1
|
Kolpek DJ, Kim J, Mohammed H, Gensel JC, Park J. Physicochemical Property Effects on Immune Modulating Polymeric Nanoparticles: Potential Applications in Spinal Cord Injury. Int J Nanomedicine 2024; 19:13357-13374. [PMID: 39691455 PMCID: PMC11649979 DOI: 10.2147/ijn.s497859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Nanoparticles (NPs) offer promising potential as therapeutic agents for inflammation-related diseases, owing to their capabilities in drug delivery and immune modulation. In preclinical studies focusing on spinal cord injury (SCI), polymeric NPs have demonstrated the ability to reprogram innate immune cells. This reprogramming results in redirecting immune cells away from the injury site, downregulating pro-inflammatory signaling, and promoting a regenerative environment post-injury. However, to fully understand the mechanisms driving these effects and maximize therapeutic efficacy, it is crucial to assess NP interactions with innate immune cells. This review examines how the physicochemical properties of polymeric NPs influence their modulation of the immune system. To achieve this, the review delves into the roles played by innate immune cells in SCI and investigates how various NP properties influence cellular interactions and subsequent immune modulation. Key NP properties such as size, surface charge, molecular weight, shape/morphology, surface functionalization, and polymer composition are thoroughly examined. Furthermore, the review establishes connections between these properties and their effects on the immunomodulatory functions of NPs. Ultimately, this review suggests that leveraging NPs and their physicochemical properties could serve as a promising therapeutic strategy for treating SCI and potentially other inflammatory diseases.
Collapse
Affiliation(s)
- Daniel J Kolpek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Hisham Mohammed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Lu ZJ, Pan QL, Lin FX. Epigenetic modifications of inflammation in spinal cord injury. Biomed Pharmacother 2024; 179:117306. [PMID: 39153436 DOI: 10.1016/j.biopha.2024.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Spinal cord injury (SCI) is a central nervous system injury that leads to neurological dysfunction or paralysis, which seriously affects patients' quality of life and causes a heavy social and economic burden. The pathological mechanism of SCI has not been fully revealed, resulting in unsatisfactory clinical treatment. Therefore, more research is urgently needed to reveal its precise pathological mechanism. Numerous studies have shown that inflammation is closely related to various pathological processes in SCI. Inflammatory response is an important pathological process leading to secondary injury, and sustained inflammatory response can exacerbate the injury and hinder the recovery of neurological function after injury. Epigenetic modification is considered to be an important regulatory mechanism in the pathological process of many diseases. Epigenetic modification mainly affects the function and characteristics of genes through the reversibility of mechanisms such as DNA methylation, histone modification, and regulation of non-coding RNA, thus having a significant impact on the pathological process of diseases and the survival state of the body. Recently, the role of epigenetic modification in the inflammatory response of SCI has gradually entered the field of view of researchers, and epigenetic modification may be a potential means to treat SCI. In this paper, we review the effects and mechanisms of different types of epigenetic modifications (including histone modifications, DNA methylation, and non-coding RNAs) on post-SCI inflammation and their potential therapeutic effects on inflammation to improve our understanding of the secondary SCI stage. This review aims to help identify new markers, signaling pathways and targeted drugs, and provide theoretical basis and new strategies for the diagnosis and treatment of SCI.
Collapse
Affiliation(s)
- Zhi-Jun Lu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
3
|
Chen N, Zhan RN, Liu DQ, Zhang Y, Tian YK, Zhou YQ. PGC-1α activation ameliorates cancer-induced bone pain via inhibiting apoptosis of GABAergic interneurons. Biochem Pharmacol 2024; 222:116053. [PMID: 38354958 DOI: 10.1016/j.bcp.2024.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Cancer-induced bone pain (CIBP) stands out as one of the most challenging issues in clinical practice due to its intricate and not fully elucidated pathophysiological mechanisms. Existing evidence has pointed toward the significance of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) down-regulation in contributing to pain behaviors in various rodent models of neuropathic pain. In our current study, we aimed to investigate the role of PGC-1α in CIBP. Our results unveiled a reduction in PGC-1α expression within the spinal cord of CIBP rats, particularly in GABAergic interneurons. Notably, intrathecal administration of the PGC-1α activator ZLN005 suppressed the loss of spinal GABAergic interneurons. This suppression was achieved by inhibiting caspase-3-mediated apoptosis, ultimately leading to the alleviation of mechanical allodynia in CIBP rats. Further exploration into the mechanism revealed that PGC-1α activation played a pivotal role in mitigating ATP depletion and reactive oxygen species accumulation linked to mitochondrial dysfunction. This was achieved through the restoration of mitochondrial biogenesis and the activation of the SIRT3-SOD2 pathway. Impressively, the observed effects were prominently reversed upon the application of SR18292, a specific PGC-1α inhibitor. In conclusion, our findings strongly suggest that PGC-1α activation acts as a potent inhibitor of apoptosis in spinal GABAergic interneurons. This inhibition is mediated by the improvement of mitochondrial function, facilitated in part through the enhancement of mitochondrial biogenesis and the activation of the SIRT3-SOD2 pathway. The results of our study shed light on potential therapeutic avenues for addressing CIBP.
Collapse
Affiliation(s)
- Nan Chen
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruo-Nan Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Ju J, Li Z, Jia X, Peng X, Wang J, Gao F. Interleukin-18 in chronic pain: Focus on pathogenic mechanisms and potential therapeutic targets. Pharmacol Res 2024; 201:107089. [PMID: 38295914 DOI: 10.1016/j.phrs.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Chronic pain has been proven to be an independent disease, other than an accompanying symptom of certain diseases. Interleukin-18 (IL-18), a pro-inflammatory cytokine with pleiotropic biological effects, participates in immune modulation, inflammatory response, tumor growth, as well as the process of chronic pain. Compelling evidence suggests that IL-18 is upregulated in the occurrence of chronic pain. Antagonism or inhibition of IL-18 expression can alleviate the occurrence and development of chronic pain. And IL-18 is located in microglia, while IL-18R is mostly located in astrocytes in the spinal cord. This indicates that the interaction between microglia and astrocytes mediated by the IL-18/IL-18R axis is involved in the occurrence of chronic pain. In this review, we described the role and mechanism of IL-18 in different types of chronic pain. This review provides strong evidence that IL-18 is a potential therapeutic target in pain management.
Collapse
Affiliation(s)
- Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Sun X, Zhang B, Sun K, Li F, Hu D, Chen J, Kong F, Xie Y. Liver-Derived Ketogenesis via Overexpressing HMGCS2 Promotes the Recovery of Spinal Cord Injury. Adv Biol (Weinh) 2024; 8:e2300481. [PMID: 37990936 DOI: 10.1002/adbi.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Indexed: 11/23/2023]
Abstract
The liver is the major ketogenic organ of the body, and ketones are reported to possess favorable neuroprotective effects. This study aims to elucidate whether ketone bodies generated from the liver play a critical role in bridging the liver and spinal cord. Mice model with a contusive spinal cord injury (SCI) surgery is established, and SCI induces significant histological changes in mice liver. mRNA-seq of liver tissue shows the temporal changes of ketone bodies-related genes, β-hydroxybutyrate dehydrogenase (BDH1) and solute carrier family 16 (monocarboxylic acid transporters), member 6 (SLC16A6). Then, an activated ketogenesis model is created with adult C57BL/6 mice receiving the tail intravenous injection of GPAAV8-TBG-Mouse-Hmgcs2-CMV- mCherry -WPRE (HMGCS2liver ) and mice receiving equal AAV8-Null being the control group (Vectorliver ). Then, the mice undergo either a contusive SCI or sham surgery. The results show that overexpression of HMG-CoA synthase (Hmgcs2) in mice liver dramatically alleviates SCI-mediated pathological changes and promotes ketogenesis in the liver. Amazingly, liver-derived ketogenesis evidently alleviates neuron apoptosis and inflammatory microglia activation and improves the recovery of motor function of SCI mice. In conclusion, a liver-spinal cord axis can be bridged via ketone bodies, and enhancing the production of the ketone body within the liver has neuroprotective effects on traumatic SCI.
Collapse
Affiliation(s)
- Xiaofei Sun
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Bin Zhang
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Kaiqiang Sun
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Fudong Li
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Dongping Hu
- Shanghai Zechong Biotechnology Co., Ltd., Shanghai, China
| | - Juxiang Chen
- Department of Surgery, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Fanqi Kong
- Department of spine surgery, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Yang Xie
- Department of Surgery, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| |
Collapse
|
6
|
Neudorf H, Little JP. Impact of fasting & ketogenic interventions on the NLRP3 inflammasome: A narrative review. Biomed J 2024; 47:100677. [PMID: 37940045 PMCID: PMC10821592 DOI: 10.1016/j.bj.2023.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Overactivation of the NLRP3 inflammasome is implicated in chronic low-grade inflammation associated with various disease states, including obesity, type 2 diabetes, atherosclerosis, Alzheimer's disease, and Parkinson's disease. Emerging evidence, mostly from cell and animal models of disease, supports a role for ketosis in general, and the main circulating ketone body beta-hydroxybutyrate (BHB) in particular, in reducing NLRP3 inflammasome activation to improve chronic inflammation. As a result, interventions that can induce ketosis (e.g., fasting, intermittent fasting, time-restricted feeding/eating, very low-carbohydrate high-fat ketogenic diets) and/or increase circulating BHB (e.g., exogenous ketone supplementation) have garnered increasing interest for their therapeutic potential. The purpose of the present review is to summarize our current understanding of the literature on how ketogenic interventions impact the NLRP3 inflammasome across human, rodent and cell models. Overall, there is convincing evidence that ketogenic interventions, likely acting through multiple interacting mechanisms in a cell-, disease- and context-specific manner, can reduce NLRP3 inflammasome activation. The evidence supports a direct effect of BHB, although it is important to consider the myriad of other metabolic responses to fasting or ketogenic diet interventions (e.g., elevated lipolysis, low insulin, stable glucose, negative energy balance) that may also impact innate immune responses. Future research is needed to translate promising findings from discovery science to clinical application.
Collapse
Affiliation(s)
- Helena Neudorf
- University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Jonathan P Little
- University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| |
Collapse
|
7
|
Li L, Wei XF, Yang ZY, Zhu R, Li DL, Shang GJ, Wang HT, Meng ST, Wang YT, Liu SY, Wu LF. Alleviative effect of poly-β-hydroxybutyrate on lipopolysaccharide-induced oxidative stress, inflammation and cell apoptosis in Cyprinus carpio. Int J Biol Macromol 2023; 253:126784. [PMID: 37690640 DOI: 10.1016/j.ijbiomac.2023.126784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
In this study, the alleviative effects of poly-β-hydroxybutyrate (PHB) in bioflocs on oxidative stress, inflammation and apoptosis of common carp (Cyprinus carpio) induced by lipopolysaccharide (LPS) were evaluated. Common carp were irregularity divided into 5 groups and fed five diets with 0 % (CK), 2 %, 4 %, 6 % and 8 % PHB. After 8-week feeding trial, LPS challenge was executed. Results showed that appropriate level of PHB enhanced serum immune function by reversing LPS-induced the decrease of C3, C4, IgM, AKP, ACP and LZM in serum, alleviated LPS-induced intestinal barrier dysfunction by decreasing the levels of 5-HT, D-LA, ET-1 and DAO in serum, increasing ZO-1, Occludin, Claudin-3 and Claudin-7 mRNA, improving intestinal morphology. Moreover, dietary PHB reversed LPS-induced the decrease of AST and ALT in hepatopancreas, while in serum exhibited the opposite trend. Suitable level of PHB reversed LPS-induced the reduction of GSH-PX, CAT, T-SOD and T-AOC in intestines and hepatopancreas, whereas MDA showed the opposite result. PHB alleviated LPS-induced the decrease of Nrf2, HO-1, CAT, SOD and GSH-PX mRNA, the increase of Keap1 mRNA. Appropriate level of PHB alleviated LPS-induced inflammation and apoptosis by up-regulating TGF-β, IL-10 and Bcl-2 mRNA, down-regulating NF-κB, TNF-α, IL-6, Bax, Caspase-3, Caspase-8 and Caspase-9 mRNA. Furthermore, PHB inhibited activation of NLRP3 inflammasomes by reducing the levels of NLRP3, Caspase-1, ASC, IL-1β and IL-18 mRNA and protein. In addition, the increases of dietary PHB linearly and quadratically affected LPS-induced adverse effects on common carp. Summary, this study suggested that appropriate level of dietary PHB alleviated LPS-induced oxidative stress, inflammation, apoptosis and the activation of NLRP3 inflammasome in common carp. And the appropriate level of PHB in common carp diets was 4 %.
Collapse
Affiliation(s)
- Liang Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Xiao-Fang Wei
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Zhi-Yong Yang
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Rui Zhu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Deng-Lai Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Guo-Jun Shang
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Hao-Tong Wang
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Si-Tong Meng
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Yin-Tao Wang
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Si-Ying Liu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Li-Fang Wu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
8
|
Chen F, Xiong B, Xian S, Zhang J, Ding R, Xu M, Zhang Z. Fibroblast growth factor 5 protects against spinal cord injury through activating AMPK pathway. J Cell Mol Med 2023; 27:3706-3716. [PMID: 37950418 PMCID: PMC10718139 DOI: 10.1111/jcmm.17934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 11/12/2023] Open
Abstract
Excessive productions of inflammatory cytokines and free radicals are involved in spinal cord injury (SCI). Fibroblast growth factor 5 (FGF5) is associated with inflammatory response and oxidative damage, and we herein intend to determine its function in SCI. Lentivirus was instilled to overexpress or knockdown FGF5 expression in mice. Compound C or H89 2HCl were used to suppress AMP-activated protein kinase (AMPK) or protein kinase A (PKA), respectively. FGF5 level was significantly decreased during SCI. FGF5 overexpression mitigated, while FGF5 silence further facilitated inflammatory response, oxidative damage and SCI. Mechanically, FGF5 activated AMPK to attenuate SCI in a cAMP/PKA-dependent manner, while inhibiting AMPK or PKA with pharmacological methods significantly abolished the neuroprotective effects of FGF5 against SCI. More importantly, serum FGF5 level was decreased in SCI patients, and elevated serum FGF5 level often indicate better prognosis. Our study identifies FGF5 as an effective therapeutic and prognostic target for SCI.
Collapse
Affiliation(s)
- Feng Chen
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Bing‐Rui Xiong
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Shu‐Yue Xian
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jing Zhang
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Rui‐Wen Ding
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Ming Xu
- Department of Thoracic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zong‐Ze Zhang
- Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
9
|
de Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde AP, Gil-Mohapel J, Rodrigues ALS. Major Depressive Disorder and Gut Microbiota: Role of Physical Exercise. Int J Mol Sci 2023; 24:16870. [PMID: 38069198 PMCID: PMC10706777 DOI: 10.3390/ijms242316870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major depressive disorder (MDD) has a high prevalence and is a major contributor to the global burden of disease. This psychiatric disorder results from a complex interaction between environmental and genetic factors. In recent years, the role of the gut microbiota in brain health has received particular attention, and compelling evidence has shown that patients suffering from depression have gut dysbiosis. Several studies have reported that gut dysbiosis-induced inflammation may cause and/or contribute to the development of depression through dysregulation of the gut-brain axis. Indeed, as a consequence of gut dysbiosis, neuroinflammatory alterations caused by microglial activation together with impairments in neuroplasticity may contribute to the development of depressive symptoms. The modulation of the gut microbiota has been recognized as a potential therapeutic strategy for the management of MMD. In this regard, physical exercise has been shown to positively change microbiota composition and diversity, and this can underlie, at least in part, its antidepressant effects. Given this, the present review will explore the relationship between physical exercise, gut microbiota and depression, with an emphasis on the potential of physical exercise as a non-invasive strategy for modulating the gut microbiota and, through this, regulating the gut-brain axis and alleviating MDD-related symptoms.
Collapse
Affiliation(s)
- Pedro Borges de Souza
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Laura de Araujo Borba
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Louise Castro de Jesus
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Ana Paula Valverde
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| |
Collapse
|
10
|
Basu P, Maier C, Averitt DL, Basu A. NLR family pyrin domain containing 3 (NLRP3) inflammasomes and peripheral neuropathic pain - Emphasis on microRNAs (miRNAs) as important regulators. Eur J Pharmacol 2023; 955:175901. [PMID: 37451423 DOI: 10.1016/j.ejphar.2023.175901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Neuropathic pain is caused by the lesion or disease of the somatosensory system and can be initiated and/or maintained by both central and peripheral mechanisms. Nerve injury leads to neuronal damage and apoptosis associated with the release of an array of pathogen- or damage-associated molecular patterns to activate inflammasomes. The activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome contributes to neuropathic pain and may represent a novel target for pain therapeutic development. In the current review, we provide an up-to-date summary of the recent findings on the involvement of NLRP3 inflammasome in modulating neuropathic pain development and maintenance, focusing on peripheral neuropathic conditions. Here we provide a detailed review of the mechanisms whereby NLRP3 inflammasomes contribute to neuropathic pain via (1) neuroinflammation, (2) apoptosis, (3) pyroptosis, (4) proinflammatory cytokine release, (5) mitochondrial dysfunction, and (6) oxidative stress. We then present the current research literature reporting on the antinociceptive effects of several natural products and pharmacological interventions that target activation, expression, and/or regulation of NLRP3 inflammasome. Furthermore, we emphasize the effects of microRNAs as another regulator of NLRP3 inflammasome. In conclusion, we summarize the possible caveats and future perspectives that might provide successful therapeutic approaches against NLRP3 inflammasome for treating or preventing neuropathic pain conditions.
Collapse
Affiliation(s)
- Paramita Basu
- Pittsburgh Center for Pain Research, The Pittsburgh Project to End Opioid Misuse, Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Camelia Maier
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX, 76204-5799, USA.
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX, 76204-5799, USA.
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, 89154, USA.
| |
Collapse
|
11
|
Liu P, Zhang Y, Li X, Ma M. DEAD-box helicase 54 regulates microglial inflammatory response in rats with chronic constriction injuries through NF-κB/NLRP3 signaling axis. J Neurophysiol 2023; 130:392-400. [PMID: 37377223 DOI: 10.1152/jn.00411.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
Neuropathic pain (NP) is caused by damage to or disease of the somatosensory nervous system, but its mechanism is still not fully understood. In this study, DEAD-box helicase 54 (DDX54) was targeted, and its regulatory role was explored in a chronic constriction injury (CCI) rat model. Microglia and HMC3 cells were stimulated with LPS. The interaction between DDX54 and myeloid differentiation factor-88 adapter protein (MYD88) was verified. A CCI of sciatic nerve model in rats was established. Behavioral testing was performed before and after the CCI. The expressions of IL-1β, TNF-α, and IL-6 were upregulated, and those of DDX54, MYD88, NF-κB, and NOD-like receptor 3 (NLRP3) were upregulated in microglia and HMC3 cells after LPS induction. DDX54 knockdown in microglia and HMC3 cells inhibited IL-1β, TNF-α, and IL-6 expressions and downregulated the protein levels of MYD88, p-NF-κB p65 (p-p65), and NLRP3. DDX54 overexpression promoted the stability of MYD88 mRNA. DDX54 binds to the MYD88-3'-untranslated region (UTR). DDX54 interference in rats could alleviate the decrease of paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) induced by CCI, inhibit Iba1 expression, and reduce inflammatory factors as well as MYD88 and NF-κB expressions. DDX54 promotes the activation of NF-κB/NLRP3 signaling by regulating MYD88 mRNA stability, thereby affecting inflammatory response and NP progression in CCI rats.NEW & NOTEWORTHY The role of DDX54 protein in LPS-induced microglia and a chronic constriction injury (CCI) rat model was investigated for the first time. DDX54 interference can inhibit microglial activation and reduce the secretion of inflammatory factors. The interaction between DDX54 protein and MYD88 mRNA was explored for the first time. DDX54 promotes NF-κB/NLRP3 signaling activation by regulating MYD88 transcription in a CCI rat model.
Collapse
Affiliation(s)
- Panmei Liu
- Department of Pain Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Zhang
- Department of Anesthesiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinxin Li
- Department of Pain Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Minyu Ma
- Department of Pain Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Bolesławska I, Kowalówka M, Bolesławska-Król N, Przysławski J. Ketogenic Diet and Ketone Bodies as Clinical Support for the Treatment of SARS-CoV-2-Review of the Evidence. Viruses 2023; 15:1262. [PMID: 37376562 PMCID: PMC10326824 DOI: 10.3390/v15061262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
One of the proposed nutritional therapies to support drug therapy in COVID-19 is the use of a ketogenic diet (KD) or ketone bodies. In this review, we summarized the evidence from tissue, animal, and human models and looked at the mechanisms of action of KD/ketone bodies against COVID-19. KD/ketone bodies were shown to be effective at the stage of virus entry into the host cell. The use of β-hydroxybutyrate (BHB), by preventing the metabolic reprogramming associated with COVID-19 infection and improving mitochondrial function, reduced glycolysis in CD4+ lymphocytes and improved respiratory chain function, and could provide an alternative carbon source for oxidative phosphorylation (OXPHOS). Through multiple mechanisms, the use of KD/ketone bodies supported the host immune response. In animal models, KD resulted in protection against weight loss and hypoxemia, faster recovery, reduced lung injury, and resulted in better survival of young mice. In humans, KD increased survival, reduced the need for hospitalization for COVID-19, and showed a protective role against metabolic abnormalities after COVID-19. It appears that the use of KD and ketone bodies may be considered as a clinical nutritional intervention to assist in the treatment of COVID-19, despite the fact that numerous studies indicate that SARS-CoV-2 infection alone may induce ketoacidosis. However, the use of such an intervention requires strong scientific validation.
Collapse
Affiliation(s)
- Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| | - Magdalena Kowalówka
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| | - Natasza Bolesławska-Król
- Student Society of Radiotherapy, Collegium Medicum, University of Zielona Gora, Zyta 28, 65-046 Zielona Góra, Poland;
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| |
Collapse
|
13
|
Taing K, Chen L, Weng HR. Emerging roles of GPR109A in regulation of neuroinflammation in neurological diseases and pain. Neural Regen Res 2023; 18:763-768. [PMID: 36204834 PMCID: PMC9700108 DOI: 10.4103/1673-5374.354514] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022] Open
Abstract
Neuroinflammation plays a critical role in the pathological process of multiple neurological disorders and pathological pain conditions. GPR109A, a Gi protein-coupled receptor, has emerged as an important therapeutic target for controlling inflammation in various tissues and organs. In this review, we summarized current data about the role of GPR109A in neuroinflammation. Specifically, we focused on the pharmacological features of GPR109A and signaling pathways used by GPR109A to ameliorate neuroinflammation and symptoms in Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, and pathological pain conditions.
Collapse
Affiliation(s)
- Kyle Taing
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Lawrence Chen
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| |
Collapse
|
14
|
Wang C, Chen R, Zhu X, Zhang X. Suberoylanilide Hydroxamic Acid Ameliorates Pain Sensitization in Central Neuropathic Pain After Spinal Cord Injury via the HDAC5/NEDD4/SCN9A Axis. Neurochem Res 2023:10.1007/s11064-023-03913-z. [DOI: 10.1007/s11064-023-03913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
|
15
|
Liu F, Huang Y, Wang H. Rodent Models of Spinal Cord Injury: From Pathology to Application. Neurochem Res 2023; 48:340-361. [PMID: 36303082 DOI: 10.1007/s11064-022-03794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) often has devastating consequences for the patient's physical, mental and occupational health. At present, there is no effective treatment for SCI, and appropriate animal models are very important for studying the pathological manifestations, injury mechanisms, and corresponding treatment. However, the pathological changes in each injury model are different, which creates difficulties in selecting appropriate models for different research purposes. In this article, we analyze various SCI models and introduce their pathological features, including inflammation, glial scar formation, axon regeneration, ischemia-reperfusion injury, and oxidative stress, and evaluate the advantages and disadvantages of each model, which is convenient for selecting suitable models for different injury mechanisms to study therapeutic methods.
Collapse
Affiliation(s)
- Fuze Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yue Huang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Hai Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
16
|
Makievskaya CI, Popkov VA, Andrianova NV, Liao X, Zorov DB, Plotnikov EY. Ketogenic Diet and Ketone Bodies against Ischemic Injury: Targets, Mechanisms, and Therapeutic Potential. Int J Mol Sci 2023; 24:2576. [PMID: 36768899 PMCID: PMC9916612 DOI: 10.3390/ijms24032576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as β-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.
Collapse
Affiliation(s)
- Ciara I. Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xinyu Liao
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
17
|
Jiang W, Zhang LX, Tan XY, Yu P, Dong M. Inflammation and histone modification in chronic pain. Front Immunol 2023; 13:1087648. [PMID: 36713369 PMCID: PMC9880030 DOI: 10.3389/fimmu.2022.1087648] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Increasing evidence suggests that epigenetic mechanisms have great potential in the field of pain. The changes and roles of epigenetics of the spinal cord and dorsal root ganglia in the chronic pain process may provide broad insights for future pain management. Pro-inflammatory cytokines and chemokines released by microglia and astrocytes, as well as blood-derived macrophages, play critical roles in inducing and maintaining chronic pain, while histone modifications may play an important role in inflammatory metabolism. This review provides an overview of neuroinflammation and chronic pain, and we systematically discuss the regulation of neuroinflammation and histone modifications in the context of chronic pain. Specifically, we analyzed the role of epigenetics in alleviating or exacerbating chronic pain by modulating microglia, astrocytes, and the proinflammatory mediators they release. This review aimed to contribute to the discovery of new therapeutic targets for chronic pain.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li-Xi Zhang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xuan-Yu Tan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Peng Yu, ; Ming Dong,
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China,*Correspondence: Peng Yu, ; Ming Dong,
| |
Collapse
|
18
|
Abstract
The prevalence of neonatal hypoxic-ischemic encephalopathy (HIE), a devastating neurological injury, is increasing; thus, effective treatments and preventions are urgently needed. The underlying pathology of HIE remains unclear; recent research has focused on elucidating key features of the disease. A variety of diseases can be alleviated by consuming a ketogenic diet (KD) despite differences in pathogenesis and features, given the common mechanisms of KD-induced effects. Dietary modification is the most translatable, cost-efficient, and safest approach to treat acute or chronic neurological disorders and reduces reliance on pharmaceutical treatments. Evidence suggests that the KD can exert beneficial effects in animal models and in humans with brain injuries. The efficacy of the KD in preventing neuronal damage, motor alterations, and cognitive decline varies. Moreover, the KD may provide an alternative source of energy, enhance mitochondrial function, and reduce the expression of inflammatory and apoptotic mediators. Thus, this diet has attracted interest as a potential therapy for HIE. This review examined the role of the KD in HIE treatment and described the mechanisms by which ketone bodies (KBs) exert effects under pathological conditions and protect against brain damage; the evidence supports the implementation of dietary interventions as a therapeutic strategy for HIE. Future research should aim to elucidate the underlying mechanisms of the KD in patients with HIE and determine whether the effect of the KD on clinical outcomes can be reproduced in humans.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, 610500 Chengdu, China
| | - Luqiang Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Haichuan Wang
- Department of Paediatrics, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, China
| |
Collapse
|
19
|
Saruta K, Fukutoku T, Kumagai G, Nagaoki T, Tsukuda M, Nitobe Y, Wada K, Asari T, Fujita T, Sasaki I, Nikaido Y, Shimoyama S, Ueno S, Ishibashi Y. Intraperitoneal Administration of Etizolam Improves Locomotor Function in Mice After Spinal Cord Injury. Neurotrauma Rep 2023; 4:82-96. [PMID: 36874147 PMCID: PMC9983139 DOI: 10.1089/neur.2022.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Neuroinflammation occurs in the acute phase of spinal cord injury (SCI) and inhibits neural regeneration. In mouse models, etizolam (ETZ) is a strong anxiolytic with unclear effects on SCI. This study investigated the effects of short-term administration of ETZ on neuroinflammation and behavior in mice after SCI. We administrated an ETZ (0.5 mg/kg) daily intraperitoneal injection from the day after SCI for 7 days. Mice were randomly divided into three groups (sham group: only laminectomy, saline group, and ETZ group). Inflammatory cytokine concentrations in the injured spinal cord epicenter were measured using an enzyme-linked immunosorbent assay on day 7 after SCI to evaluate spinal cord inflammation in the acute phase. Behavior analysis was performed the day before surgery and on days 7, 14, 28, and 42 after surgery. The behavioral analysis included anxiety-like behavior using the open field test, locomotor function using the Basso Mouse Scale, and sensory function using the mechanical and heat test. Inflammatory cytokine concentrations were significantly lower in the ETZ group than in the saline group in the acute phase after spinal surgery. After SCI, anxiety-like behaviors and sensory functions were comparable between the ETZ and saline groups. ETZ administration reduced neuroinflammation in the spinal cord and improved locomotor function. Gamma-amino butyric acid type A receptor stimulants may be effective therapeutic agents for patients with SCI.
Collapse
Affiliation(s)
- Kenya Saruta
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuhiro Fukutoku
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Gentaro Kumagai
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toshihide Nagaoki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Manami Tsukuda
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yohshiro Nitobe
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kanichiro Wada
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toru Asari
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Taku Fujita
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Isamu Sasaki
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshikazu Nikaido
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shuji Shimoyama
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
20
|
Aminzadeh-Gohari S, Kofler B, Herzog C. Dietary restriction in senolysis and prevention and treatment of disease. Crit Rev Food Sci Nutr 2022; 64:5242-5268. [PMID: 36484738 PMCID: PMC7616065 DOI: 10.1080/10408398.2022.2153355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging represents a key risk factor for a plethora of diseases. Targeting detrimental processes which occur during aging, especially before onset of age-related disease, could provide drastic improvements in healthspan. There is increasing evidence that dietary restriction (DR), including caloric restriction, fasting, or fasting-mimicking diets, extend both lifespan and healthspan. This has sparked interest in the use of dietary regimens as a non-pharmacological means to slow aging and prevent disease. Here, we review the current evidence on the molecular mechanisms underlying DR-induced health improvements, including removal of senescent cells, metabolic reprogramming, and epigenetic rejuvenation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabollism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Research Institute for Biomedical Ageing, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Cilostazol Alleviates NLRP3 Inflammasome-Induced Allodynia/Hyperalgesia in Murine Cerebral Cortex Following Transient Ischemia: Focus on TRPA1/Glutamate and Akt/Dopamine/BDNF/Nrf2 Trajectories. Mol Neurobiol 2022; 59:7194-7211. [PMID: 36127628 PMCID: PMC9616778 DOI: 10.1007/s12035-022-03024-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Global cerebral ischemia/reperfusion (I/R) provokes inflammation that augments neuropathic pain. Cilostazol (CLZ) has pleiotropic effects including neuroprotection in several ravaging central disorders; nonetheless, its potential role in transient central ischemic-induced allodynia and hyperalgesia has not been asserted before. Rats were allocated into 4 groups; sham, sham + CLZ, and 45 min-bilateral carotid occlusion followed by a 48 h-reperfusion period either with or without CLZ (50 mg/kg; p.o) post-treatment. CLZ prolonged latency of hindlimb withdrawal following von Frey filaments, 4 °C cold, and noxious mechanical stimulations. Histopathological alterations and the immunoexpression of glial fibrillary acidic protein induced by I/R were reduced by CLZ in the anterior cingulate cortex (ACC) area, while, CLZ enhanced intact neuronal count. Meanwhile, CLZ modulated cerebral cortical glutamate, dopamine neurotransmission, and transient receptor potential ankyrin 1 (TRPA1). CLZ anti-inflammatory potential was mediated by the downregulated p65 NF-κB and sirtuin-1 enhancement to reduce nucleotide-binding domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), active caspase-1, and interleukin-1β, indicative of inflammasome deactivation. It also revealed an antioxidant capacity via boosting nuclear factor E2-related factor (Nrf2) enhancing glutathione through forkhead box protein O3a (FOXO3a) reduction. Additionally, CLZ triggered neuronal survival by promoting the p-content of Akt, TrkB, and CREB as well as BDNF content. A novel approach of CLZ in hindering global cerebral I/R-mediated neuropathy is firstly documented herein to forward its adjunct action via deactivating the NLRP3 inflammasome, besides enhancing Nrf2 axis, neuronal survival, and dopamine neurotransmission as well as inhibiting TRPA1 and excitotoxicity.
Collapse
|
22
|
Hamilton AM, Sampson TR. Traumatic spinal cord injury and the contributions of the post-injury microbiome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:251-290. [PMID: 36427958 DOI: 10.1016/bs.irn.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spinal cord injuries are an enormous burden on injured individuals and their caregivers. The pathophysiological effects of injury are not limited to the spine and limb function, but affect numerous body systems. Growing observations in human studies and experimental models suggest that the gut microbiome is altered following spinal cord injury. Given the importance of signals derived from the gut microbiome for host physiology, it is possible that injury-triggered dysbiosis subsequently affects aspects of recovery. Here, we review emerging literature on the role of the microbiome following spinal cord injury. Specifically, we highlight findings from both human and experimental studies that correlate taxonomic changes to aspects of injury recovery. Examination of both observational and emerging interventional studies supports the notion that future therapeutic avenues for spinal cord injury pathologies may lie at the interface of the host and indigenous microbes.
Collapse
Affiliation(s)
- Adam M Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
23
|
Wang FX, Xu CL, Su C, Li J, Lin JY. β-Hydroxybutyrate Attenuates Painful Diabetic Neuropathy via Restoration of the Aquaporin-4 Polarity in the Spinal Glymphatic System. Front Neurosci 2022; 16:926128. [PMID: 35898407 PMCID: PMC9309893 DOI: 10.3389/fnins.2022.926128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Waste removal is essential for maintaining homeostasis and the normal function of the central nervous system (CNS). The glymphatic system based on aquaporin-4 (AQP4) water channels on the endfeet of astrocytes is recently discovered as the excretion pathway for metabolic waste products of CNS. In the CNS, α-syntrophin (SNTA1) directly or indirectly anchors AQP4 in astrocyte membranes facing blood vessels. Studies have indicated that β-hydroxybutyrate (BHB) can raise the expression of SNTA1 and thus restoring AQP4 polarity in mice models with Alzheimer’s disease. The study aims to evaluate the neuroprotective mechanism of BHB in rats with painful diabetic neuropathy (PDN). PDN rats were modeled under a high-fat and high-glucose diet with a low dose of streptozotocin. Magnetic resonance imaging (MRI) was applied to observe the clearance of contrast to indicate the functional variability of the spinal glymphatic system. Mechanical allodynia was assessed by paw withdrawal threshold. The expressions of SNTA1 and AQP4 were tested, and the polarity reversal of AQP4 protein was measured. As demonstrated, PDN rats were manifested with deceased contrast clearance of the spinal glymphatic system, enhanced mechanical allodynia, lower expression of SNTA1, higher expression of AQP4, and reversed polarity of AQP4 protein. An opposite change in the above characteristics was observed in rats being treated with BHB. This is the first study that demonstrated the neuroprotective mechanism of BHB to attenuate PDN via restoration of the AQP4 polarity in the spinal glymphatic system and provides a promising therapeutic strategy for PDN.
Collapse
Affiliation(s)
- Fei-xiang Wang
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chi-liang Xu
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Can Su
- Department of Medical Imaging, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiang Li
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-yan Lin
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Jing-yan Lin,
| |
Collapse
|
24
|
Zhang H, Li N, Li Z, Li Y, Yu Y, Zhang L. The Involvement of Caspases in Neuroinflammation and Neuronal Apoptosis in Chronic Pain and Potential Therapeutic Targets. Front Pharmacol 2022; 13:898574. [PMID: 35592413 PMCID: PMC9110832 DOI: 10.3389/fphar.2022.898574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
Chronic pain is a common, complex and unpleasant sensation following nerve injury, tissue trauma, inflammatory diseases, infection and cancer. It affects up to 25% of adults and is increasingly recognized as the leading cause of distress, disability and disease burden globally. Chronic pain is often refractory to most current analgesics, thus emphasizing the requirement for improved therapeutic medications. It is of great importance to elucidate the specific pathogenesis of chronic pain with different etiologies. Recent progress has advanced our understanding in the contribution of neuroinflammation and glial cells (microglia and astrocyte) activation in the plasticity of excitatory nociceptive synapses and the development of chronic pain phenotypes. Oxidative stress-associated neuronal apoptosis is also identified to be a pivotal step for central pain sensitization. The family of cysteine aspartate specific proteases (Caspases) has been well known to be key signaling molecules for inflammation and apoptosis in several neurological conditions. Recent studies have highlighted the unconventional and emerging role of caspases in microgliosis, astrocytes morphogenesis, chemokines release, cytokines secretion and neuronal apoptosis in initiating and maintaining synaptogenesis, synaptic strength and signal transduction in persistent pain hypersensitivity, suggesting the possibility of targeting caspases pathway for prevention and treatment of chronic pain. In this review, we will discuss and summarize the advances in the distinctive properties of caspases family in the pathophysiology of chronic pain, especially in neuropathic pain, inflammatory pain, cancer pain and musculoskeletal pain, with the aim to find the promising therapeutic candidates for the resolution of chronic pain to better manage patients undergoing chronic pain in clinics.
Collapse
Affiliation(s)
- Haoyue Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Nan Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,The Graduate School, Tianjin Medical University, Tianjin, China
| | - Ziping Li
- The Graduate School, Tianjin Medical University, Tianjin, China.,Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
25
|
MicroRNA-299a-5p Protects against Spinal Cord Injury through Activating AMPK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8659587. [PMID: 35602094 PMCID: PMC9122705 DOI: 10.1155/2022/8659587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Objective Inflammation and oxidative stress are implicated in the pathogenesis of spinal cord injury (SCI). The present study is aimed at investigating the function and molecular basis of microRNA-299a-5p (miR-299a-5p) during SCI in mice. Methods Mice were exposed to SCI surgery and then intrathecally injected with the agomir, antagomir, or matched negative controls of miR-299a-5p to overexpress or silence miR-299a-5p. To inhibit AMP-activated protein kinase (AMPK), mice were intraperitoneally injected with compound C (CC). To overexpress pH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), lentiviral vectors were used. Results The miR-299a-5p expression in the spinal cord was dramatically reduced by SCI stimulation. The miR-299a-5p agomir prevents, while the miR-299a-5p antagomir exacerbates inflammation, oxidative stress, and SCI in mice. Mechanistically, we found that miR-299a-5p directly inhibited PHLPP1 and subsequently activated AMPK pathway. The PHLPP1 overexpression of AMPK inhibition with either genetic or pharmacologic methods dramatically abolished the miR-299a-5p agomir-mediated protective effects against SCI. Conclusion miR-299a-5p protects against spinal cord injury through activating AMPK pathway.
Collapse
|
26
|
Xue S, Cao ZX, Wang JN, Zhao QX, Han J, Yang WJ, Sun T. Receptor-Interacting Protein Kinase 3 Inhibition Relieves Mechanical Allodynia and Suppresses NLRP3 Inflammasome and NF-κB in a Rat Model of Spinal Cord Injury. Front Mol Neurosci 2022; 15:861312. [PMID: 35514432 PMCID: PMC9063406 DOI: 10.3389/fnmol.2022.861312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Background Neuroinflammation is critical in developing and maintaining neuropathic pain after spinal cord injury (SCI). The receptor-interacting protein kinase 3 (RIPK3) has been shown to promote inflammatory response by exerting its non-necroptotic functions. In this study, we explored the involvement of RIPK3 in neuropathic pain after SCI. Methods Thoracic (T10) SCI rat model was conducted, and the mechanical threshold in rats was measured. The expressions of RIPK3, nod-like receptor family pyrin domain-containing protein 3 (NLRP3), caspase-1, and nuclear factor-κB (NF-κB) were measured with western blotting analysis or quantitative real-time polymerase chain reaction (qRT-PCR). Double immunofluorescence staining was used to explore the colabeled NLRP3 with NeuN, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (IBA1). In addition, enzyme-linked immunosorbent assay (ELISA) was applied to analyze the levels of proinflammatory factors interleukin 1 beta (IL-1β), interleukin 18 (IL-18), and tumor necrosis factor alpha (TNF-α). Results The expression of RIPK3 was elevated from postoperative days 7–21, which was consistent with the development of mechanical allodynia. Intrathecal administration of RIPK3 inhibitor GSK872 could alleviate the mechanical allodynia in SCI rats and reduce the expression levels of RIPK3. The activation of NLRP3 inflammasome and NF-κB was attenuated by GSK872 treatment. Furthermore, immunofluorescence suggested that NLRP3 had colocalization with glial cells and neurons in the L4–L6 spinal dorsal horns. In addition, GSK872 treatment reduced the production of inflammatory cytokines. Conclusion Our findings indicated that RIPK3 was an important facilitated factor for SCI-induced mechanical allodynia. RIPK3 inhibition might relieve mechanical allodynia by inhibiting NLRP3 inflammasome, NF-κB, and the associated inflammation.
Collapse
Affiliation(s)
- Song Xue
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhen-Xin Cao
- Departments of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun-Nan Wang
- Departments of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qing-Xiang Zhao
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Han
- Departments of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wen-Jie Yang
- Departments of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Departments of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
27
|
Characterization of Acetylation of Histone H3 at Lysine 9 in the Trigeminal Ganglion of a Rat Trigeminal Neuralgia Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1300387. [PMID: 35571235 PMCID: PMC9095355 DOI: 10.1155/2022/1300387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
Trigeminal neuralgia (TN) is a chronic neuropathic pain disorder characterized by spontaneous and elicited paroxysms of electric-shock-like or stabbing pain in a region of the face. The epigenetic regulation of TN is still obscure. In current study, a rat TN model subject to carbamazepine (CBZ) treatment was established, and transcriptome- and genome-scale profiling of H3K9ac and HDAC3 was performed by RNA-seq and ChIP-seq. We observed that H3K9ac levels in the trigeminal ganglion were lower in the TN rats compared with those in the control, and CBZ treatment led to recovery of H3K9ac levels. Further, we found that HDAC3 was overactivated, which interfered with H3K9 acetylation due to higher phosphorylation in TN compared with that in the control. Finally, the phosphokinase leucine-rich repeat kinase 2 (LRRK2) was demonstrated to contribute to HDAC3 activity via the MAPK signaling pathway. Taken together, we identified a regulatory mechanism in which the phosphate groups transferred from activated ERK and LRRK2 to HDAC3 caused genome-scale deacetylation at H3K9 and resulted in the silencing of a large number of genes in TN. The kinases or important enzymes within this regulatory axis may represent important targets for TN therapy and prevention.
Collapse
|
28
|
Liu C, Zheng X, Liu L, Hu Y, Zhu Q, Zhang J, Wang H, Gu EW, Yang Z, Xu G. Caloric Restriction Alleviates CFA-Induced Inflammatory Pain via Elevating β-Hydroxybutyric Acid Expression and Restoring Autophagic Flux in the Spinal Cord. Front Neurosci 2022; 16:828278. [PMID: 35573301 PMCID: PMC9096081 DOI: 10.3389/fnins.2022.828278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory pain is the most common type of pain encountered in clinical practice; however, the currently available treatments are limited by insufficient efficacy and side effects. Therefore, new methods to relieve inflammatory pain targeting new mechanisms are urgently needed. Preclinical investigations have shown that CR (calorie restriction) exerts analgesic effects in neuropathic and cancer pain; however, the effect of CR on chronic inflammatory pain remains unknown. During calorie restriction, autophagy, a lysosome-dependent degradation process, can be activated to support cell survival. In the present study, we investigated the analgesic effects of CR on complete Freund’s adjuvant (CFA)-induced inflammatory pain. The accumulation of LC3-II and p62 showed impaired autophagic flux in the ipsilateral spinal cord of mice with CFA-induced inflammatory pain. CR alleviated mechanical allodynia and thermal hyperalgesia and reduced paw edema and pro-inflammatory factors following CFA administration. CR exerted an analgesic effect by restoring autophagic flux in the spinal cord. Regarding the mechanisms underlying the analgesic effects of CR, β-hydroxybutyric acid (BHB) was studied. CR increased BHB levels in the ipsilateral spinal cord. Furthermore, exogenous BHB administration exerted an analgesic effect by restoring autophagic flux in the spinal cords of CFA-induced inflammatory pain mice. Taken together, these results illustrated that CR relieved inflammatory pain by restoring autophagic flux in the spinal cord, while BHB controlled the benefits of CR, suggesting that CR or BHB might be a promising treatment for inflammatory pain.
Collapse
Affiliation(s)
- Chang Liu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Xiaoting Zheng
- Department of Anesthesiology, Affiliated Chaohu Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Lifang Liu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Yun Hu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Qianyun Zhu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Jiawei Zhang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Huan Wang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Er-wei Gu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Zhilai Yang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Department of Anesthesiology, Affiliated Chaohu Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
- *Correspondence: Zhilai Yang,
| | - Guanghong Xu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
- Guanghong Xu,
| |
Collapse
|
29
|
Zhang Q, Li Q, Liu S, Zheng H, Ji L, Yi N, Bao W, Zhu X, Sun W, Liu X, Zhang S, Zuo C, Li Y, Xiong Q, Lu B. Glucagon-like peptide-1 receptor agonist attenuates diabetic neuropathic pain via inhibition of NOD-like receptor protein 3 inflammasome in brain microglia. Diabetes Res Clin Pract 2022; 186:109806. [PMID: 35240228 DOI: 10.1016/j.diabres.2022.109806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 12/26/2022]
Abstract
AIMS We aimed to explore the evidence of brain microglia activation in diabetic neuropathic pain (DNP) and the effect and mechanism of glucagon-like peptide-1 receptor agonist (GLP-RA) on DNP via brain microglia. METHODS Brain microglia activation was observed in DNP rats by positron emission tomography/computed tomography. The behavior of neuropathic pain was assessed in DNP rats after intracerebroventricular administration of GLP-1RA or microglial inhibitor minocycline. RNA sequencing was performed to explore the target of GLP-1RA on brain microglia. NOD-like receptor protein 3 (NLRP3) expression in brain microglia was evaluated in mentioned-above DNP rats, and the activation of NLRP3 inflammasome was analyzed in microglia treated with GLP-1RA. RESULTS Microglia were activated in the cortex and thalamus of DNP rats. The thermal and mechanical allodynia were alleviated in DNP rats via intracerebroventricular administration of GLP-1RA or minocycline. And the activation of brain microglia was attenuated in DNP rats by intracerebroventricular administration of GLP-1RA. The expression of NLRP3 in brain microglia, which was found by RNA sequencing, was reduced in DNP rats by administration of GLP-1RA. Furthermore, GLP-1RA attenuated NLRP3 inflammasome activation in microglia triggered by LPS. CONCLUSION GLP-1RA could alleviate DNP, possibly mediated by the suppression of brain microglia NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qingchun Li
- Jing'an District Central Hospital, Fudan University, Jing'an Branch, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Siying Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hangping Zheng
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lijin Ji
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Na Yi
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Weiqi Bao
- PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoming Zhu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwan Sun
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoxia Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuo Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qian Xiong
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
30
|
Huang T, Xiao Y, Zhang Y, Wang C, Chen X, Li Y, Ge Y, Gao J. miR‑223 ameliorates thalamus hemorrhage‑induced central poststroke pain via targeting NLRP3 in a mouse model. Exp Ther Med 2022; 23:353. [PMID: 35493427 PMCID: PMC9019782 DOI: 10.3892/etm.2022.11280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
Central poststroke pain (CPSP) is a central neuropathic pain syndrome that occurs following a stroke and mainly manifests as pain and paresthesia in the body region corresponding to the brain injury area. At present, due to the lack of clinical attention given to CPSP, patients suffer from long-term pain that seriously affects their quality of life. Current literature indicates that microRNA (miR)-223 can impede inflammation and prevent collateral damage. The NLR family pyrin domain containing 3 (NLRP3) inflammasome induces IL-18 and IL-1β secretion and maturation and participates in the inflammatory response. Previous evidence has confirmed that miR-223 can negatively regulate NLRP3 in the development of inflammatory responses. However, whether the miR-223 targeting of NLRP3 is involved in CPSP remains unclear. In the present study, the expression of miR-223 was detected by reverse transcription-quantitative PCR analysis. The expression levels of NLRP3, caspase-1, ASC, IL-18, IL-1β, ERK1/2, p-ERK1/2 and GFAP were detected by western blot analysis. The results demonstrated that thalamic hemorrhagic stroke triggered by microinjection of collagenase Ⅳ (Coll IV) into the ventral posterior lateral (VPL) nucleus results in pain hypersensitivity. miR-223 expression level were significantly reduced in the CPSP model. The expression levels of NLRP3, caspase-1, ASC, IL-18 and IL-1β were significantly increased in the CPSP model. The expression level of GFAP was detected to determine astrocyte activation. The results demonstrated that astrocyte activation induced by Coll IV produced a CPSP model. The p-ERK1/2 expression level was demonstrated to be significantly increased in the CPSP model. The introduction of an miR-223 agomir significantly attenuated thalamic pain and significantly decreased the levels of NLRP3, caspase-1, ASC and proinflammatory cytokines (IL-18 and IL-1β). Furthermore, introducing a miR-223 antagomir into the VPL nucleus of naïve mice mimicked thalamic pain and significantly increased the levels of NLRP3, caspase-1, ASC and proinflammatory cytokine levels (IL-18 and IL-1β). These results indicated that miR-223 inhibited NLRP3 inflammasome activity (caspase-1, NLRP3 and ASC), which ameliorated thalamus hemorrhage-induced CPSP in mice via NLRP3 downregulation. In conclusion, these results may determine the mechanisms underlying CPSP and facilitate development of targeted therapy for CPSP.
Collapse
Affiliation(s)
- Tianfeng Huang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Yinggang Xiao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Yang Zhang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Cunjin Wang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaoping Chen
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Yong Li
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Yali Ge
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Ju Gao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
31
|
Poff AM, Moss S, Soliven M, D'Agostino DP. Ketone Supplementation: Meeting the Needs of the Brain in an Energy Crisis. Front Nutr 2022; 8:783659. [PMID: 35004814 PMCID: PMC8734638 DOI: 10.3389/fnut.2021.783659] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Diverse neurological disorders are associated with a deficit in brain energy metabolism, often characterized by acute or chronic glucose hypometabolism. Ketones serve as the brain's only significant alternative fuel and can even become the primary fuel in conditions of limited glucose availability. Thus, dietary supplementation with exogenous ketones represents a promising novel therapeutic strategy to help meet the energetic needs of the brain in an energy crisis. Preliminary evidence suggests ketosis induced by exogenous ketones may attenuate damage or improve cognitive and motor performance in neurological conditions such as seizure disorders, mild cognitive impairment, Alzheimer's disease, and neurotrauma.
Collapse
Affiliation(s)
- Angela M Poff
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sara Moss
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Maricel Soliven
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
32
|
Khan M, Qiao F, Kumar P, Touhidul Islam SM, Singh AK, Won J, Singh I. Neuroprotective effects of Alda-1 mitigate spinal cord injury in mice: involvement of Alda-1-induced ALDH2 activation-mediated suppression of reactive aldehyde mechanisms. Neural Regen Res 2022; 17:185-193. [PMID: 34100455 PMCID: PMC8451565 DOI: 10.4103/1673-5374.314312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) is associated with high production and excessive accumulation of pathological 4-hydroxy-trans-2-nonenal (4-HNE), a reactive aldehyde, formed by SCI-induced metabolic dysregulation of membrane lipids. Reactive aldehyde load causes redox alteration, neuroinflammation, neurodegeneration, pain-like behaviors, and locomotion deficits. Pharmacological scavenging of reactive aldehydes results in limited improved motor and sensory functions. In this study, we targeted the activity of mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) to detoxify 4-HNE for accelerated functional recovery and improved pain-like behavior in a male mouse model of contusion SCI. N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1), a selective activator of ALDH2, was used as a therapeutic tool to suppress the 4-HNE load. SCI was induced by an impactor at the T9–10 vertebral level. Injured animals were initially treated with Alda-1 at 2 hours after injury, followed by once-daily treatment with Alda-1 for 30 consecutive days. Locomotor function was evaluated by the Basso Mouse Scale, and pain-like behaviors were assessed by mechanical allodynia and thermal algesia. ALDH2 activity was measured by enzymatic assay. 4-HNE protein adducts and enzyme/protein expression levels were determined by western blot analysis and histology/immunohistochemistry. SCI resulted in a sustained and prolonged overload of 4-HNE, which parallels with the decreased activity of ALDH2 and low functional recovery. Alda-1 treatment of SCI decreased 4-HNE load and enhanced the activity of ALDH2 in both the acute and the chronic phases of SCI. Furthermore, the treatment with Alda-1 reduced neuroinflammation, oxidative stress, and neuronal loss and increased adenosine 5′-triphosphate levels stimulated the neurorepair process and improved locomotor and sensory functions. Conclusively, the results provide evidence that enhancing the ALDH2 activity by Alda-1 treatment of SCI mice suppresses the 4-HNE load that attenuates neuroinflammation and neurodegeneration, promotes the neurorepair process, and improves functional outcomes. Consequently, we suggest that Alda-1 may have therapeutic potential for the treatment of human SCI. Animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of MUSC (IACUC-2019-00864) on December 21, 2019.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Pavan Kumar
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
33
|
Viatchenko-Karpinski V, Kong L, Weng HR. Activation of microglial GPR109A alleviates thermal hyperalgesia in female lupus mice by suppressing IL-18 and glutamatergic synaptic activity. Glia 2021; 70:634-649. [PMID: 34919284 DOI: 10.1002/glia.24130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022]
Abstract
Many patients with systemic lupus erythematosus (SLE) live with chronic pain despite advances in medical management in reducing mortality related to SLE. Few animal studies have addressed mechanisms and treatment for chronic pain caused by SLE. In this study, we provide the first evidence for the analgesic effects of a GPR109A specific agonist (MK1903) and its action mechanisms in thermal hyperalgesia in female MRL/lpr mice, an SLE mouse model. Specifically, we show that MRL/lpr mice had a higher sensitivity to thermal stimuli at age 11-16 weeks, which was accompanied with significantly microglial and astrocytic activation, increases in p38 MAPK and glutamatergic synaptic activities in the spinal dorsal horn. We demonstrate that thermal hyperalgesia in MRL/lpr mice was significantly attenuated by intrathecal injection of MK1903. GPR109A was expressed in spinal microglia but not astrocytes or neurons. Its expression was significantly increased in MRL/lpr mice with thermal hyperalgesia. Activation of GPR109A receptors in microglia attenuated glutamatergic synaptic activity via suppressing production of interleukin-18 (IL-18). We provide evidence that activation of GPR109A attenuated thermal hyperalgesia in the SLE animal model via suppressing p38 MAPK activity and production of IL-18. Our study suggests that targeting the microglial GPR109A is a potent approach for reversing spinal neuroinflammation, abnormal excitatory synaptic activity, and management of thermal hyperalgesia caused by SLE.
Collapse
Affiliation(s)
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, USA
| | - Han-Rong Weng
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, USA.,Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, Georgia, USA
| |
Collapse
|
34
|
Parvin S, Williams CR, Jarrett SA, Garraway SM. Spinal Cord Injury Increases Pro-inflammatory Cytokine Expression in Kidney at Acute and Sub-chronic Stages. Inflammation 2021; 44:2346-2361. [PMID: 34417952 PMCID: PMC8616867 DOI: 10.1007/s10753-021-01507-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
Accumulating evidence supports that spinal cord injury (SCI) produces robust inflammatory plasticity. We previously showed that the pro-inflammatory cytokine tumor necrosis factor (TNF)α is increased in the spinal cord after SCI. SCI also induces a systemic inflammatory response that can impact peripheral organ functions. The kidney plays an important role in maintaining cardiovascular health. However, SCI-induced inflammatory response in the kidney and the subsequent effect on renal function have not been well characterized. This study investigated the impact of high and low thoracic (T) SCI on C-fos, TNFα, interleukin (IL)-1β, and IL-6 expression in the kidney at acute and sub-chronic timepoints. Adult C57BL/6 mice received a moderate contusion SCI or sham procedures at T4 or T10. Uninjured mice served as naïve controls. mRNA levels of the proinflammatory cytokines IL-1β, IL-6, TNFα, and C-fos, and TNFα and C-fos protein expression were assessed in the kidney and spinal cord 1 day and 14 days post-injury. The mRNA levels of all targets were robustly increased in the kidney and spinal cord, 1 day after both injuries. Whereas IL-6 and TNFα remained elevated in the spinal cord at 14 days after SCI, C-fos, IL-6, and TNFα levels were sustained in the kidney only after T10 SCI. TNFα protein was significantly upregulated in the kidney 1 day after both T4 and T10 SCI. Overall, these results clearly demonstrate that SCI induces robust systemic inflammation that extends to the kidney. Hence, the presence of renal inflammation can substantially impact renal pathophysiology and function after SCI.
Collapse
Affiliation(s)
- Shangrila Parvin
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
| | - Clintoria R. Williams
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
- Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH USA
| | - Simone A. Jarrett
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
| | - Sandra M. Garraway
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Suite 605G, Atlanta, GA 30322 USA
| |
Collapse
|
35
|
Rong Z, Huang Y, Cai H, Chen M, Wang H, Liu G, Zhang Z, Wu J. Gut Microbiota Disorders Promote Inflammation and Aggravate Spinal Cord Injury Through the TLR4/MyD88 Signaling Pathway. Front Nutr 2021; 8:702659. [PMID: 34589510 PMCID: PMC8473614 DOI: 10.3389/fnut.2021.702659] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Background: In spinal cord injury (SCI), systemic inflammation and the death of nerve cells in the spinal cord are life threatening. The connection between gut microbiota and signaling pathways has been a hot research topic in recent years. The Toll-like receptor 4/Myeloid differentiation factor 88 (TLR4/MyD88) signaling pathway is closely related to the inflammatory response. This study explored whether the gut microbiota imbalance could affect the TLR4/MyD88 signaling pathway to regulate SCI to provide a new basis for SCI research and treatment. Methods: An SCI model was constructed to study the influence on the injury of gut microbiota. 16S amplicon sequencing was used to identify the diversity and abundance of gut microbes. Fecal microbiota transplantation was performed in mice with SCI. ELISA was used to detect the serum levels of pro-inflammatory and anti-inflammatory factors in mice. Hematoxylin and eosin staining was used to observe SCI in mice. Immunofluorescence was used to detect the rates of loss glial fibrillary acidic protein (GFAP), neuronal nuclear protein (NeuN), and ionized calcium-binding adapter molecule 1 (IBA1) in the spinal cord as indicators of apoptosis. The expression of the TLR4/MyD88 signaling pathway was detected by qRT-PCR and western blotting. Results: Significant differences were observed in the gut microbiota of SCI mice and normal mice. The gut microbiota of SCI mice was imbalanced. The levels of pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in SCI mice were increased, as was the level of the toxic induced nitric oxide synthase. The levels of anti-inflammatory factors IL-4, transforming growth factor-β, and IL-10 were decreased, as was the level of arginase-1. The apoptosis rates of GFAP, NeuN, and IBA1 were increased. The TLR4/MyD88 signaling pathway was activated. In the SCI group, inflammation increased after fecal transplantation, apoptosis of GFAP, NeuN, and IBA1 increased, and SCI was more serious. Conclusion: The TLR4/MyD88 signaling pathway promotes the death of nerve cells by inducing inflammation. Gut microbiota dysregulation can lead to aggravated SCI by activating the TLR4/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Zijie Rong
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China.,Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Yuliang Huang
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China.,Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, China
| | - Honghua Cai
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China.,Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Min Chen
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China.,Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Hao Wang
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China.,Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Guihua Liu
- Department of Spine Surgery, Huizhou Municipal Central Hospital, Huizhou, China.,Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China
| | - Zhiwen Zhang
- Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, China.,Department of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, China
| | - Jiawen Wu
- Department of Spine Surgery, The People's Hospital of Longhua, Shenzhen Longhua Clinical Medical College of Guangdong Medical University, Shenzhen, China
| |
Collapse
|
36
|
Spinal cord injury in mice impacts central and peripheral pathology in a severity-dependent manner. Pain 2021; 163:1172-1185. [PMID: 34490852 DOI: 10.1097/j.pain.0000000000002471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is a common medical complication experienced by those living with spinal cord injury (SCI) and leads to worsened quality of life. The pathophysiology of SCI pain is poorly understood, hampering the development of safe and efficacious therapeutics. We therefore sought to develop a clinically relevant model of SCI with a strong pain phenotype and characterize the central and peripheral pathology after injury. A contusion (50 kdyn) injury, with and without sustained compression (60 seconds) of the spinal cord, was carried out on female C57BL/6J mice. Mice with compression of the spinal cord exhibited significantly greater heat and mechanical hypersensitivity starting at 7 days post-injury, concomitant with reduced locomotor function, compared to those without compression. Immunohistochemical analysis of spinal cord tissue revealed significantly less myelin sparing and increased macrophage activation in mice with compression compared to those without. As measured by flow cytometry, immune cell infiltration and activation were significantly greater in the spinal cord (phagocytic myeloid cells and microglia) and dorsal root ganglia (Ly6C+ monocytes) following compression injury. We also decided to investigate the gastrointestinal microbiome, as it has been shown to be altered in SCI patients and has recently been shown to play a role in immune system maturation and pain. We found increased dysbiosis of the gastrointestinal microbiome in an injury severity-dependent manner. The use of this contusion-compression model of SCI may help advance the preclinical assessment of acute and chronic SCI pain and lead to a better understanding of mechanisms contributing to this pain.
Collapse
|
37
|
Fan Y, Xue G, Chen Q, Lu Y, Dong R, Yuan H. CY-09 Inhibits NLRP3 Inflammasome Activation to Relieve Pain via TRPA1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9806690. [PMID: 34426748 PMCID: PMC8380162 DOI: 10.1155/2021/9806690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/05/2021] [Accepted: 07/24/2021] [Indexed: 01/18/2023]
Abstract
Peripheral tissue damage leads to inflammatory pain, and inflammatory cytokine releasing is the key factor for inducing the sensitization of nociceptors. As a calcium ion channel, TRPA1 plays an important role in pain and inflammation, thus becoming a new type of anti-inflammatory and analgesic target. However, there is no consensus on the role of this channel in mechanical hyperalgesia caused by inflammation. Here, we aim to explore the role and underlying mechanism of the inflammasome inhibitor CY-09 in two classic inflammatory pain models. We evaluated pain behavior on animal models, cytokine levels, intracellular Ca2+ levels, transient TRPA1 expression, NF-κB transcription, and NLPR3 inflammasome activation. Consistently, CY-09 reduced the production of inflammatory cytokines, intracellular Ca2+ levels, and the activation of TRPA1 by inhibiting the activation of inflammasomes, thereby reducing the proinflammatory polarization of macrophages and alleviating animal pain and injury. Importantly, AITC (TRPA1 agonist) significantly reversed the analgesic effect of CY-09, indicating that TRPA1 was involved in the analgesic effect of CY-09. Our findings indicate that CY-09 relieves inflammation and pain via inhibiting TRPA1-mediated activation of NLRP3 inflammasomes. Thus, NLRP3 inflammasome may be a potential therapeutic target for pain treatment and CY-09 may be a pharmacological agent to relieve inflammatory pain, which needs further research.
Collapse
Affiliation(s)
- Youjia Fan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Gaici Xue
- Department of Neurosurgery, Southern Theater Command of the People's Liberation Army, Shanghai 510010, China
| | - Qianbo Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Naval Military Medical University, Shanghai 200438, China
| | - Ye Lu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Rong Dong
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
38
|
Ketogenesis controls mitochondrial gene expression and rescues mitochondrial bioenergetics after cervical spinal cord injury in rats. Sci Rep 2021; 11:16359. [PMID: 34381166 PMCID: PMC8357839 DOI: 10.1038/s41598-021-96003-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
A better understanding of the secondary injury mechanisms that occur after traumatic spinal cord injury (SCI) is essential for the development of novel neuroprotective strategies linked to the restoration of metabolic deficits. We and others have shown that Ketogenic diet (KD), a high fat, moderate in proteins and low in carbohydrates is neuroprotective and improves behavioural outcomes in rats with acute SCI. Ketones are alternative fuels for mitochondrial ATP generation, and can modulate signaling pathways via targeting specific receptors. Here, we demonstrate that ad libitum administration of KD for 7 days after SCI rescued mitochondrial respiratory capacity, increased parameters of mitochondrial biogenesis, affected the regulation of mitochondrial-related genes, and activated the NRF2-dependent antioxidant pathway. This study demonstrates that KD improves post-SCI metabolism by rescuing mitochondrial function and supports the potential of KD for treatment of acute SCI in humans.
Collapse
|
39
|
Vahideh Mirzaei, Eidi A, Manaheji H, Oryan S, Zaringhalam J. β-Hydroxybutyrate Attenuates Clinical Symptoms and Pain Behaviors in MOG-Induced Encephalomyelitis. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Correction. Br J Pharmacol 2021; 178:2371. [PMID: 33988853 DOI: 10.1111/bph.15501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Chen R, Yin C, Fang J, Liu B. The NLRP3 inflammasome: an emerging therapeutic target for chronic pain. J Neuroinflammation 2021; 18:84. [PMID: 33785039 PMCID: PMC8008529 DOI: 10.1186/s12974-021-02131-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic pain affects the life quality of the suffering patients and posts heavy problems to the health care system. Conventional medications are usually insufficient for chronic pain management and oftentimes results in many adverse effects. The NLRP3 inflammasome controls the processing of proinflammatory cytokine interleukin 1β (IL-1β) and is implicated in a variety of disease conditions. Recently, growing number of evidence suggests that NLRP3 inflammasome is dysregulated under chronic pain condition and contributes to pathogenesis of chronic pain. This review provides an up-to-date summary of the recent findings of the involvement of NLRP3 inflammasome in chronic pain and discussed the expression and regulation of NLRP3 inflammasome-related signaling components in chronic pain conditions. This review also summarized the successful therapeutic approaches that target against NLRP3 inflammasome for chronic pain treatment.
Collapse
Affiliation(s)
- Ruixiang Chen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China.
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
42
|
Chen P, Wang C, Ren YN, Ye ZJ, Jiang C, Wu ZB. Alterations in the gut microbiota and metabolite profiles in the context of neuropathic pain. Mol Brain 2021; 14:50. [PMID: 33750430 PMCID: PMC7941960 DOI: 10.1186/s13041-021-00765-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to explore the relationships among gut microbiota disturbances and serum and spinal cord metabolic disorders in neuropathic pain. 16S rDNA amplicon sequencing and serum and spinal cord metabolomics were used to identify alterations in the microbiota and metabolite profiles in the sham rats and the chronic constriction injury (CCI) model rats. Correlations between the abundances of gut microbiota components at the genus level, the levels of serum metabolites, and pain-related behavioural parameters were analysed. Ingenuity pathway analysis (IPA) was applied to analyse the interaction networks of the differentially expressed serum metabolites. First, we found that the composition of the gut microbiota was different between rats with CCI-induced neuropathic pain and sham controls. At the genus level, the abundances of Helicobacter, Phascolarctobacterium, Christensenella, Blautia, Streptococcus, Rothia and Lactobacillus were significantly increased, whereas the abundances of Ignatzschineria, Butyricimonas, Escherichia, AF12, and Corynebacterium were significantly decreased. Additionally, 72 significantly differentially expressed serum metabolites and 17 significantly differentially expressed spinal cord metabolites were identified between the CCI rats and the sham rats. Finally, correlation analysis showed that changes in the gut microbiota was significantly correlated with changes in serum metabolite levels, suggesting that dysbiosis of the gut microbiota is an important factor in modulating metabolic disturbances in the context of neuropathic pain. In conclusion, our research provides a novel perspective on the potential roles of the gut microbiota and related metabolites in neuropathic pain.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chen Wang
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Na Ren
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zeng-Jie Ye
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao Jiang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China.
| | - Zhi-Bing Wu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
43
|
Kong G, Liu J, Li R, Lin J, Huang Z, Yang Z, Wu X, Huang Z, Zhu Q, Wu X. Ketone Metabolite β-Hydroxybutyrate Ameliorates Inflammation After Spinal Cord Injury by Inhibiting the NLRP3 Inflammasome. Neurochem Res 2021; 46:213-229. [PMID: 33108630 DOI: 10.1007/s11064-020-03156-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/18/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Ketogenic diet (KD) has been shown to be beneficial in a range of neurological disorders, with ketone metabolite β-hydroxybutyrate (βOHB) reported to block the nucleotide oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in bone marrow-derived macrophages. In this study, we show that pretreatment with KD or in situ βOHB suppressed macrophages/microglia activation and the overproduction of inflammatory cytokines, while KD downregulated the expression of NLRP3 inflammasome. Moreover, KD promoted macrophages/microglia transformation from the M1 phenotype to the M2a phenotype following spinal cord injury (SCI) in the in vivo study. Rats in the KD group demonstrated improved behavioral and electrophysiological recovery after SCI when compared to those rats in the standard diet group. The in vitro study performed on BV2 cells indicated that βOHB inhibited an LPS+ATP-induced inflammatory response and decreased NLRP3 protein levels. Our data demonstrated that pretreatment with KD attenuated neuroinflammation following SCI, probably by inhibiting NLRP3 inflammasome and shifting the activation state of macrophages/microglia from the M1 to the M2a phenotype. Therefore, the ketone metabolite βOHB might provide a potential future therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ganggang Kong
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junhao Liu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Rong Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Junyu Lin
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zucheng Huang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zhou Yang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Xiuhua Wu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| | - Xiaoliang Wu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
44
|
Yarar-Fisher C, Li J, Womack ED, Alharbi A, Seira O, Kolehmainen KL, Plunet WT, Alaeiilkhchi N, Tetzlaff W. Ketogenic regimens for acute neurotraumatic events. Curr Opin Biotechnol 2021; 70:68-74. [PMID: 33445134 DOI: 10.1016/j.copbio.2020.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Dietary modification would be the most translatable, cost-efficient, and, likely, the safest approach available that can reduce the reliance on pharmaceutical treatments for treating acute or chronic neurological disorders. A wide variety of evidence suggests that the ketogenic diet (KD) could have beneficial effects in acute traumatic events, such as spinal cord injury and traumatic brain injury. Review of existing human and animal studies revealed that KD can improve motor neuro-recovery, gray matter sparing, pain thresholds, and neuroinflammation and decrease depression. Although the exact mechanism by which the KD provides neuroprotection is not fully understood, its effects on cellular energetics, mitochondria function and inflammation are likely to have a role.
Collapse
Affiliation(s)
- Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, School of Medicine, The University of Alabama at Birmingham, USA.
| | - Jia Li
- Department of Physical Medicine and Rehabilitation, School of Medicine, The University of Alabama at Birmingham, USA
| | - Erika D Womack
- Department of Physical Medicine and Rehabilitation, School of Medicine, The University of Alabama at Birmingham, USA
| | - Amal Alharbi
- Department of Physical Medicine and Rehabilitation, School of Medicine, The University of Alabama at Birmingham, USA; Graduate Program in School of Health Professions, The University of Alabama at Birmingham, 1716 9th Avenue South Birmingham, AL 35294, USA
| | - Oscar Seira
- International Collaboration on Repair Discoveries, University of British Columbia, Blusson Spinal Cord Centre, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada; Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Kathleen L Kolehmainen
- International Collaboration on Repair Discoveries, University of British Columbia, Blusson Spinal Cord Centre, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada; Graduate Program in Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ward T Plunet
- International Collaboration on Repair Discoveries, University of British Columbia, Blusson Spinal Cord Centre, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Nima Alaeiilkhchi
- International Collaboration on Repair Discoveries, University of British Columbia, Blusson Spinal Cord Centre, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada; Graduate Program in Neuroscience, University of British Columbia, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries, University of British Columbia, Blusson Spinal Cord Centre, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| |
Collapse
|
45
|
Bannerman CA, Douchant K, Sheth PM, Ghasemlou N. The gut-brain axis and beyond: Microbiome control of spinal cord injury pain in humans and rodents. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 9:100059. [PMID: 33426367 PMCID: PMC7779861 DOI: 10.1016/j.ynpai.2020.100059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury to the central nervous system in which 60 to 80% of patients experience chronic pain. Unfortunately, this pain is notoriously difficult to treat, with few effective options currently available. Patients are also commonly faced with various compounding injuries and medical challenges, often requiring frequent hospitalization and antibiotic treatment. Change in the gut microbiome from the "normal" state to one of imbalance, referred to as gut dysbiosis, has been found in both patients and rodent models following SCI. Similarities exist in the bacterial changes observed after SCI and other diseases with chronic pain as an outcome. These changes cause a shift in the regulation of inflammation, causing immune cell activation and secretion of inflammatory mediators that likely contribute to the generation/maintenance of SCI pain. Therefore, correcting gut dysbiosis may be used as a tool towards providing patients with effective pain management and improved quality of life.
Collapse
Affiliation(s)
- Courtney A. Bannerman
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Katya Douchant
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Prameet M. Sheth
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Division of Microbiology, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
46
|
From Obesity to Hippocampal Neurodegeneration: Pathogenesis and Non-Pharmacological Interventions. Int J Mol Sci 2020; 22:ijms22010201. [PMID: 33379163 PMCID: PMC7796248 DOI: 10.3390/ijms22010201] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
High-caloric diet and physical inactivity predispose individuals to obesity and diabetes, which are risk factors of hippocampal neurodegeneration and cognitive deficits. Along with the adipose-hippocampus crosstalk, chronically inflamed adipose tissue secretes inflammatory cytokine could trigger neuroinflammatory responses in the hippocampus, and in turn, impairs hippocampal neuroplasticity under obese and diabetic conditions. Hence, caloric restriction and physical exercise are critical non-pharmacological interventions to halt the pathogenesis from obesity to hippocampal neurodegeneration. In response to physical exercise, peripheral organs, including the adipose tissue, skeletal muscles, and liver, can secret numerous exerkines, which bring beneficial effects to metabolic and brain health. In this review, we summarized how chronic inflammation in adipose tissue could trigger neuroinflammation and hippocampal impairment, which potentially contribute to cognitive deficits in obese and diabetic conditions. We also discussed the potential mechanisms underlying the neurotrophic and neuroprotective effects of caloric restriction and physical exercise by counteracting neuroinflammation, plasticity deficits, and cognitive impairments. This review provides timely insights into how chronic metabolic disorders, like obesity, could impair brain health and cognitive functions in later life.
Collapse
|
47
|
Stubbs BJ, Koutnik AP, Goldberg EL, Upadhyay V, Turnbaugh PJ, Verdin E, Newman JC. Investigating Ketone Bodies as Immunometabolic Countermeasures against Respiratory Viral Infections. MED 2020; 1:43-65. [PMID: 32838361 PMCID: PMC7362813 DOI: 10.1016/j.medj.2020.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Respiratory viral infections remain a scourge, with seasonal influenza infecting millions and killing many thousands annually and viral pandemics, such as COVID-19, recurring every decade. Age, cardiovascular disease, and diabetes mellitus are risk factors for severe disease and death from viral infection. Immunometabolic therapies for these populations hold promise to reduce the risks of death and disability. Such interventions have pleiotropic effects that might not only target the virus itself but also enhance supportive care to reduce cardiopulmonary complications, improve cognitive resilience, and facilitate functional recovery. Ketone bodies are endogenous metabolites that maintain cellular energy but also feature drug-like signaling activities that affect immune activity, metabolism, and epigenetics. Here, we provide an overview of ketone body biology relevant to respiratory viral infection, focusing on influenza A and severe acute respiratory syndrome (SARS)-CoV-2, and discuss the opportunities, risks, and research gaps in the study of exogenous ketone bodies as novel immunometabolic interventions in these diseases.
Collapse
Affiliation(s)
| | - Andrew P Koutnik
- Institute for Human and Machine Cognition, Pensacola, FL, USA
- Department of Molecular Pharmacology and Physiology, USF, Tampa, FL, USA
| | | | - Vaibhav Upadhyay
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, UCSF, San Francisco, CA, USA
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - John C Newman
- Buck Institute for Research on Aging, Novato, CA, USA
- Division of Geriatrics, UCSF, San Francisco, CA, USA
| |
Collapse
|
48
|
Almeida-Suhett C, Namboodiri AM, Clarke K, Deuster PA. The ketone ester, 3-hydroxybutyl-3-hydroxybutyrate, attenuates neurobehavioral deficits and improves neuropathology following controlled cortical impact in male rats. Nutr Neurosci 2020; 25:1287-1299. [PMID: 33297891 DOI: 10.1080/1028415x.2020.1853414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of human death and disability with no effective therapy to fully prevent long-term neurological deficits in surviving patients. Ketone ester supplementation is protective in animal models of neurodegeneration, but its efficacy against TBI pathophysiology is unknown. Here, we assessed the neuroprotective effect of the ketone monoester, 3-hydroxybutyl-3-hydroxybutyrate, (KE) in male Sprague Dawley rats (n=32). TBI was induced using the controlled cortical impact (CCI) with Sham animals not receiving the brain impact. KE was administered daily by oral gavage (0.5 ml/kg/day) and provided ad libitum at 0.3% (v/v) in the drinking water. KE supplementation started immediately after TBI and lasted for the duration of the study. Motor and sensory deficits were assessed using the Neurobehavioral Severity Scale-Revised (NSS-R) at four weeks post-injury. The NSS-R total score in CCI + KE (1.2 ± 0.4) was significantly lower than in CCI + water (4.4 ± 0.5). Similarly, the NSS-R motor scores in CCI + KE (0.6 ± 0.7) were significantly lower than CCI + water (2.9 ± 1.5). Although the NSS-R sensory score in the CCI + KE group (0.5 ± 0.2) was significantly lower compared to CCI + water (1.8 ± 0.4), no difference was observed between CCI + water and Sham + water (1.0 ± 0.2) groups. The lesion volume was smaller in the CCI + KE (10 ± 3 mm3) compared to CCI + water (47 ± 11 mm3; p < 0.001). KE significantly decreased Iba1+ stained areas in the cortex and hippocampus, and GFAP+ stained areas in all brain regions analyzed - prefrontal cortex, hippocampus, cortex, amygdala (p < 0.01). In summary, our results indicate that KE can protect against TBI-induced morphological and functional deficits when administered immediately after an insult.
Collapse
Affiliation(s)
- Camila Almeida-Suhett
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Aryan M Namboodiri
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Kieran Clarke
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
49
|
Glial cell activation and altered metabolic profile in the spinal-trigeminal axis in a rat model of multiple sclerosis associated with the development of trigeminal sensitization. Brain Behav Immun 2020; 89:268-280. [PMID: 32659316 DOI: 10.1016/j.bbi.2020.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Trigeminal neuralgia is often an early symptom of multiple sclerosis (MS), and it generally does not correlate with the severity of the disease. Thus, whether it is triggered simply by demyelination in specific central nervous system areas is currently questioned. Our aims were to monitor the development of spontaneous trigeminal pain in an animal model of MS, and to analyze: i) glial cells, namely astrocytes and microglia in the central nervous system and satellite glial cells in the trigeminal ganglion, and ii) metabolic changes in the trigeminal system. The subcutaneous injection of recombinant MOG1-125 protein fragment to Dark Agouti male rats led to the development of relapsing-remitting EAE, with a first peak after 13 days, a remission stage from day 16 and a second peak from day 21. Interestingly, orofacial allodynia developed from day 1 post injection, i.e. well before the onset of EAE, and worsened over time, irrespective of the disease phase. Activation of glial cells both in the trigeminal ganglia and in the brainstem, with no signs of demyelination in the latter tissue, was observed along with metabolic alterations in the trigeminal ganglion. Our data show, for the first time, the spontaneous development of trigeminal sensitization before the onset of relapsing-remitting EAE in rats. Additionally, pain is maintained elevated during all stages of the disease, suggesting the existence of parallel mechanisms controlling motor symptoms and orofacial pain, likely involving glial cell activation and metabolic alterations which can contribute to trigger the sensitization of sensory neurons.
Collapse
|
50
|
Mitochondria focused neurotherapeutics for spinal cord injury. Exp Neurol 2020; 330:113332. [DOI: 10.1016/j.expneurol.2020.113332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
|