effect of PTEN-siRNA, PTEN cDNA, or combined use of ERK1/2 inhibitor and bpV[pic] in cultured cortical neurons after hemin-induced injury, we provide evidence suggesting that PTEN inhibition by bpV[pic] confers neuroprotection through E2F1 and β-catenin pathway, but the neuroprotective role of ERK1/2 activation by bpV[pic] cannot be excluded.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xing-Ping Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song-Feng Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Xin-Yu Liao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Jing Cheng
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Rui Liu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Yang Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Zhi-Feng Zhang
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Boosani CS, Gunasekar P, Agrawal DK. An update on PTEN modulators - a patent review. Expert Opin Ther Pat 2019; 29:881-889. [PMID: 31530116 DOI: 10.1080/13543776.2019.1669562] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Introduction: A multitude of cellular and physiological functions have been attributed to the biological activity of PTEN (Phosphatase and tensin homolog) such as inhibiting angiogenesis, promoting apoptosis, preventing cell proliferation, and maintaining cellular homeostasis. Based on whether cell growth is needed to be initiated or to be inhibited, enhancing PTEN expression or seeking to inhibit it was pursued. Areas covered: Here the authors provide recent updates to their previous publication on 'PTEN modulators: A patent review', and discuss on new specificities that affirm the therapeutic potential of PTEN in promoting neuro-regeneration, stem cell regeneration, autophagy, bone and cartilage regeneration. Also, targeting PTEN appears to be effective in developing new treatment strategies for Parkinson's disease, Alzheimer's disease, macular degeneration, immune disorders, asthma, arthritis, lupus, Crohn's disease, and several cancer types. Expert opinion: PTEN mainly inhibits the PI3k/Akt pathway. However, the PI3k/Akt pathway can be activated by other signaling proteins. Thus, novel treatment strategies that can regulate PTEN alone, or combinational treatment approaches that can induce PTEN and simultaneously affect downstream mediators in the PI3K/Akt pathway, are needed, which were not investigated in detail. Commercial interests associated with molecules that regulate PTEN are discussed here, along with limitations and new possibilities to improve them.
Collapse
Affiliation(s)
- Chandra S Boosani
- Department of Translational Research, Western University of Health Sciences , Pomona , CA , USA
| | - Palanikumar Gunasekar
- Department of Clinical & Translational Science, Creighton University School of Medicine , Omaha , NE , USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences , Pomona , CA , USA
| |
Collapse
|
31
|
Li L, Yao L, Wang F, Zhang Z. Knock-down of JAK2 and PTEN on pain behavior in rat model of trigeminal neuropathic pain. Gene 2019; 719:144080. [PMID: 31454541 DOI: 10.1016/j.gene.2019.144080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
Trigeminal neuropathic pain is seen as a huge clinical challenge. Although numerous drugs have been developed to treat the condition, some patients have shown intolerance to the drugs and thus continue to suffer. In the present study, a rat model of trigeminal neuropathic pain was established using incorrectly positioned dental implants, which had various manifestations that were similar to human trigeminal neuropathic pain. Using this model, we investigated the differential regulation of JAK2 and PTEN. Firstly, we examined the expression of JAK2 and PTEN in the medullary dorsal horn. After inhibiting JAK2/PTEN, we evaluated nociception-related behavioral alterations. The rat models were established by replacing the left lower second molar with a mini dental implant. Immunoblot assay and immunofluorescence experiments indicated high expression of JAK2 and PTEN in medullary dorsal horn after the nerve injury, which attained plateau levels on post-operative day (POD) 5-10 and 10-20. Administration of adenovirus-shRNA-JAK2 on POD 1 reduced mechanical allodynia and downstream STAT activation. Meanwhile, the administration of adenovirus-shRNA-PTEN on POD 1 attenuated mechanical allodynia while upregulating AKT. In addition to postoperative JAK2 and PTEN activation, dexmedetomidine treatment (10 mg/kg) also modulated the downstream sensors of these signaling molecules. These data suggest that JAK2 and PTEN are pivotal to the development of trigeminal neuropathic pain, and that JAK2 and PTEN suppression alleviates the neuropathic pain.
Collapse
Affiliation(s)
- Linan Li
- Department of Pain, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Sciences, Xiangyang, Hubei, China
| | - Lingling Yao
- Department of Pain, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Sciences, Xiangyang, Hubei, China
| | - Fengjuan Wang
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Sciences, Xiangyang, Hubei, China.
| | - Zhihong Zhang
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Sciences, Xiangyang, Hubei, China.
| |
Collapse
|
32
|
Liao XY, Lei Y, Chen SF, Cheng J, Zhao D, Zhang ZF, Han X, Zhang Y, Liao HB, Zhuang Y, Chen J, Zhou HB, Wan Q, Zou YY. The neuroprotective effect of bisperoxovandium (pyridin-2-squaramide) in intracerebral hemorrhage. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1957-1967. [PMID: 31354241 PMCID: PMC6585412 DOI: 10.2147/dddt.s204956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Background: The authors have recently designed a new compound bisperoxovandium (pyridin-2-squaramide) [bpV(pis)] and verified that bpV(pis) confers neuroprotection through suppressing PTEN and activating ERK1/2, respectively. Intracerebral hemorrhage (ICH) is the second most common cause of stroke and has severe clinical outcome. In this study, we investigate the effect of bpV(pis) in ICH model both in vivo and in vitro. Materials and methods: The novel drug bpV(pis) was synthesized in the Faculty of Pharmacy, Wuhan University School of Medicine. An ICH model was generated on both SD rats and cells. bpV(pis) was injected into intracerebroventricular or culture media. Western blotting was applied to test the signal pathway. To determine the effect of bpV(pis) on PTEN inhibition and ERK1/2 activation, we measured the phosphorylation level of AKT (a direct downstream target of PTEN that negatively regulates AKT) and ERK1/2. FJC, MTT, and LDH were applied to measure the cell viability. Neurobehavioral tests were performed to measure the effect of bpV(pis). Results: The in vivo results showed that intracerebroventricular administration of bpV(pis) significantly alleviates hematoma, the damage of brain–blood barrier and brain edema. The in vitro results demonstrated that bpV(pis) treatment reduces ICH-induced neuronal injury. Western blotting results identified that bpV(pis) exerts a neuroprotective effect by significantly increasing the phosphorylation level of AKT and ERK1/2 after experimental ICH. Neurobehavioral tests indicate that bpV(pis) promotes functional recovery in ICH animals. Conclusion: This study provides first and direct evidence for a potential role of bpV(pis) in ICH therapy.
Collapse
Affiliation(s)
- Xin-Yu Liao
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Yang Lei
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China
| | - Song-Feng Chen
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China
| | - Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Dan Zhao
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, People's Republic of China
| | - Zhi-Feng Zhang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China
| | - Xin Han
- School of Pharmacy, Wuhan University, Wuhan 430071, People's Republic of China
| | - Ya Zhang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China
| | - Hua-Bao Liao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China
| | - Yang Zhuang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China
| | - Juan Chen
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430013, People's Republic of China
| | - Hai-Bing Zhou
- School of Pharmacy, Wuhan University, Wuhan 430071, People's Republic of China
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Collaborative Innovation Center for Brain Science, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, Qingdao 266071, People's Republic of China
| | - Ying-Ying Zou
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| |
Collapse
|
33
|
|
34
|
Xue H, Xu Y, Wang S, Wu ZY, Li XY, Zhang YH, Niu JY, Gao QS, Zhao P. Sevoflurane post-conditioning alleviates neonatal rat hypoxic-ischemic cerebral injury via Ezh2-regulated autophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1691-1706. [PMID: 31190748 PMCID: PMC6528650 DOI: 10.2147/dddt.s197325] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
Background: When neonatal rats suffer hypoxic-ischemic brain injury (HIBI), autophagy is over-activated in the hippocampus, and inhibition of autophagy provides neuroprotection. The aim of this study was to investigate the possible roles of autophagy and Ezh2-regulated Pten/Akt/mTOR pathway in sevoflurane post-conditioning (SPC)-mediated neuroprotection against HIBI in neonatal rats. Methods: Seven-day-old Sprague–Dawley rats underwent left common artery ligation followed by 2 h hypoxia as described in the Rice–Vannucci model. The roles of autophagy and the Ezh2-regulated Pten/Akt/mTOR signaling pathway in the neuroprotection conferred by SPC were examined by left-side intracerebroventricular injection with the autophagy activator rapamycin and the Ezh2 inhibitor GSK126. Results: SPC was neuroprotective against HIBI through the inhibition of over-activated autophagy in the hippocampus as characterized by the rapamycin-induced reversal of neuronal density, neuronal morphology, cerebral morphology, and the expression of the autophagy markers, LC3B-II and Beclin1. SPC significantly increased the expression of Ezh2, H3K27me3, pAkt, and mTOR and decreased the expression of Pten induced by HI. The Ezh2 inhibitor, GSK126, significantly reversed the SPC-induced changes in expression of H3K27me3, Pten, pAkt, mTOR, LC3B-II, and Beclin1. Ezh2 inhibition also reversed SPC-mediated attenuation of neuronal loss and behavioral improvement in the Morris water maze. Conclusion: These results indicate that SPC inhibits excessive autophagy via the regulation of Pten/Akt/mTOR signaling by Ezh2 to confer neuroprotection against HIBI in neonatal rats.
Collapse
Affiliation(s)
- Hang Xue
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Shuo Wang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Zi-Yi Wu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Xing-Yue Li
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Ya-Han Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Jia-Yuan Niu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Qiu-Shi Gao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
35
|
Liu R, Liao XY, Tang JC, Pan MX, Chen SF, Lu PX, Lu LJ, Zhang ZF, Zou YY, Bu LH, Qin XP, Wan Q. BpV(pic) confers neuroprotection by inhibiting M1 microglial polarization and MCP-1 expression in rat traumatic brain injury. Mol Immunol 2019; 112:30-39. [PMID: 31075560 DOI: 10.1016/j.molimm.2019.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of motor and cognitive impairment in young adults. It is associated with high mortality rates and very few effective treatment options. Bisperoxovanadium (pyridine-2-carboxyl) [bpV(pic)] is an commercially available inhibitor of Phosphatase and tensin homolog (PTEN). Previous studies have shown that bpV(pic) has protective effects in central nervous system. However, the role of bpV(pic) in TBI is unclear. In this study we aimed to investigate the neuroprotective role of bpV(pic) in rat TBI model. We found that injection of bpV(pic) significantly reduces brain edema and neurological dysfunction after TBI and this is mediated by AKT pathway. TBI is known to promote the M1 pro-inflammatory phenotype of microglial polarization and this effect is inhibited by bpV(pic) treatment which, instead promotes M2 microglial polarization in vivo and in vitro. We also found evidence of bpV(pic)-regulated neuroinflammation mediated by AKT activation and NF-κB p65 inhibition. BpV(pic) treatment also suppressed microglia in the peri-TBI region. MCP-1 is known to recruit monocytes and macrophages to promote inflammation, we show that bpV(pic) can inhibit TBI-induced up-regulation of MCP-1 via the AKT/NF-κB p65 signaling pathway. Taken together, our findings demonstrate that bpV(pic) plays a neuroprotective role in rat TBI, which may be achieved by inhibiting M1 microglia polarization and MCP-1 expression by modulating AKT/NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Rui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China; Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Xin-Yu Liao
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Jun-Chun Tang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Meng-Xian Pan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Song-Feng Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan, Hubei, 430071, China
| | - Pei-Xin Lu
- School of Information Management, Wuhan University, Wuhan, Hubei, 430072, China
| | - Long J Lu
- School of Information Management, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhi-Feng Zhang
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Ying-Ying Zou
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China
| | - Li-Hong Bu
- PET-CT/MRI Center & Molecular Imaging Center, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang district, Wuhan, Hubei, 430060, China.
| | - Xing-Ping Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China.
| |
Collapse
|
36
|
Walker CL, Wu X, Liu NK, Xu XM. Bisperoxovanadium Mediates Neuronal Protection through Inhibition of PTEN and Activation of PI3K/AKT-mTOR Signaling after Traumatic Spinal Injuries. J Neurotrauma 2019; 36:2676-2687. [PMID: 30672370 DOI: 10.1089/neu.2018.6294] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although mechanisms involved in progression of cell death in spinal cord injury (SCI) have been studied extensively, few are clear targets for translation to clinical application. One of the best-understood mechanisms of cell survival in SCI is phosphatidylinositol-3-kinase (PI3K)/Akt and associated downstream signaling. Clear therapeutic efficacy of a phosphatase and tensin homologue (PTEN) inhibitor called bisperoxovanadium (bpV) has been shown in SCI, traumatic brain injury, stroke, and other neurological disease models in both neuroprotection and functional recovery. The present study aimed to elucidate mechanistic influences of bpV activity in neuronal survival in in vitro and in vivo models of SCI. Treatment with 100 nM bpV(pic) reduced cell death in a primary spinal neuron injury model (p < 0.05) in vitro, and upregulated both Akt and ribosomal protein S6 (pS6) activity (p < 0.05) compared with non-treated injured neurons. Pre-treatment of spinal neurons with a PI3K inhibitor, LY294002 or mammalian target of rapamycin (mTOR) inhibitor, rapamycin blocked bpV activation of Akt and ribosomal protein S6 activity, respectively. Treatment with bpV increased extracellular signal-related kinase (Erk) activity after scratch injury in vitro, and rapamycin reduced influence by bpV on Erk phosphorylation. After a cervical hemicontusive SCI, Akt phosphorylation decreased in total tissue via Western blot analysis (p < 0.01) as well as in penumbral ventral horn motor neurons throughout the first week post-injury (p < 0.05). Conversely, PTEN activity appeared to increase over this period. As observed in vitro, bpV also increased Erk activity post-SCI (p < 0.05). Our results suggest that PI3K/Akt signaling is the likely primary mechanism of bpV action in mediating neuroprotection in injured spinal neurons.
Collapse
Affiliation(s)
- Chandler L Walker
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana.,Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
37
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
38
|
Liu R, Liao XY, Pan MX, Tang JC, Chen SF, Zhang Y, Lu PX, Lu LJ, Zou YY, Qin XP, Bu LH, Wan Q. Glycine Exhibits Neuroprotective Effects in Ischemic Stroke in Rats through the Inhibition of M1 Microglial Polarization via the NF-κB p65/Hif-1α Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2019; 202:1704-1714. [DOI: 10.4049/jimmunol.1801166] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
|
39
|
Zou Y, Gong P, Zhao W, Zhang J, Wu X, Xin C, Xiong Z, Li Z, Wu X, Wan Q, Li X, Chen J. Quantitative iTRAQ-based proteomic analysis of piperine protected cerebral ischemia/reperfusion injury in rat brain. Neurochem Int 2018; 124:51-61. [PMID: 30579855 DOI: 10.1016/j.neuint.2018.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 12/20/2018] [Indexed: 01/15/2023]
Abstract
Piperine is the key bioactive factor in black pepper, and has been reported to alleviate cerebral ischemic injury. However, the mechanisms underlying its neuroprotective effects following cerebral ischemia remain unclear. In this study, rats were administered vehicle (dimethyl sulfoxide) or piperine, 20 mg/kg, daily for 14 days before focal cerebral artery occlusion. After occlusion for 2 h followed by reperfusion for 24 h. Histological examinations were used to assess whether piperine has a neuroprotective effect in the rat model of cerebral ischemia/reperfusion injury. The levels of proteins in the ischemic penumbra were evaluated by isobaric tags for relative and absolute quantitation-based proteomics. A total of 3687 proteins were identified, including 23 proteins that were highly significantly differentially expressed between the control and piperine groups. The proteomic findings were verified by immunofluorescence and western blot analysis. Interestingly, piperine administration downregulated a number of critical factors in the complement and coagulation cascades, including complement component 3, fibrinogen gamma chain, alpha-2-macroglobulin, and serpin family A member 1. Collectively, our findings suggest that the neuroprotective effects of piperine following cerebral ischemia/reperfusion injury are related to the regulation of the complement and coagulation cascades.
Collapse
Affiliation(s)
- Yichun Zou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Pian Gong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xiaolin Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Can Xin
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhongwei Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xiaohui Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation of Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiang Li
- Queensland Brain Institute of the University of Queensland, St Lucia, Queensland, Australia
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Department of Neurosurgery, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
40
|
Xing Y, Wang MM, Feng YS, Dong F, Zhang F. Possible Involvement of PTEN Signaling Pathway in the Anti-apoptotic Effect of Electroacupuncture Following Ischemic Stroke in Rats. Cell Mol Neurobiol 2018; 38:1453-1463. [PMID: 30136167 PMCID: PMC11469873 DOI: 10.1007/s10571-018-0615-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
As a traditional therapeutic method, electroacupuncture (EA) has been adopted as an alternative therapy for stroke recovery. Here, we aimed to evaluate whether EA therapy at points of Quchi (LI11) and Zusanli (ST36) alleviated neuronal apoptosis by PTEN signaling pathway after ischemic stroke. A total of 72 male Sprague-Dawley rats were randomized into three groups, including sham group, MCAO group, and EA group. EA was initiated after 24 h of reperfusion for 3 consecutive days. At 72 h following ischemia/reperfusion, neurological deficits, infarct volumes, and TUNEL staining were evaluated and the PTEN pathway-related proteins together with apoptosis-related proteins were detected. The results indicated that EA treatment significantly decreased cerebral infarct volume, neurological deficits and alleviated proportion of apoptotic cells in cerebral ischemic rats. Furthermore, EA significantly up-regulated the phosphorylation levels of PDK1, Akt(Thr308), GSK-3β, and down-regulated the phosphorylation levels of PTEN, Akt(Ser473) in the peri-infarct cortex. EA treatment significantly reduced the up-regulation of caspase-3, cleaved-caspase-3, Bim, and reversed the reduction of Bcl-2 induced by the ischemic stroke. These findings suggest that EA treatment at points of Quchi (LI11)- and Zusanli (ST36)-induced neuroprotection might involve inhibition of apoptosis via PTEN pathway.
Collapse
Affiliation(s)
- Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Fang Dong
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
41
|
ERK 1/2 Activation Mediates the Neuroprotective Effect of BpV(pic) in Focal Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2018; 43:1424-1438. [PMID: 29882124 PMCID: PMC6006215 DOI: 10.1007/s11064-018-2558-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/11/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022]
Abstract
Bisperoxovanadium (pyridine-2-carboxyl) [bpV(pic)] is a commercially available PTEN inhibitor. Previous studies from us and others have shown that bpV(pic) confers neuroprotection in cerebral ischemia injury. We set up to determine whether ERK 1/2 activation plays a role in bpV(pic)-induced neuroprotective effect in cerebral ischemia injury. We found that the phosphorylation levels of Akt (p-AKT) and ERK1/2 (p-ERK 1/2) were down-regulated after cerebral ischemia–reperfusion injury. The injection of bpV(pic) after injury not only increased the level of p-AKT but also the level of p-ERK 1/2. While the inhibition of PTEN mediated the up-regulatation of p-AKT and p-ERK 1/2 by bpV(pic). Interestingly, the ERK 1/2 activation induced by bpV(pic) was also independent of the inhibition of PTEN. Our results indicate that bpV(pic) protects against OGD-induced neuronal death and promotes the functional recovery of stroke animals through PTEN inhibition and ERK 1/2 activation, respectively. This study suggests that the effect of bpV(pic) on ERK 1/2 signaling should be considered while using bpV(pic) as a PTEN inhibitor.
Collapse
|
42
|
Zhao D, Chen J, Zhang Y, Liao HB, Zhang ZF, Zhuang Y, Pan MX, Tang JC, Liu R, Lei Y, Wang S, Qin XP, Feng YG, Chen Y, Wan Q. Glycine confers neuroprotection through PTEN/AKT signal pathway in experimental intracerebral hemorrhage. Biochem Biophys Res Commun 2018; 501:85-91. [PMID: 29698679 DOI: 10.1016/j.bbrc.2018.04.171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/21/2018] [Indexed: 01/12/2023]
Abstract
Glycine has been shown to protect against ischemic stroke through various mechanisms. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) which antagonize Akt-dependent cell survival has been linked to neuronal damage. However, whether glycine has a neuroprotective property in intracerebral hemorrhage (ICH) was unknown. This study aimed to determine the protective effect of glycine in rats ICH. Adult male Sprague-Dawley (SD) rats were subjected to left striatum infusion of autologous blood. ICH animals received glycine (0.2-3 mg/kg, icv) at 1 h after ICH with or without pre-injection of Akt Inhibitor IV (100 μM, 2 μl, icv) 0.5 h prior to glycine treatment. Our results showed that in the perihematomal area PTEN was up-regulated in the early stage after ICH. However, glycine treatment decreased PTEN protein level and increased the phosphorylation level of AKT (p-AKT) in the perihematomal area. With the administration of glycine, neuronal death was significantly reduced and Evans blue leakage was alleviated as well as the brain edema after ICH. Moreover, hematoma volume was decreased and neurobehavioral outcome was improved. Nevertheless, Akt Inhibitor IV abolished the neuroprotective effects of glycine after ICH. Together, our findings demonstrate, for the first time, the protective role of glycine on ICH rats, and suggest that the neuroprotective effect of glycine was mediated through PTEN/Akt signal pathway.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China; Department of Biomedical Engineering, School of Basic Medical Sciences, WuhanUniversity, Wuhan 430071, China; Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei, 442000 China
| | - Juan Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China; Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science & Technology, 26 Shengli Street, Wuhan, 430013, China
| | - Ya Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Hua-Bao Liao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Zhi-Feng Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China; Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei, 442000 China
| | - Yang Zhuang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Meng-Xian Pan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Jun-Chun Tang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Rui Liu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Yang Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Shu Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Xing-Ping Qin
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Yu-Gong Feng
- Institute of Neuroregeneration& Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Yun Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, WuhanUniversity, Wuhan 430071, China.
| | - Qi Wan
- Institute of Neuroregeneration& Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China.
| |
Collapse
|
43
|
Pulido R. PTEN Inhibition in Human Disease Therapy. Molecules 2018; 23:molecules23020285. [PMID: 29385737 PMCID: PMC6017825 DOI: 10.3390/molecules23020285] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor PTEN is a major homeostatic regulator, by virtue of its lipid phosphatase activity against phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], which downregulates the PI3K/AKT/mTOR prosurvival signaling, as well as by its protein phosphatase activity towards specific protein targets. PTEN catalytic activity is crucial to control cell growth under physiologic and pathologic situations, and it impacts not only in preventing tumor cell survival and proliferation, but also in restraining several cellular regeneration processes, such as those associated with nerve injury recovery, cardiac ischemia, or wound healing. In these conditions, inhibition of PTEN catalysis is being explored as a potentially beneficial therapeutic intervention. Here, an overview of human diseases and conditions in which PTEN inhibition could be beneficial is presented, together with an update on the current status of specific small molecule inhibitors of PTEN enzymatic activity, their use in experimental models, and their limitations as research or therapeutic drugs.
Collapse
Affiliation(s)
- Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
44
|
Zhang ZF, Chen J, Han X, Zhang Y, Liao HB, Lei RX, Zhuang Y, Wang ZF, Li Z, Chen JC, Liao WJ, Zhou HB, Liu F, Wan Q. Bisperoxovandium (pyridin-2-squaramide) targets both PTEN and ERK1/2 to confer neuroprotection. Br J Pharmacol 2017; 174:641-656. [PMID: 28127755 DOI: 10.1111/bph.13727] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE We and others have shown that inhibiting phosphatase and tensin homolog deleted on chromosome 10 (PTEN) or activating ERK1/2 confer neuroprotection. As bisperoxovanadium compounds are well-established inhibitors of PTEN, we designed bisperoxovandium (pyridin-2-squaramide) [bpV(pis)] and determined whether and how bpV(pis) exerts a neuroprotective effect in cerebral ischaemia-reperfusion injury. EXPERIMENTAL APPROACH Malachite green-based phosphatase assay was used to measure PTEN activity. A western blot assay was used to measure the phosphorylation level of Akt and ERK1/2 (p-Akt and p-ERK1/2). Oxygen-glucose deprivation (OGD) was used to injure cultured cortical neurons. Cell death and viability were assessed by LDH and MTT assays. To verify the effects of bpV(pis) in vivo, Sprague-Dawley rats were subjected to middle cerebral artery occlusion, and brain infarct volume was measured and neurological function tests performed. KEY RESULTS bpV(pis) inhibited PTEN activity and increased p-Akt in SH-SY5Y cells but not in PTEN-deleted U251 cells. bpV(pis) also elevated p-ERK1/2 in both SH-SY5Y and U251 cells. These data indicate that bpV(pis) enhances Akt activation through PTEN inhibition but increases ERK1/2 activation independently of PTEN signalling. bpV(pis) prevented OGD-induced neuronal death in vitro and reduced brain infarct volume and promoted functional recovery in stroke animals. This neuroprotective effect of bpV(pis) was blocked by inhibiting Akt and/or ERK1/2. CONCLUSIONS AND IMPLICATIONS bpV(pis) confers neuroprotection in OGD-induced injury in vitro and in cerebral ischaemia in vivo by suppressing PTEN and activating ERK1/2. Thus, bpV(pis) is a bi-target neuroprotectant that may be developed as a drug candidate for stroke treatment.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China.,Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Juan Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China.,Department of Neurology, the Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Xin Han
- School of Pharmacy, Wuhan University, Wuhan, China
| | - Ya Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Hua-Bao Liao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Rui-Xue Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Yang Zhuang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Ze-Fen Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Zhiqiang Li
- Brain Centre, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | - Jin-Cao Chen
- Brain Centre, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | - Wei-Jing Liao
- Brain Centre, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | | | - Fang Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, and Departments of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Qi Wan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China.,Brain Centre, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|