1
|
Liang Y, Ornatowski W, Lu Q, Sun X, Yegambaram M, Feng A, Dong Y, Aggarwal S, Unwalla HJ, Fineman JR, Black SM, Wang T. Chloroquine Restores eNOS Signaling in Shunt Endothelial Cells via Inhibiting eNOS Uncoupling. Int J Mol Sci 2025; 26:1352. [PMID: 39941119 PMCID: PMC11818845 DOI: 10.3390/ijms26031352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by increased lung vascular stiffness and impaired vessel relaxation, primarily due to reduced nitric oxide (NO) production in endothelial cells. Recent studies indicate that chloroquine, an autophagy inhibitor, may help lower pulmonary arterial pressure and enhance lung vascular function. This study investigates the mechanisms underlying the chloroquine-mediated restoration of NO bioavailability in endothelial cells derived from aortopulmonary shunt lambs, a relevant model for congenital heart defect (CHD)-associated PAH. We found that NO production was significantly reduced in shunt pulmonary artery endothelial cells (PAECs), attributable to decreased levels of tetrahydrobiopterin (BH4) and diminished expression of GTP cyclohydrolase 1 (GCH1), despite a slight increase in endothelial nitric oxide synthase (eNOS) levels. Chloroquine robustly restored endothelial NO production, which correlated with increased BH4 levels and restored GCH1 expression. The mechanistically upregulated carboxyl terminus of Hsp70-interacting protein (CHIP) in shunt PAECs is responsible for heightened GCH1 degradation, and chloroquine disrupted the assembly of the GCH1-HSP70-CHIP complex to preserve cellular GCH1. Similarly, another autophagy inhibitor, bafilomycin A1, demonstrated comparable effects. These findings suggest that autophagy inhibition can effectively enhance NO synthesis in endothelial cells experiencing depleted NO bioavailability, presenting a potential therapeutic strategy for managing PAH.
Collapse
Affiliation(s)
- Ying Liang
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Wojciech Ornatowski
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Xutong Sun
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Manivannan Yegambaram
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Anlin Feng
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Yishu Dong
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Stephen M. Black
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
2
|
Li H, Li X, Sun Y, Zhi Z, Song L, Li M, Feng Y, Zhang Z, Liu Y, Chen Y, Zhao F, Zhu T. The Role of Ion Channels in Pulmonary Hypertension: A Review. Pulm Circ 2025; 15:e70050. [PMID: 39958971 PMCID: PMC11830494 DOI: 10.1002/pul2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/16/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025] Open
Abstract
Pulmonary hypertension (PH) constitutes a critical challenge in cardiopulmonary medicine with a pathogenesis that is multifaceted and intricate. Ion channels, crucial determinants of cellular electrochemical gradient modulation, have emerged as significant participants in the pathophysiological progression of PH. These channels, abundant on the membranes of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs), pivotally navigate the nuanced interplay of cell proliferation, migration, and endothelial function, each vital to the pulmonary vascular remodeling (PVR) hallmark of PH. Our review delves into the mechanistic insights of potassium, calcium, magnesium, zinc, and chloride ion channels in relation to their involvement in PH. It not only emphasizes the notable advances and discoveries that cast these ion channels as underlying factors in the etiology and exacerbation of PH but also highlights their potential as innovative therapeutic targets.
Collapse
Affiliation(s)
- Han‐Fei Li
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Xin‐Yao Li
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Yu‐Qing Sun
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Ze‐Ying Zhi
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Liao‐Fan Song
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Meng Li
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Yi‐Ming Feng
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Zhi‐Hao Zhang
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Yan‐Feng Liu
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Yu‐Jing Chen
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Fan‐Rong Zhao
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Tian‐Tian Zhu
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
- Department of PharmacyThe First Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| |
Collapse
|
3
|
He L, Zhong Z, Wen S, Li P, Jiang Q, Liu F. Gut microbiota-derived butyrate restores impaired regulatory T cells in patients with AChR myasthenia gravis via mTOR-mediated autophagy. Cell Commun Signal 2024; 22:215. [PMID: 38570836 PMCID: PMC10988943 DOI: 10.1186/s12964-024-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/23/2024] [Indexed: 04/05/2024] Open
Abstract
More than 80% of patients with myasthenia gravis (MG) are positive for anti-acetylcholine receptor (AChR) antibodies. Regulatory T cells (Tregs) suppress overproduction of these antibodies, and patients with AChR antibody-positive MG (AChR MG) exhibit impaired Treg function and reduced Treg numbers. The gut microbiota and their metabolites play a crucial role in maintaining Treg differentiation and function. However, whether impaired Tregs correlate with gut microbiota activity in patients with AChR MG remains unknown. Here, we demonstrate that butyric acid-producing gut bacteria and serum butyric acid level are reduced in patients with AChR MG. Butyrate supplementation effectively enhanced Treg differentiation and their suppressive function of AChR MG. Mechanistically, butyrate activates autophagy of Treg cells by inhibiting the mammalian target of rapamycin. Activation of autophagy increased oxidative phosphorylation and surface expression of cytotoxic T-lymphocyte-associated protein 4 on Treg cells, thereby promoting Treg differentiation and their suppressive function in AChR MG. This observed effect of butyrate was blocked using chloroquine, an autophagy inhibitor, suggesting the vital role of butyrate-activated autophagy in Tregs of patients with AChR MG. We propose that gut bacteria derived butyrate has potential therapeutic efficacy against AChR MG by restoring impaired Tregs.
Collapse
Affiliation(s)
- Long He
- Department of Digestive Endoscopy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Postdoctoral Research Station of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China
| | - Zhuotai Zhong
- Department of Gastroenterology, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Wangjing Zhonghuan South Road, Futong East Street, Chaoyang District, Beijing City, China
| | - Shuting Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55, Inner Ring West Road, Panyu District, Guangzhou, Guangzhou, Guangdong Province, 511400, China
| | - Peiwu Li
- Department of Hepatobiliary, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
| | - Qilong Jiang
- Department of Myopathies, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
| | - Fengbin Liu
- Department of Hepatobiliary, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
- Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 2 He Longqi Road, Renhe, Baiyun District, Guangzhou, 510000, China.
- Institute of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 12 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
| |
Collapse
|
4
|
Yang J, Xu J, Xu S, Fan Z, Zhu C, Wan J, Yang J, Xing X. Oxidative stress in acute pulmonary embolism: emerging roles and therapeutic implications. Thromb J 2024; 22:9. [PMID: 38216919 PMCID: PMC10785361 DOI: 10.1186/s12959-023-00577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/25/2023] [Indexed: 01/14/2024] Open
Abstract
Oxidative stress is an imbalance between the body's reactive oxygen species and antioxidant defense mechanisms. Oxidative stress is involved in the development of several cardiovascular diseases, such as pulmonary hypertension, atherosclerosis, and diabetes mellitus. A growing number of studies have suggested the potential role of oxidative stress in the pathogenesis of pulmonary embolism. Biomarkers of oxidative stress in pulmonary embolism have also been explored, such as matrix metalloproteinases, asymmetric dimethylarginine, and neutrophil/lymphocyte ratio. Here, we comprehensively summarize some oxidative stress mechanisms and biomarkers in the development of acute pulmonary embolism and summarize related treatments based on antioxidant stress to explore effective treatment strategies for acute pulmonary embolism.
Collapse
Affiliation(s)
- Jingchao Yang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Jinzhu Xu
- Department of Pulmonary and Critical Care Medicine, Yuxi Municipal Hospital of T.C. M, 653100, Yuxi, China
| | - Shuanglan Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Yunnan University, 650021, Kunming, China
| | - Zeqin Fan
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Yunnan University, 650021, Kunming, China
| | - Chenshao Zhu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Jianyuan Wan
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Jiao Yang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
| | - Xiqian Xing
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Yunnan University, 650021, Kunming, China.
| |
Collapse
|
5
|
Evlakhov VI, Poyasov IZ, Berezina TP. Pulmonary Microcirculation in Experimental Model of Pulmonary Thromboembolism after Pretreatment with Chloroquine. Bull Exp Biol Med 2023; 175:300-303. [PMID: 37561377 DOI: 10.1007/s10517-023-05856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 08/11/2023]
Abstract
Changes of pulmonary microcirculation in response to pulmonary artery embolization after pretreatment with chloroquine were studied on the model of isolated perfused rabbit lungs. The increase in the pulmonary vascular resistance and pre- and postcapillary resistance was less pronounced than after pulmonary thromboembolism after pretreatment with mibefradil (T-type Ca2+ channels blocker) or nifedipine (L-type Ca2+ channels blocker). The shifts of capillary filtration coefficient correlated with changes in the precapillary resistance. When modeling pulmonary thromboembolism after pretreatment with chloroquine combined with glibenclamide (KATP channels blocker), the studied hemodynamics parameters increased to the same extent as after pretreatment with nifedipine. The results indicate that chloroquine exhibits the properties of an L- and T-type Ca2+ channels blocker and an activator of KATP channels.
Collapse
Affiliation(s)
- V I Evlakhov
- Laboratory of Visceral System Physiology, Institute of Experimental Medicine, St. Petersburg, Russia.
| | - I Z Poyasov
- Laboratory of Visceral System Physiology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - T P Berezina
- Laboratory of Visceral System Physiology, Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
6
|
Mao M, Song S, Li X, Lu J, Li J, Zhao W, Liu H, Liu J, Zeng B. Advances in epigenetic modifications of autophagic process in pulmonary hypertension. Front Immunol 2023; 14:1206406. [PMID: 37398657 PMCID: PMC10313199 DOI: 10.3389/fimmu.2023.1206406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Pulmonary hypertension is characterized by pulmonary arterial remodeling that results in increased pulmonary vascular resistance, right ventricular failure, and premature death. It is a threat to public health globally. Autophagy, as a highly conserved self-digestion process, plays crucial roles with autophagy-related (ATG) proteins in various diseases. The components of autophagy in the cytoplasm have been studied for decades and multiple studies have provided evidence of the importance of autophagic dysfunction in pulmonary hypertension. The status of autophagy plays a dynamic suppressive or promotive role in different contexts and stages of pulmonary hypertension development. Although the components of autophagy have been well studied, the molecular basis for the epigenetic regulation of autophagy is less understood and has drawn increasing attention in recent years. Epigenetic mechanisms include histone modifications, chromatin modifications, DNA methylation, RNA alternative splicing, and non-coding RNAs, which control gene activity and the development of an organism. In this review, we summarize the current research progress on epigenetic modifications in the autophagic process, which have the potential to be crucial and powerful therapeutic targets against the autophagic process in pulmonary hypertension development.
Collapse
Affiliation(s)
- Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayao Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jie Li
- Marketing Department, Shenzhen Reyson Biotechnology Co., Ltd, Shenzhen, China
- Nanjing Evertop Electronics Ltd., Nanjing, China
| | - Weifang Zhao
- Quality Management Department International Registration, North China Pharmaceutical Co., Ltd. (NCPC), Hebei Huamin Pharmaceutical Co., Ltd., Shijiazhuang, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingxin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
7
|
Zhang J, Li Y, Chen Y, Yu X, Wang S, Sun H, Zheng X, Zhang L, Wang Y, Zhu D. Circ-calm4 regulates hypoxia-induced pulmonary artery smooth muscle autophagy by binding Purb. J Mol Cell Cardiol 2023; 176:41-54. [PMID: 36716953 DOI: 10.1016/j.yjmcc.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023]
Abstract
Pulmonary hypertension (PH) is a serious and fatal disease characterized by pulmonary vasoconstriction and pulmonary vascular remodeling. The excessive autophagy of pulmonary artery smooth muscle cells (PASMCs) is one of the important factors of pulmonary vascular remodeling. A number of studies have shown that circular RNA (circRNA) can participate in the onset of PH. Our previous studies have shown that circRNA calmodulin 4 (circ-calm4) is involved in the progression of hypoxic PH. However, the role of circ-calm4 on regulation of hypoxic PH autophagy has not been reported. In this study, we demonstrated for the first time that hypoxia-mediated upregulated circ-calm4 expression has a key regulatory effect on autophagy in hypoxia-induced PASMCs and hypoxic PH mouse models. Knockdown of circ-calm4 both in vivo and in vitro can inhibit the autophagy in PASMCs induced by hypoxia. We also performed bioinformatics predictions and conducted experiments to verify that circ-calm4 bound to the purine-rich binding protein (Purb) to promote its expression in the nucleus, thereby initiating the transcription of autophagy-related protein Beclin1. Interestingly, we found that Beclin1 transcription initiated by Purb was accompanied by a modification of Beclin1 super-enhancer to improve transcription activity and efficiency. Overall, our results confirm that the circ-calm4/Purb/Beclin1 signal axis is involved in the occurrence of hypoxia-induced PASMCs autophagy, and the novel regulatory mechanisms and signals transduction pathways in PASMC autophagy induced by hypoxia.
Collapse
Affiliation(s)
- Junting Zhang
- College of Pharmacy, Harbin Medical University, PR China; Central Laboratory of Harbin Medical University (Daqing), PR China
| | - Yiying Li
- College of Pharmacy, Harbin Medical University, PR China; Central Laboratory of Harbin Medical University (Daqing), PR China
| | - Yujie Chen
- College of Pharmacy, Harbin Medical University, PR China; Central Laboratory of Harbin Medical University (Daqing), PR China
| | - Xiufeng Yu
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), PR China; Central Laboratory of Harbin Medical University (Daqing), PR China
| | - Shanshan Wang
- College of Pharmacy, Harbin Medical University, PR China; Central Laboratory of Harbin Medical University (Daqing), PR China
| | - Hanliang Sun
- College of Pharmacy, Harbin Medical University, PR China; Central Laboratory of Harbin Medical University (Daqing), PR China
| | - Xiaodong Zheng
- Department of Pharmacology, Harbin Medical University (Daqing), PR China
| | - Lixin Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), PR China; Central Laboratory of Harbin Medical University (Daqing), PR China
| | - Yifan Wang
- Central Laboratory of Harbin Medical University (Daqing), PR China
| | - Daling Zhu
- College of Pharmacy, Harbin Medical University, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), PR China; Central Laboratory of Harbin Medical University (Daqing), PR China; State Province Key Laboratories of Biomedicine-Pharmaceutics of China, PR China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, PR China..
| |
Collapse
|
8
|
Huang WC, Hsieh SC, Wu YW, Hsieh TY, Wu YJ, Li KJ, Charng MJ, Chen WS, Sung SH, Tsao YP, Ho WJ, Lai CC, Cheng CC, Tsai HC, Hsu CH, Lu CH, Chiu YW, Shen CY, Wu CH, Liu FC, Lin YH, Yeh FC, Liu WS, Lee HT, Wu SH, Chang CC, Chu CY, Hou CJY, Tsai CY. 2023 Taiwan Society of Cardiology (TSOC) and Taiwan College of Rheumatology (TCR) Joint Consensus on Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. ACTA CARDIOLOGICA SINICA 2023; 39:213-241. [PMID: 36911549 PMCID: PMC9999177 DOI: 10.6515/acs.202303_39(2).20230117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 03/14/2023]
Abstract
Background Pulmonary arterial hypertension (PAH), defined as the presence of a mean pulmonary artery pressure > 20 mmHg, pulmonary artery wedge pressure ≤ 15 mmHg, and pulmonary vascular resistance (PVR) > 2 Wood units based on expert consensus, is characterized by a progressive and sustained increase in PVR, which may lead to right heart failure and death. PAH is a well-known complication of connective tissue diseases (CTDs), such as systemic sclerosis, systemic lupus erythematosus, Sjogren's syndrome, and other autoimmune conditions. In the past few years, tremendous progress in the understanding of PAH pathogenesis has been made, with various novel diagnostic and screening methods for the early detection of PAH proposed worldwide. Objectives This study aimed to obtain a comprehensive understanding and provide recommendations for the management of CTD-PAH in Taiwan, focusing on its clinical importance, prognosis, risk stratification, diagnostic and screening algorithm, and pharmacological treatment. Methods The members of the Taiwan Society of Cardiology (TSOC) and Taiwan College of Rheumatology (TCR) reviewed the related literature thoroughly and integrated clinical trial evidence and real-world clinical experience for the development of this consensus. Conclusions Early detection by regularly screening at-risk patients with incorporations of relevant autoantibodies and biomarkers may lead to better outcomes of CTD-PAH. This consensus proposed specific screening flowcharts for different types of CTDs, the risk assessment tools applicable to the clinical scenario in Taiwan, and a recommendation of medications in the management of CTD-PAH.
Collapse
Affiliation(s)
- Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei
- Department of Physical Therapy, Fooyin University, Kaohsiung
| | - Song-Chou Hsieh
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Yen-Wen Wu
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan
| | - Tsu-Yi Hsieh
- Attending Physician of Division of Allergy-Immunology-Rheumatology, Department of Internal Medicine
- Director of Division of Clinical Training, Department of Medical Education, Taichung Veterans General Hospital
- Program of Business, College of Business, Feng Chia University, Taichung
| | - Yih-Jer Wu
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
- Department of Medicine, MacKay Medical College, New Taipei City
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital
- National Taiwan University, College of Medicine
| | - Min-Ji Charng
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei
- Division of Cardiology
| | - Wei-Sheng Chen
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei
- Division of Allergy, Immunology and Rheumatology
| | - Shih-Hsien Sung
- Department of Medicine, Taipei Veterans General Hospital
- Institute of Emergency and Critical Care Medicine
| | - Yen-Po Tsao
- Division of Allergy, Immunology and Rheumatology
- Institutes of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Wan-Jing Ho
- Department of Cardiology, Chang Gung Memorial Hospital
- College of Medicine, Chang Gung University, Taoyuan
| | - Chien-Chih Lai
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei
- Division of Allergy, Immunology and Rheumatology
| | - Chin-Chang Cheng
- Department of Internal Medicine, Pingtung Veteran General Hospital, Pingtung
| | - Hung-Cheng Tsai
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei
- Division of Allergy, Immunology and Rheumatology
| | - Chih-Hsin Hsu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Cheng-Hsun Lu
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei
| | - Yu-Wei Chiu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan
| | - Chieh-Yu Shen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei
- National Taiwan University, College of Medicine
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine
- Department of General Medicine, Tri-Service General Hospital, National Defense Medical Center
- Graduate Institute of Medical Sciences, National Defense Medical Center
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
- Cardiovascular Center, National Taiwan University Hospital, Taipei
| | - Fu-Chiang Yeh
- Division of Rheumatology/Immunology and Allergy, Department of Medicine
| | - Wei-Shin Liu
- Division of Cardiology, Tzu-Chi General Hospital, Hualien
| | - Hui-Ting Lee
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
- Department of Medicine, MacKay Medical College, New Taipei City
| | - Shu-Hao Wu
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
- Department of Medicine, MacKay Medical College, New Taipei City
| | - Chi-Ching Chang
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University
- Division of Rheumatology, Immunology, and Allergy, Department of Internal Medicine, Taipei Medical University Hospital, Taipei
| | - Chun-Yuan Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital
- Faculty of Medicine
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Charles Jia-Yin Hou
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
- MacKay Medical College
| | - Chang-Youh Tsai
- Division of Immunology & Rheumatology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| |
Collapse
|
9
|
Kang C, Ju S, Kim J, Jung Y. Chloroquine prevents hypoxic accumulation of HIF-1α by inhibiting ATR kinase: implication in chloroquine-mediated chemosensitization of colon carcinoma cells under hypoxia. Pharmacol Rep 2023; 75:211-221. [PMID: 36508076 DOI: 10.1007/s43440-022-00441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chloroquine (CQ) is an effective and safe antimalarial drug that is also used as a disease-modifying antirheumatic drug. Recent studies have shown that CQ can sensitize cancer cells to anti-cancer therapies. METHODS In this study, we investigated the molecular mechanisms underlying CQ-mediated chemosensitization in human colon carcinoma cells. RESULTS CQ prevented hypoxia-inducible factor (HIF)-1α protein induction in human colon carcinoma cells. CQ also suppressed HIF-1 activity, as represented by CQ inhibition of HIF-1-dependent luciferase activity and reduced induction of vascular endothelial growth factor. Under hypoxia, CQ restricted HIF-1α synthesis but did not affect HIF-1α transcription and protein stability. The hypoxic state activated ataxia telangiectasia and Rad3-related (ATR) kinase and increased the level of phosphorylated checkpoint kinase 1, a substrate of ATR kinase; however, this was prevented by CQ. An ATR kinase inhibitor suppressed the hypoxic induction of HIF-1α protein and was as effective as CQ. The cytotoxicity of 5-fluorouracil (5-FU), the first choice for the treatment of colorectal cancer, was attenuated under hypoxia. CQ enhanced the cytotoxicity of 5-FU treatment, which was mimicked by the transient transfection with HIF-1α siRNA. CONCLUSIONS Under hypoxia, CQ-mediated sensitization of colon carcinoma HCT116 cells to 5-FU involves HIF-1 inhibition via ATR kinase suppression.
Collapse
Affiliation(s)
- Changyu Kang
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
10
|
Bao C, Liang S, Han Y, Yang Z, Liu S, Sun Y, Zheng S, Li Y, Wang T, Gu Y, Wu K, Black SM, Wang J, Nawrocki ST, Carew JS, Yuan JXJ, Tang H. The Novel Lysosomal Autophagy Inhibitor (ROC-325) Ameliorates Experimental Pulmonary Hypertension. Hypertension 2023; 80:70-83. [PMID: 36345832 DOI: 10.1161/hypertensionaha.122.19397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Autophagy plays an important role in the pathogenesis of pulmonary hypertension (PH). ROC-325 is a novel small molecule lysosomal autophagy inhibitor that has more potent anticancer activity than the antimalarial drug hydroxychloroquine, the latter has been prevalently used to inhibit autophagy. Here, we sought to determine the therapeutic benefit and mechanism of action of ROC-325 in experimental PH models. METHODS AND RESULTS Hemodynamics, echocardiography, and histology measurement showed that ROC-325 treatment prevented the development of PH, right ventricular hypertrophy, fibrosis, dysfunction, and vascular remodeling after monocrotaline and Sugen5416/hypoxia administration. ROC-325 attenuated high K+ or alveolar hypoxia-induced pulmonary vasoconstriction and enhanced endothelial-dependent relaxation in isolated pulmonary artery rings. ROC-325 treatment inhibited autophagy and enhanced endothelial nitric oxide synthase activity in lung tissues of monocrotaline-PH rats. In cultured human and rat pulmonary arterial smooth muscle cell and pulmonary arterial endothelial cell under hypoxia exposure, ROC-325 increased LC3B (light chain 3 beta) and p62 accumulation, endothelial cell nitric oxide production via phosphorylation of endothelial nitric oxide synthase (Ser1177) and dephosphorylation of endothelial nitric oxide synthase (Thr495) as well as decreased HIF (hypoxia-inducible factor)-1α and HIF-2α stabilization. CONCLUSIONS These data indicate that ROC-325 is a promising novel agent for the treatment of PH that inhibits autophagy, downregulates HIF levels, and increases nitric oxide production.
Collapse
Affiliation(s)
- Changlei Bao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.).,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China (C.B., S.L., Y.S., S.Z.)
| | - Shuxin Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.)
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, China (Y.H.)
| | - Zi Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.)
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.).,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China (C.B., S.L., Y.S., S.Z.)
| | - Yanan Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.).,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China (C.B., S.L., Y.S., S.Z.)
| | - Shichuang Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.).,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China (C.B., S.L., Y.S., S.Z.)
| | - Yuzhu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.)
| | - Ting Wang
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Miami, FL (T.W., S.M.B.).,Center for Translational Science and Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL (T.W., S.M.B.)
| | - Yali Gu
- Banner University of Arizona Medical Center, Tucson, AZ (Y.G.)
| | - Kang Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.)
| | - Stephen M Black
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Miami, FL (T.W., S.M.B.).,Center for Translational Science and Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL (T.W., S.M.B.)
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.)
| | | | - Jennifer S Carew
- University of Arizona Cancer Center, Tucson, AZ (S.T.N., J.S.C.)
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, CA (J.X.-J.)
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China (C.B., S.L., Z.Y., S.L., Y.S., S.Z., Y.L., K.W., J.W., H.T.)
| |
Collapse
|
11
|
Wang J, Jing X, Hua L, Zheng Y, Hu S, Xiao J, Guo D, Wu W, Ji H, Peng L, Jiang S, Gao X. Hypertension related toxicity of chloroquine explains its failure against COVID-19: Based on rat model. Front Pharmacol 2022; 13:1051694. [PMID: 36532753 PMCID: PMC9748293 DOI: 10.3389/fphar.2022.1051694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/17/2022] [Indexed: 09/10/2024] Open
Abstract
Chloroquine was once thought to be a promising treatment for COVID-19 but it quickly failed due to its inefficiency and association with increased mortality. Further, comorbidities such as hypertension may have contributed this failure. The safety and toxicity of chloroquine at doses required for treating SARS-CoV-2 infection in hypertensive patients remain unknown. Herein, to investigate these effects, we performed a safety evaluation of chloroquine at the approved dose (63 mg/kg) and at a high dose (126 mg/kg) in hypertensive rats. We found that chloroquine increased the mortality of hypertensive rats to 18.2% and 100%, respectively, after 7 days. During the chloroquine exposure period, the bodyweight, feed, and water consumption of hypertensive rats were decreased significantly. In addition, we show that chloroquine induces prolongation of QTc interval, elevation of LDH and CK, and histopathological damage of the myocardium in hypertensive rats. Ocular toxicity was observed in hypertensive rats in the form of hemorrhage in the eyes and retinal damage. Furthermore, we also observed intestinal toxicity in hypertensive rats, which presented as thinning intestinal walls with hemorrhagic contents, and histopathological changes of the jejunum. Hepatotoxicity was also evidenced by elevated ALT, and vacuolization of hepatocytes was also observed. Nephrotoxicity was observed only in high dose chloroquine-treated hypertensive rats, presenting as alterations of urinalysis and renal function. Immune alterations were also found in high-dose chloroquine-treated hypertensive rats with elevation of serum IL-10, IL-1β and GRO, and moderate damage to the spleen. In summary, this study partially explains the reason for the failure of chloroquine as a COVID-19 therapy, and underlines the importance of safety evaluation and medical supervision of chloroquine to avoid patient harm, especially to those with hypertension.
Collapse
Affiliation(s)
- Junqi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| | - Xian Jing
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| | - Lizhong Hua
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
| | - Yuling Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| | - Shiheng Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| | - Jing Xiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| | - Dawei Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| | - Hui Ji
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| | - Lin Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| | - Shanxiang Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| | - Xiuge Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Kwon Y, Haam CE, Byeon S, Choi SK, Lee YH. Effects of 3-methyladenine, an autophagy inhibitor, on the elevated blood pressure and arterial dysfunction of angiotensin II-induced hypertensive mice. Biomed Pharmacother 2022; 154:113588. [PMID: 35994821 DOI: 10.1016/j.biopha.2022.113588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Autophagy is an intracellular degradation system that disassembles cytoplasmic components through autophagosomes fused with lysosomes. Recently, it has been reported that autophagy is associated with cardiovascular diseases, including pulmonary hypertension, atherosclerosis, and myocardial ischemia. However, the involvement of autophagy in hypertension is not well understood. In the present study, we hypothesized that excessive autophagy contributes to the dysfunction of mesenteric arteries in angiotensin II (Ang II)-induced hypertensive mice. Treatment of an autophagy inhibitor, 3-methyladenine (3-MA), reduced the elevated blood pressure and wall thickness, and improved endothelium-dependent relaxation in mesenteric arteries of Ang II-treated mice. The expression levels of autophagy markers, beclin1 and LC3 II, were significantly increased by Ang II infusion, which was reduced by treatment of 3-MA. Furthermore, treatment of 3-MA induced vasodilation in the mesenteric resistance arteries pre-contracted with U46619 or phenylephrine, which was dependent on endothelium. Interestingly, nitric oxide production and phosphorylated endothelial nitric oxide synthase (p-eNOS) at S1177 in the mesenteric arteries of Ang II-treated mice were increased by treatment with 3-MA. In HUVECs, p-eNOS was reduced by Ang II, which was increased by treatment of 3-MA. 3-MA had direct vasodilatory effect on the pre-contracted mesenteric arteries. In cultured vascular smooth muscle cells (VSMCs), Ang II induced increase in beclin1 and LC3 II and decrease in p62, which was reversed by treatment of 3-MA. These results suggest that autophagy inhibition exerts beneficial effects on the dysfunction of mesenteric arteries in hypertension.
Collapse
Affiliation(s)
- Youngin Kwon
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, the Republic of the Korea
| | - Chae Eun Haam
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, the Republic of the Korea
| | - Seonhee Byeon
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, the Republic of the Korea
| | - Soo-Kyoung Choi
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, the Republic of the Korea.
| | - Young-Ho Lee
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, the Republic of the Korea.
| |
Collapse
|
13
|
Artemisinin and Its Derivate Alleviate Pulmonary Hypertension and Vasoconstriction in Rodent Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2782429. [PMID: 35757500 PMCID: PMC9232380 DOI: 10.1155/2022/2782429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/20/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Background Pulmonary arterial hypertension (PAH) is a complex pulmonary vasculature disease characterized by progressive obliteration of small pulmonary arteries and persistent increase in pulmonary vascular resistance, resulting in right heart failure and death if left untreated. Artemisinin (ARS) and its derivatives, which are common antimalarial drugs, have been found to possess a broad range of biological effects. Here, we sought to determine the therapeutic benefit and mechanism of ARS and its derivatives treatment in experimental pulmonary hypertension (PH) models. Methods Isolated perfused/ventilated lung and isometric tension measurements in arteries were performed to test pulmonary vasoconstriction and relaxation. Monocrotaline (MCT) and hypoxia+Su5416 (SuHx) were administered to rats to induce severe PH. Evaluation methods of ARS treatment and its derivatives in animal models include echocardiography, hemodynamics measurement, and histological staining. In vitro, the effect of these drugs on proliferation, viability, and hypoxia-inducible factor 1α (HIF1α) was examined in human pulmonary arterial smooth muscle cells (hPASMCs). Results ARS treatment attenuated pulmonary vasoconstriction induced by high K+ solution or alveolar hypoxia, decreased pulmonary artery (PA) basal vascular tension, improved acetylcholine- (ACh-) induced endothelial-dependent relaxation, increased endothelial nitric oxide (NO) synthase (eNOS) activity and NO levels, and decreased levels of NAD(P)H oxidase subunits (NOX2 and NOX4) expression, NAD(P)H oxidase activity, and reactive oxygen species (ROS) levels of pulmonary arteries (PAs) in MCT-PH rats. NOS inhibitor, L-NAME, abrogated the effects of ARS on PA constriction and relaxation. Furthermore, chronic application of both ARS and its derivative dihydroartemisinin (DHA) attenuated right ventricular systolic pressure (RVSP), Fulton index (right ventricular hypertrophy), and vascular remodeling of PAs in the two rat PH models. In addition, DHA inhibited proliferation and migration of hypoxia-induced PASMCs. Conclusions In conclusion, these results indicate that treatment with ARS or DHA can inhibit PA vasoconstriction, PASMC proliferation and migration, and vascular remodeling, as well as improve PA endothelium-dependent relaxation, and eventually attenuate the development and progression of PH. These effects might be achieved by decreasing NAD(P)H oxidase generated ROS production and increasing eNOS activation to release NO in PAs. ARS and its derivatives might have the potential to be novel drugs for the treatment of PH.
Collapse
|
14
|
Li H, Li X, Hao Y, Wu C, Fu Y, Su N, Chen H, Ying B, Wang H, Su L, Cai H, He Q, Cai M, Sun J, Lin J, Scott A, Smith F, Huang X, Jin S. Maresin 1 intervention Reverses Experimental Pulmonary Arterial Hypertension in mice. Br J Pharmacol 2022; 179:5132-5147. [PMID: 35764296 DOI: 10.1111/bph.15906] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH) is a pulmonary vasculature obstructive disease that leads to right heart failure and death. Maresin 1 is an endogenous lipid mediator known to promote inflammation resolution. However, the effect of Maresin 1 on PAH remains unclear. EXPERIMENTAL APPROACH The serum Maresin 1 concentration was assessed using UPLC. A mouse model of PAH was established by combining the Sugen 5416 injection and hypoxia exposure (SuHx). After treatment with Maresin 1, the right ventricular systolic pressure (RVSP) and right ventricular function were measured by hemodynamic measurement and echocardiography, respectively. Vascular remodeling was evaluated by histological staining. Confocal and western blot were used to test related protein expression. In vitro, cell migration, proliferation and apoptosis assays were performed in primary rat pulmonary artery smooth muscle cells (PASMCs). Western blotting and siRNA transfection were used to clarify the mechanism of Maresin 1. KEY RESULTS Endogenous serum Maresin 1 was decreased in PAH patients and mice. Maresin 1 treatment decreased RVSP and attenuated the right ventricular dysfunction (RVD) in murine PAH model. Maresin 1 reversed abnormal changes in pulmonary vascular remodeling, attenuating endothelial to mesenchymal transformation (EndoMT) and enhancing apoptosis of α-SMA positive cells. Furthermore, Maresin 1 inhibited PASMC proliferation and promoted apoptosis by inhibiting STAT, AKT, ERK and FoxO1 phosphorylation via LGR6. CONCLUSION AND IMPLICATIONS Maresin 1 improved abnormal pulmonary vascular remodeling and right ventricular dysfunction in PAH mice, targeting aberrant PASMC proliferation. This suggests Maresin 1 may have a potent therapeutic effect in vascular disease.
Collapse
Affiliation(s)
- Hui Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Hao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghua Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuhao Fu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nana Su
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Houlin Chen
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Binyu Ying
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haixing Wang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lihuang Su
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Haijian Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Qinlian He
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Mengsi Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Junwei Sun
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Jing Lin
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aaron Scott
- The Birmingham Acute Care Research (BACR) Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Academic Department of Anaesthesia, Critical Care, Pain and Resuscitation, Birmingham Heartlands Hospital, Heart of England National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Fanggao Smith
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Birmingham Acute Care Research (BACR) Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Academic Department of Anaesthesia, Critical Care, Pain and Resuscitation, Birmingham Heartlands Hospital, Heart of England National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China
| | - Shengwei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Geng C, Feng Y, Yang Y, Yang H, Li Z, Tang Y, Wang J, Zhao H. Allergic asthma aggravates angiotensin Ⅱ-induced cardiac remodeling in mice. Transl Res 2022; 244:88-100. [PMID: 35108660 DOI: 10.1016/j.trsl.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Cardiovascular disease remains the leading cause of death globally, and heart failure (HF) represents its terminal stage. Asthma, one of the most common chronic diseases, has been reported to be associated with an increased risk of cardiovascular disease. However, the link between asthma and HF has rarely been studied, and the possible mechanisms by which asthma affects HF are unclear. This study aimed to explore the influence of asthma on HF and the possible mechanisms. We analyzed data from the National Health and Nutrition Examination Survey and found a higher prevalence of HF among asthmatic individuals, and identified an independent association between HF and asthma. Subsequently, we produced mice with concurrent ovalbumin (OVA) sensitization-induced allergic asthma and angiotensin Ⅱ infusion-induced cardiac remodeling to explore the effect of asthma on cardiac remodeling in vivo. The results showed that OVA-induced asthma impaired heart function and aggravated cardiac remodeling in mice. We also found that OVA sensitization increased the expression levels of immunoglobulin E (IgE) in serum and IgE receptor (FcεR1) in the heart, and enhanced the activation of downstream signaling molecules of IgE-FcεR1 in the heart. Importantly, blockage of IgE-FcεR1 using FcεR1-deficient mice or an anti-IgE antibody prevented asthma-induced decline of cardiac function, and alleviated cardiac remodeling. These findings demonstrate the adverse effects of allergic asthma on the heart, and suggest the potential application of anti-IgE therapy in the treatment of asthma complicated with heart conditions.
Collapse
Key Words
- AKT, protein kinase B
- ANP, natriuretic peptide type A
- Ang Ⅱ, angiotensin Ⅱ
- BALF, bronchioalveolar lavage fluid
- BMI, body mass index
- BNP, natriuretic peptide type B
- BW, body weight
- CAD, coronary heart disease
- COPD, chronic obstructive pulmonary disease
- CVD, cardiovascular disease
- EF, ejection fraction
- FS, fraction shortening
- HF, heart failure
- HW, heart weight
- IgE, immunoglobulin E
- LVAW, left ventricular anterior wall
- LVID, left ventricular internal dimension
- LVPW, left ventricular posterior wall
- NHANES, National Health and Nutrition Examination Survey
- OVA, ovalbumin
- TC, total cholesterol
- TG, triglyceride
- WGA, wheat germ agglutinin
- WT, wild type
- pSmad2/3, phosphorylated small mothers against decapentaplegic 2 and 3
- α-SMA, α-smooth muscle actin
- β-MHC, β-myosin heavy chain
Collapse
Affiliation(s)
- Chi Geng
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yufan Feng
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yang Yang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hongqin Yang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhiwei Li
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yaqin Tang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Akin AT, Kaymak E, Ceylan T, Ozturk E, Basaran KE, Karabulut D, Ozdamar S, Yakan B. Chloroquine attenuates chronic hypoxia-induced testicular damage via suppressing endoplasmic reticulum stress and apoptosis in experimental rat model. Clin Exp Pharmacol Physiol 2022; 49:813-823. [PMID: 35579513 DOI: 10.1111/1440-1681.13669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Chronic hypoxia negatively affects male fertility by causing pathological changes in male reproductive system. However, underlying mechanisms of this damage are unknown. Chloroquine (CLQ) is an anti-inflammatory agent which is widely used in the treatment of inflammation-related diseases such as malaria and rheumatoid arthritis. This study aimed to investigate the therapeutic effects of CLQ in the hypoxia-induced testicular damage via assessment of hypoxic response, endoplasmic reticulum stress and apoptosis. For this purpose, 32 Wistar albino rats were divided into 4 groups as Control (given %20-21 O2 , no treatment), CLQ (given 50 mg/kg and %20-21 O2 for 28 days), HX (given %10 O2 for 28 days) and HX + CLQ (given 50 mg/kg and %10 O2 for 28 days). After experiment, blood samples and testicular tissues were taken. Histopathological evaluation was performed on testicular tissues and HIF1-α, HSP70, HSP90 and GADD153 expression levels were detected via immunohistochemistry. Moreover, apoptotic cells were detected via TUNEL staining and serum testosterone levels were determined by ELISA assay. Histopathological changes, apoptotic cell numbers and HIF1-α, HSP70, HSP90 and GADD153 expressions significantly increased in HX group (p < 0.05). Moreover, serum testosterone levels decreased in this group (p > 0.05). However, CLQ exerted a strong ameliorative effect on all parameters in HX + CLQ group. According to our results, we suggested that CLQ can be considered as an alternative protective agent for eliminating the negative effects of hypoxic conditions on male fertility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ali Tugrul Akin
- Biology Department, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Histology-Embriology Department, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Tayfun Ceylan
- Program of Pathology Laboratory Techniques, Kapadokya Vocational High School, Kapadokya University, Nevsehir, Turkey
| | - Emel Ozturk
- Histology-Embriology Department, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Kemal Erdem Basaran
- Physiology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Derya Karabulut
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Saim Ozdamar
- Histology-Embriology Department, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Birkan Yakan
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
17
|
ÜNER AK, KAYMAK E, DOĞANYİĞİT Z, AKIN AT, BAŞARAN KE, ÖZDAMAR S, YAKAN B, AKYÜZ E. Chloroquine Decreased Kir6.2 Immunoreactivity in Chronic Hypoxic Heart. BEZMIALEM SCIENCE 2022. [DOI: 10.14235/bas.galenos.2021.5543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
18
|
Jain PP, Zhao T, Xiong M, Song S, Lai N, Zheng Q, Chen J, Carr SG, Babicheva A, Izadi A, Rodriguez M, Rahimi S, Balistrieri F, Rahimi S, Simonson T, Valdez-Jasso D, Thistlethwaite PA, Shyy JYJ, Wang J, Makino A, Yuan JXJ. Halofuginone, a promising drug for treatment of pulmonary hypertension. Br J Pharmacol 2021; 178:3373-3394. [PMID: 33694155 PMCID: PMC9792225 DOI: 10.1111/bph.15442] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Halofuginone is a febrifugine derivative originally isolated from Chinese traditional herb Chang Shan that exhibits anti-hypertrophic, anti-fibrotic and anti-proliferative effects. We sought to investigate whether halofuginone induced pulmonary vasodilation and attenuates chronic hypoxia-induced pulmonary hypertension (HPH). EXPERIMENTAL APPROACH Patch-clamp experiments were conducted to examine the activity of voltage-dependent Ca2+ channels (VDCCs) in pulmonary artery smooth muscle cells (PASMCs). Digital fluorescence microscopy was used to measure intracellular Ca2+ concentration in PASMCs. Isolated perfused and ventilated mouse lungs were used to measure pulmonary artery pressure (PAP). Mice exposed to hypoxia (10% O2 ) for 4 weeks were used as model of HPH for in vivo experiments. KEY RESULTS Halofuginone increased voltage-gated K+ (Kv ) currents in PASMCs and K+ currents through KCNA5 channels in HEK cells transfected with KCNA5 gene. HF (0.03-1 μM) inhibited receptor-operated Ca2+ entry in HEK cells transfected with calcium-sensing receptor gene and attenuated store-operated Ca2+ entry in PASMCs. Acute (3-5 min) intrapulmonary application of halofuginone significantly and reversibly inhibited alveolar hypoxia-induced pulmonary vasoconstriction dose-dependently (0.1-10 μM). Intraperitoneal administration of halofuginone (0.3 mg·kg-1 , for 2 weeks) partly reversed established PH in mice. CONCLUSION AND IMPLICATIONS Halofuginone is a potent pulmonary vasodilator by activating Kv channels and blocking VDCC and receptor-operated and store-operated Ca2+ channels in PASMCs. The therapeutic effect of halofuginone on experimental PH is probably due to combination of its vasodilator effects, via inhibition of excitation-contraction coupling and anti-proliferative effects, via inhibition of the PI3K/Akt/mTOR signalling pathway.
Collapse
Affiliation(s)
- Pritesh P. Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mingmei Xiong
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Ning Lai
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Zheng
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Amin Izadi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shamin Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Francesca Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shayan Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tatum Simonson
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Patricia A. Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California, USA
| | - John Y.-J. Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Jason X.-J. Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
19
|
Laghlam D, Rahoual G, Malvy J, Estagnasié P, Brusset A, Squara P. Use of Almitrine and Inhaled Nitric Oxide in ARDS Due to COVID-19. Front Med (Lausanne) 2021; 8:655763. [PMID: 34277653 PMCID: PMC8280335 DOI: 10.3389/fmed.2021.655763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is manifested by an acute respiratory distress syndrome (ARDS) with intense inflammation and endothelial dysfunction leading to particularly severe hypoxemia. We hypothesized that an impaired hypoxic pulmonary vasoconstriction aggravates hypoxemia. The objective of the study was to test the effect of two pulmonary vasoactive drugs on patient oxygenation. Methods: Observational, single-center, open-label study in one intensive care unit (ICU) of the Paris area, realized in April 2020. Eligible patients had coronavirus disease 2019 (COVID-19) and moderate to severe ARDS [arterial partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2) <200 mmHg] despite conventional protective ventilation. Exclusion criteria included pulmonary artery hypertension defined by a pulmonary artery systolic pressure (PAPs) >45 mmHg. The assessment of oxygenation was based on PaO2/FiO2 at (1) baseline, then after (2) 30 min of inhaled nitric oxide (iNO) 10 ppm alone, then (3) 30 min combination of iNO + almitrine infusion 8 μg/kg/min, then (4) 30 min of almitrine infusion alone. Results: Among 20 patients requiring mechanical ventilation during the study period, 12 met the inclusion criteria. Baseline PaO2/FiO2 was 146 ± 48 mmHg. When iNO was combined with almitrine, PaO2/FiO2 rose to 255 ± 90 mmHg (+80 ± 49%, p = 0.005), also after almitrine alone: 238 ± 98 mmHg (+67 ± 75%, p = 0.02), but not after iNO alone: 185 ± 73 mmHg (+30 ± 5%, p = 0.49). No adverse events related to almitrine infusion or iNO was observed. Conclusion: Combining iNO and infused almitrine improved the short-term oxygenation in patients with COVID-19-related ARDS. This combination may be of interest when first-line therapies fail to restore adequate oxygenation. These findings argue for an impaired pulmonary hypoxic vasoconstriction in these patients.
Collapse
Affiliation(s)
- Driss Laghlam
- Department of Cardiology and Critical Care, Clinique Ambroise Paré, Neuilly-sur-Seine, France
| | - Ghilas Rahoual
- Department of Cardiology and Critical Care, Clinique Ambroise Paré, Neuilly-sur-Seine, France
| | - Julien Malvy
- Department of Cardiology and Critical Care, Clinique Ambroise Paré, Neuilly-sur-Seine, France
| | - Philippe Estagnasié
- Department of Cardiology and Critical Care, Clinique Ambroise Paré, Neuilly-sur-Seine, France
| | - Alain Brusset
- Department of Cardiology and Critical Care, Clinique Ambroise Paré, Neuilly-sur-Seine, France
| | - Pierre Squara
- Department of Cardiology and Critical Care, Clinique Ambroise Paré, Neuilly-sur-Seine, France
| |
Collapse
|
20
|
Maity S, Saha A. Therapeutic Potential of Exploiting Autophagy Cascade Against Coronavirus Infection. Front Microbiol 2021; 12:675419. [PMID: 34054782 PMCID: PMC8160449 DOI: 10.3389/fmicb.2021.675419] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Since its emergence in December 2019 in Wuhan, China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) created a worldwide pandemic of coronavirus disease (COVID-19) with nearly 136 million cases and approximately 3 million deaths. Recent studies indicate that like other coronaviruses, SARS-CoV-2 also hijacks or usurps various host cell machineries including autophagy for its replication and disease pathogenesis. Double membrane vesicles generated during initiation of autophagy cascade act as a scaffold for the assembly of viral replication complexes and facilitate RNA synthesis. The use of autophagy inhibitors - chloroquine and hydroxychloroquine initially appeared to be as a potential treatment strategy of COVID-19 patients but later remained at the center of debate due to high cytotoxic effects. In the absence of a specific drug or vaccine, there is an urgent need for a safe, potent as well as affordable drug to control the disease spread. Given the intricate connection between autophagy machinery and viral pathogenesis, the question arises whether targeting autophagy pathway might show a path to fight against SARS-CoV-2 infection. In this review we will discuss about our current knowledge linking autophagy to coronaviruses and how that is being utilized to repurpose autophagy modulators as potential COVID-19 treatment.
Collapse
Affiliation(s)
| | - Abhik Saha
- School of Biotechnology, Presidency University, Kolkata, India
| |
Collapse
|
21
|
Bortezomib Inhibits Hypoxia-Induced Proliferation by Suppressing Caveolin-1/SOCE/[Ca 2+] i Signaling Axis in Human PASMCs. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5551504. [PMID: 33928148 PMCID: PMC8049800 DOI: 10.1155/2021/5551504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Background Previous studies have demonstrated the ubiquitin-proteasome inhibitor bortezomib (BTZ) can effectively alleviate hypoxia-induced pulmonary hypertension (HPH) by suppressing the intracellular calcium homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Further evaluation showed that the antiproliferation roles of BTZ are mainly mediated by inhibition of the intracellular calcium homeostasis. Caveolin-1 belongs to one of the key regulators of the intracellular calcium homeostasis in PASMCs, which can regulate the store-operated calcium entry (SOCE). However, the effects of BTZ on Caveolin-1 remain unclear. Methods Primarily cultured human PASMCs were used as the cell model. CCK-8 assay was performed to assess the PASMCs proliferation. Western blotting and real-time qPCR were used to detect the mRNA and protein expressions. Fura-2-based fluorescence imaging experiments were used to determine the intracellular calcium concentration ([Ca2+]i). The protein synthesis inhibitor cycloheximide (CHX) was utilized to determine the protein degradation process. Results Firstly, in cultured human PASMCs, treatment of BTZ for 24 or 60 hours significantly downregulates Caveolin-1 at both mRNA and protein levels. Secondly, in the presence CHX, BTZ treatment also leads to downregulated protein expression and fastened protein degradation of Caveolin-1, indicating that BTZ can promote the Caveolin-1 protein degradation, other than the BTZ on Caveolin-1 mRNA transcription. Then, BTZ significantly attenuates the hypoxia-elevated baseline [Ca2+]i, SOCE, and cell proliferation. Conclusion We firstly observed that the ubiquitin-proteasome inhibitor BTZ can inhibit the Caveolin-1 expression at both mRNA transcription and protein degradation processes, providing new mechanistic basis of BTZ on PASMC proliferation.
Collapse
|
22
|
Up-regulation of nPKC contributes to proliferation of mice pulmonary artery smooth muscle cells in hypoxia-induced pulmonary hypertension. Eur J Pharmacol 2021; 900:174046. [PMID: 33745958 DOI: 10.1016/j.ejphar.2021.174046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
This study is designed to investigate the role of novel protein kinases C (nPKC) in mediating pulmonary artery smooth muscle cells (PASMCs) proliferation in pulmonary hypertension (PH) and the underlying mechanisms. Mouse PASMCs was isolated using magnetic separation technology. The PASMCs were divided into 24 h group, 48 h group and 72 h group according to different hypoxia treatment time, then detected cell proliferation rate and nPKC expression level in each group. We treated PASMCs with agonists or inhibitors of PKCdelta (PKCδ) and PKCepsilon (PKCε) and exposed them to hypoxia or normoxia for 72 h, then measured the proliferation of PASMCs. We also constructed a lentiviral vector containing siRNA fragments for inhibiting PKCδ and PKCε to transfected PASMCs, then examined their proliferation. PASMCs isolated successfully by magnetic separation method and were in good condition. Hypoxia promoted the proliferation of PASMCs, and the treatment for 72 h had the most significant effect. Hypoxia upregulated the expression of PKCδ and PKCε in mouse PASMCs, leading to PASMCs proliferation. Moreover, Our study demonstrated that hypoxia induced upregulation of PKCδ and PKCε expression resulting to the proliferation of PASMCs via up-regulating the phosphorylation of AKT and ERK. Our study provides clear evidence that increased nPKC expression contributes to PASMCs proliferation and uncovers the correlation between AKT and ERK pathways and nPKC-mediated proliferation of PASMCs. These findings may provide novel targets for molecular therapy of pulmonary hypertension.
Collapse
|
23
|
Bik E, Mateuszuk L, Orleanska J, Baranska M, Chlopicki S, Majzner K. Chloroquine-Induced Accumulation of Autophagosomes and Lipids in the Endothelium. Int J Mol Sci 2021; 22:ijms22052401. [PMID: 33673688 PMCID: PMC7957661 DOI: 10.3390/ijms22052401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/14/2023] Open
Abstract
Chloroquine (CQ) is an antimalarial drug known to inhibit autophagy flux by impairing autophagosome–lysosome fusion. We hypothesized that autophagy flux altered by CQ has a considerable influence on the lipid composition of endothelial cells. Thus, we investigated endothelial responses induced by CQ on human microvascular endothelial cells (HMEC-1). HMEC-1 cells after CQ exposure were measured using a combined methodology based on label-free Raman and fluorescence imaging. Raman spectroscopy was applied to characterize subtle chemical changes in lipid contents and their distribution in the cells, while the fluorescence staining (LipidTox, LysoTracker and LC3) was used as a reference method. The results showed that CQ was not toxic to endothelial cells and did not result in the endothelial inflammation at concentrations of 1–30 µM. Notwithstanding, it yielded an increased intensity of LipidTox, LysoTracker, and LC3 staining, suggesting changes in the content of neutral lipids, lysosomotropism, and autophagy inhibition, respectively. The CQ-induced endothelial response was associated with lipid accumulation and was characterized by Raman spectroscopy. CQ-induced autophagosome accumulation in the endothelium is featured by a pronounced alteration in the lipid profile, but not in the endothelial inflammation. Raman-based assessment of CQ-induced biochemical changes offers a better understanding of the autophagy mechanism in the endothelial cells.
Collapse
Affiliation(s)
- Ewelina Bik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (E.B.); (L.M.); (J.O.); (M.B.); (S.C.)
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (E.B.); (L.M.); (J.O.); (M.B.); (S.C.)
| | - Jagoda Orleanska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (E.B.); (L.M.); (J.O.); (M.B.); (S.C.)
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (E.B.); (L.M.); (J.O.); (M.B.); (S.C.)
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (E.B.); (L.M.); (J.O.); (M.B.); (S.C.)
- Chair of Pharmacology, Jagiellonian University, 16 Grzegorzecka Str., 31-531 Krakow, Poland
| | - Katarzyna Majzner
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; (E.B.); (L.M.); (J.O.); (M.B.); (S.C.)
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
- Correspondence:
| |
Collapse
|
24
|
Brazão SC, Autran LJ, Lopes RDO, Scaramello CBV, Brito FCFD, Motta NAV. Effects of Chloroquine and Hydroxychloroquine on the Cardiovascular System - Limitations for Use in the Treatment of COVID-19. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2021. [DOI: 10.36660/ijcs.20200162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
25
|
Wong SK. Repurposing New Use for Old Drug Chloroquine against Metabolic Syndrome: A Review on Animal and Human Evidence. Int J Med Sci 2021; 18:2673-2688. [PMID: 34104100 PMCID: PMC8176183 DOI: 10.7150/ijms.58147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are traditional anti-malarial drugs that have been repurposed for new therapeutic uses in many diseases due to their simple usage and cost-effectiveness. The pleiotropic effects of CQ and HCQ in regulating blood pressure, glucose homeostasis, lipid, and carbohydrate metabolism have been previously described in vivo and in humans, thus suggesting their role in metabolic syndrome (MetS) prevention. The anti-hyperglycaemic, anti-hyperlipidaemic, cardioprotective, anti-hypertensive, and anti-obesity effects of CQ and HCQ might be elicited through reduction of inflammatory response and oxidative stress, improvement of endothelial function, activation of insulin signalling pathway, inhibition of lipogenesis and autophagy, as well as regulation of adipokines and apoptosis. In conclusion, the current state of knowledge supported the repurposing of CQ and HCQ usage in the management of MetS.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Zhang C, Lu W, Luo X, Liu S, Li Y, Zheng Q, Liu W, Wu X, Chen Y, Jiang Q, Zhang Z, Gu G, Chen J, Chen H, Liao J, Liu C, Hong C, Tang H, Sun D, Yang K, Wang J. Mitomycin C induces pulmonary vascular endothelial-to-mesenchymal transition and pulmonary veno-occlusive disease via Smad3-dependent pathway in rats. Br J Pharmacol 2020; 178:217-235. [PMID: 33140842 DOI: 10.1111/bph.15314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary veno-occlusive disease (PVOD) is a rare disease characterized by the obstruction of small pulmonary veins leading to pulmonary hypertension. However, the mechanisms underlying pulmonary vessel occlusion remain largely unclear. EXPERIMENTAL APPROACH A mitomycin C (MMC)-induced PVOD rat model was used as in vivo animal model, and primarily cultured rat pulmonary microvascular endothelial cells (PMVECs) were used as in vitro cell model. KEY RESULTS Our data suggested an endothelial-to-mesenchymal transition (EndoMT) may be present in the pulmonary microvessels isolated from either PVOD patients or MMC-induced PVOD rats. In comparison to the control vessels, vessels from both PVOD patients and PVOD rats had co-localized staining of specific endothelial marker von Willebrand factor (vWF) and mesenchymal marker α-smooth muscle actin (α-SMA), suggesting the presence of cells that co-express endothelial and mesenchymal markers. In both the lung tissues of MMC-induced PVOD rats and MMC-treated rat PMVECs there were decreased levels of endothelial markers (e.g. VE-cadherin and CD31) and increased mesenchymal markers (e.g. vimentin, fibronectin and α-SMA) were detected indicating EndoMT. Moreover, MMC-induced activation of the TGFβ/Smad3/Snail axis, while blocking this pathway with either selective Smad3 inhibitor (SIS3) or small interfering RNA (siRNA) against Smad3, dramatically abolished the MMC-induced EndoMT. Notably, treatment with SIS3 remarkably prevented the pathogenesis of MMC-induced PVOD in rats. CONCLUSIONS AND IMPLICATIONS Our data indicated that targeted inhibition of Smad3 leads to a potential, novel strategy for PVOD therapy, likely by inhibiting the EndoMT in pulmonary microvasculature.
Collapse
Affiliation(s)
- Chenting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wenyan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China
| | - Xuefen Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zizhou Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guoping Gu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiyuan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China.,Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haixia Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunli Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cheng Hong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dejun Sun
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China.,Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Randhawa PK, Scanlon K, Rappaport J, Gupta MK. Modulation of Autophagy by SARS-CoV-2: A Potential Threat for Cardiovascular System. Front Physiol 2020; 11:611275. [PMID: 33329064 PMCID: PMC7734100 DOI: 10.3389/fphys.2020.611275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Recently, we have witnessed an unprecedented increase in the number of patients suffering from respiratory tract illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 virus is a single-stranded positive-sense RNA virus with a genome size of ~29.9 kb. It is believed that the viral spike (S) protein attaches to angiotensin converting enzyme 2 cell surface receptors and, eventually, the virus gains access into the host cell with the help of intracellular/extracellular proteases or by the endosomal pathway. Once, the virus enters the host cell, it can either be degraded via autophagy or evade autophagic degradation and replicate using the virus encoded RNA dependent RNA polymerase. The virus is highly contagious and can impair the respiratory system of the host causing dyspnea, cough, fever, and tightness in the chest. This disease is also characterized by an abrupt upsurge in the levels of proinflammatory/inflammatory cytokines and chemotactic factors in a process known as cytokine storm. Certain reports have suggested that COVID-19 infection can aggravate cardiovascular complications, in fact, the individuals with underlying co-morbidities are more prone to the disease. In this review, we shall discuss the pathogenesis, clinical manifestations, potential drug candidates, the interaction between virus and autophagy, and the role of coronavirus in exaggerating cardiovascular complications.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Kaylyn Scanlon
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Jay Rappaport
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Manish K. Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
28
|
Kaymak E, Akin AT, Tufan E, Başaran KE, Taheri S, Özdamar S, Yakan B. The effect of chloroquine on the TRPC1, TRPC6, and CaSR in the pulmonary artery smooth muscle cells in hypoxia-induced experimental pulmonary artery hypertension. J Biochem Mol Toxicol 2020; 35:e22636. [PMID: 32956540 DOI: 10.1002/jbt.22636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by a constant high pulmonary artery pressure and the remodeling of the vessel. Chloroquine (CLQ) has been observed to inhibit calcium influx. The aim of this study is to investigate the effect of CLQ on transient receptor cationic proteins (TRPC1 and TRPC6) and extracellular calcium-sensitive receptor (CaSR) in a hypoxic PAH model. In this study, 8- to 12-week-old 32 male Wistar albino rats, weighing 200 to 300 g, were used. The rats were studied in four groups, including normoxy control, n = 8; normoxy CLQ (50 mg/kg/28 d), n = 8; hypoxia (HX; 10% oxygen/28 d) control, n = 8; and HX (10% oxygen/28 d) + CLQ (50 mg/kg), N = 8. Pulmonary arterial medial wall thickness, pulmonary arteriole wall, TRPC1, TRPC6, and CaSR expressions were evaluated by immunohistochemistry, polymerase chain reaction, and enzyme-linked immunosorbent assay methods. At the end of the experiment, a statistically significant increase in the medial wall thickness was observed in the hypoxic group as compared with the control group. However, in the HX + CLQ group, there was a statistically significant decrease in the vessel medial wall as compared with the HX group. In the TRPC1-, TRPC6-, and CaSR-immunopositive cell numbers, messenger RNA expressions and biochemical results showed an increase in the HX group, whereas they were decreased in the HX + CLQ group. The inhibitory effect of CLQ on calcium receptors in arterioles was observed in PAH.
Collapse
Affiliation(s)
- Emin Kaymak
- Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | | | - Esra Tufan
- Department of Physiology, Erciyes University, Kayseri, Turkey
| | | | - Serpil Taheri
- Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Saim Özdamar
- Department of Histology and Embryology, Pamukkale University, Denizli, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
29
|
Yang Y, Lin F, Xiao Z, Sun B, Wei Z, Liu B, Xue L, Xiong C. Investigational pharmacotherapy and immunotherapy of pulmonary arterial hypertension: An update. Biomed Pharmacother 2020; 129:110355. [DOI: 10.1016/j.biopha.2020.110355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
|
30
|
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36:101679. [PMID: 32818797 PMCID: PMC7451718 DOI: 10.1016/j.redox.2020.101679] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Alejandro E Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Emin Maltepe
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
31
|
Li ZM, Xu SY, Feng YZ, Cheng YR, Xiong JB, Zhou Y, Guan CX. The role of NOX4 in pulmonary diseases. J Cell Physiol 2020; 236:1628-1637. [PMID: 32780450 DOI: 10.1002/jcp.30005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is a subtype of the NOX family, which is mainly expressed in the pulmonary vasculature and pulmonary endothelial cells in the respiratory system. NOX4 has unique characteristics, and is a constitutively active enzyme that primarily produces hydrogen peroxide. The signaling pathways associated with NOX4 are complicated. Negative and positive feedback play significant roles in regulating NOX4 expression. The role of NOX4 is controversial because NOX4 plays a protective or damaging role in different respiratory diseases. This review summarizes the structure, enzymatic properties, regulation, and signaling pathways of NOX4. This review then introduces the roles of NOX4 in different diseases in the respiratory system, such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Zi-Ming Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Sheng-Ya Xu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi-Zhuo Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yu-Rui Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jian-Bing Xiong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Mubagwa K. Cardiac effects and toxicity of chloroquine: a short update. Int J Antimicrob Agents 2020; 56:106057. [PMID: 32565195 PMCID: PMC7303034 DOI: 10.1016/j.ijantimicag.2020.106057] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
There is currently increased interest in the use of the antimalarial drugs chloroquine and hydroxychloroquine for the treatment of other diseases, including cancer and viral infections such as coronavirus disease 2019 (COVID-19). However, the risk of cardiotoxic effects tends to limit their use. In this review, the effects of these drugs on the electrical and mechanical activities of the heart as well as on remodelling of cardiac tissue are presented and the underlying molecular and cellular mechanisms are discussed. The drugs can have proarrhythmic as well as antiarrhythmic actions resulting from their inhibition of ion channels, including voltage-dependent Na+ and Ca2+ channels, background and voltage-dependent K+ channels, and pacemaker channels. The drugs also exert a vagolytic effect due at least in part to a muscarinic receptor antagonist action. They also interfere with normal autophagy flux, an effect that could aggravate ischaemia/reperfusion injury or post-infarct remodelling. Most of the toxic effects occur at high concentrations, following prolonged drug administration or in the context of drug associations.
Collapse
Affiliation(s)
- Kanigula Mubagwa
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, DR Congo.
| |
Collapse
|
33
|
Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment. Mediators Inflamm 2020; 2020:7527953. [PMID: 32724296 PMCID: PMC7366221 DOI: 10.1155/2020/7527953] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/11/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
COVID-19 is a pandemic disease caused by the new coronavirus SARS-CoV-2 that mostly affects the respiratory system. The consequent inflammation is not able to clear viruses. The persistent excessive inflammatory response can build up a clinical picture that is very difficult to manage and potentially fatal. Modulating the immune response plays a key role in fighting the disease. One of the main defence systems is the activation of neutrophils that release neutrophil extracellular traps (NETs) under the stimulus of autophagy. Various molecules can induce NETosis and autophagy; some potent activators are damage-associated molecular patterns (DAMPs) and, in particular, the high-mobility group box 1 (HMGB1). This molecule is released by damaged lung cells and can induce a robust innate immunity response. The increase in HMGB1 and NETosis could lead to sustained inflammation due to SARS-CoV-2 infection. Therefore, blocking these molecules might be useful in COVID-19 treatment and should be further studied in the context of targeted therapy.
Collapse
Affiliation(s)
- Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Gerolamo Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| |
Collapse
|
34
|
Carmona-Gutierrez D, Bauer MA, Zimmermann A, Kainz K, Hofer SJ, Kroemer G, Madeo F. Digesting the crisis: autophagy and coronaviruses. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:119-128. [PMID: 32391393 PMCID: PMC7199282 DOI: 10.15698/mic2020.05.715] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/08/2023]
Abstract
Autophagy is a catabolic pathway with multifaceted roles in cellular homeostasis. This process is also involved in the antiviral response at multiple levels, including the direct elimination of intruding viruses (virophagy), the presentation of viral antigens, the fitness of immune cells, and the inhibition of excessive inflammatory reactions. In line with its central role in immunity, viruses have evolved mechanisms to interfere with or to evade the autophagic process, and in some cases, even to harness autophagy or constituents of the autophagic machinery for their replication. Given the devastating consequences of the current COVID-19 pandemic, the question arises whether manipulating autophagy might be an expedient approach to fight the novel coronavirus SARS-CoV-2. In this piece, we provide a short overview of the evidence linking autophagy to coronaviruses and discuss whether such links may provide actionable targets for therapeutic interventions.
Collapse
Affiliation(s)
| | - Maria A. Bauer
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
| | - Katharina Kainz
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sebastian J. Hofer
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Madeo
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
35
|
COVID-19 Pandemic: Prevention and Protection Measures to Be Adopted at the Workplace. SUSTAINABILITY 2020. [DOI: 10.3390/su12093603] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SARS-CoV-2, identified in Wuhan, China, for the first time in December 2019, is a new viral strain, which has not been previously identified in humans; it can be transmitted both by air and via direct and indirect contact; however, the most frequent way it spreads is via droplets. Like the other viruses belonging to the same family of coronaviruses, it can cause from mild flu-like symptoms, such as cold, sore throat, cough and fever, to more severe ones such as pneumonia and breathing difficulties, and it can even lead to death. Since no effective specific drug therapy has been found yet, nor any vaccine capable of limiting the spread of this pathogen, it is important for ways of preventing the spread of this infection to be established. The purpose of our research was to provide a protocol to prevent the spread of SARS-CoV-2 infection in light of the limited information related to this coronavirus. In detail, we analysed and searched targeted evidence-based guidelines issued in the various countries affected by this epidemic up till now. In addition, we analyzed the recommendations for the prevention and control of other epidemics caused by other pathogens belonging to the same family of coronaviruses or others that present the same mechanisms of transmission. General organizational measures regarding the containment and management of the epidemiological emergency of COVID-19 have been imposed by the competent authorities for an adequate and proportionate management of the evolution of the epidemiological situation. The prevention and protection organizational measures therefore aim to minimize the probability of being exposed to SARS-CoV-2. For this purpose, measures must also be taken at work to avoid new infections or even the spread of the virus where it has already been present. Furthermore, environmental measures are aimed at reducing the risk of transmission of SARS-CoV-2 to individuals through contact with infected subjects, objects, equipment, or contaminated environmental surfaces. Protective devices must be used whenever there is potentially close contact with a suspect case, especially when the potentially infected person does not wear a surgical mask that could reduce the spread of viruses in the environment. By adopting this specific prevention and protection measures recommended in the workplace, it will be possible to help overcome this COVID-19 pandemic.
Collapse
|
36
|
Zhang Q, Tsuji-Hosokawa A, Willson C, Watanabe M, Si R, Lai N, Wang Z, Yuan JXJ, Wang J, Makino A. Chloroquine differentially modulates coronary vasodilation in control and diabetic mice. Br J Pharmacol 2020; 177:314-327. [PMID: 31503328 DOI: 10.1111/bph.14864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Chloroquine is a traditional medicine to treat malaria. There is increasing evidence that chloroquine not only induces phagocytosis but regulates vascular tone. Few reports investigating the effect of chloroquine on vascular responsiveness of coronary arteries have been made. In this study, we examined how chloroquine affected endothelium-dependent relaxation in coronary arteries under normal and diabetic conditions. EXPERIMENTAL APPROACH We isolated coronary arteries from mice and examined endothelium-dependent relaxation (EDR). Human coronary endothelial cells and mouse coronary endothelial cells isolated from control and diabetic mouse (TALLYHO/Jng [TH] mice, a spontaneous type 2 diabetic mouse model) were used for the molecular biological or cytosolic NO and Ca2+ measurements. KEY RESULTS Chloroquine inhibited endothelium-derived NO-dependent relaxation but had negligible effect on endothelium-derived hyperpolarization (EDH)-dependent relaxation in coronary arteries of control mice. Chloroquine significantly decreased NO production in control human coronary endothelial cells partly by phosphorylating eNOSThr495 (an inhibitory phosphorylation site of eNOS) and attenuating the rise of cytosolic Ca2+ concentration after stimulation. EDR was significantly inhibited in diabetic mice in comparison to control mice. Interestingly, chloroquine enhanced EDR in diabetic coronary arteries by, specifically, increasing EDH-dependent relaxation due partly to its augmenting effect on gap junction activity in diabetic mouse coronary endothelial cells. CONCLUSIONS AND IMPLICATIONS These data indicate that chloroquine affects vascular relaxation differently under normal and diabetic conditions. Therefore, the patients' health condition such as coronary macrovascular or microvascular disease, with or without diabetes, must be taken account into the consideration when selecting chloroquine for the treatment of malaria.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Physiology, The University of Arizona, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Conor Willson
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Makiko Watanabe
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Rui Si
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Ning Lai
- Department of Medicine, University of California, San Diego, La Jolla, California.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziyi Wang
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Medicine, The University of Arizona, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Medicine, The University of Arizona, Tucson, Arizona
| | - Jian Wang
- Department of Medicine, The University of Arizona, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Physiology, The University of Arizona, Tucson, Arizona.,Department of Medicine, The University of Arizona, Tucson, Arizona
| |
Collapse
|
37
|
Bone Marrow-Derived Endothelial Progenitor Cells Contribute to Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats via Inhibition of Store-Operated Ca 2+ Channels. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4892349. [PMID: 30320134 PMCID: PMC6167576 DOI: 10.1155/2018/4892349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/19/2018] [Indexed: 11/17/2022]
Abstract
Purpose This study aimed to explore whether bone marrow- (BM-) derived endothelial progenitor cells (EPCs) contributing to monocrotaline- (MCT-) induced pulmonary arterial hypertension (PAH) in rats via modulating store-operated Ca2+ channels (SOC). Methods Sprague Dawley (SD) rats were assigned into MCT group (n = 30) and control group (n = 20). Rats in MCT group were subcutaneously administered with 60 mg/kg MCT solution, and rats in control group were injected with equal amount of vehicle. After 3 weeks of treatment, right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) of two groups were measured, and BM-derived EPCs were isolated. Immunochemistry identification and vasculogenesis detection of EPCs were then performed. [Ca2+]cyt measurement was performed to detect store-operated calcium entry (SOCE) in two groups, followed by determination of Orai and canonical transient receptor potential (TRPC) channels expression. Results After 3 weeks of treatment, there were significant increases in RVSP and RVHI in MCT group compared with control group, indicating that MCT successfully induced PAH in rats. Moreover, the SOCE ([Ca2+]cyt rise) in BM-derived EPCs of MCT group was lower than that of control group. Furthermore, the expression levels of Orai3, TRPC1, TRPC3, and TRPC6 in BM-derived EPCs were decreased in MCT group in comparison with control group. Conclusions The SOC activities were inhibited in BM-derived EPCs of MCT-treated rats. These results may be associated with the depressed expression of Orai3, TRPC1, TRPC3, and TRPC6, which are major mediators of SOC.
Collapse
|
38
|
He X, Song S, Ayon RJ, Balisterieri A, Black SM, Makino A, Wier WG, Zang WJ, Yuan JXJ. Hypoxia selectively upregulates cation channels and increases cytosolic [Ca 2+] in pulmonary, but not coronary, arterial smooth muscle cells. Am J Physiol Cell Physiol 2018; 314:C504-C517. [PMID: 29351410 DOI: 10.1152/ajpcell.00272.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ca2+ signaling, particularly the mechanism via store-operated Ca2+ entry (SOCE) and receptor-operated Ca2+ entry (ROCE), plays a critical role in the development of acute hypoxia-induced pulmonary vasoconstriction and chronic hypoxia-induced pulmonary hypertension. This study aimed to test the hypothesis that chronic hypoxia differentially regulates the expression of proteins that mediate SOCE and ROCE [stromal interacting molecule (STIM), Orai, and canonical transient receptor potential channel TRPC6] in pulmonary (PASMC) and coronary (CASMC) artery smooth muscle cells. The resting cytosolic [Ca2+] ([Ca2+]cyt) and the stored [Ca2+] in the sarcoplasmic reticulum were not different in CASMC and PASMC. Seahorse measurement showed a similar level of mitochondrial bioenergetics (basal respiration and ATP production) between CASMC and PASMC. Glycolysis was significantly higher in PASMC than in CASMC. The amplitudes of cyclopiazonic acid-induced SOCE and OAG-induced ROCE in CASMC are slightly, but significantly, greater than in PASMC. The frequency and the area under the curve of Ca2+ oscillations induced by ATP and histamine were also larger in CASMC than in PASMC. Na+/Ca2+ exchanger-mediated increases in [Ca2+]cyt did not differ significantly between CASMC and PASMC. The basal protein expression levels of STIM1/2, Orai1/2, and TRPC6 were higher in CASMC than in PASMC, but hypoxia (3% O2 for 72 h) significantly upregulated protein expression levels of STIM1/STIM2, Orai1/Orai2, and TRPC6 and increased the resting [Ca2+]cyt only in PASMC, but not in CASMC. The different response of essential components of store-operated and receptor-operated Ca2+ channels to hypoxia is a unique intrinsic property of PASMC, which is likely one of the important explanations why hypoxia causes pulmonary vasoconstriction and induces pulmonary vascular remodeling, but causes coronary vasodilation.
Collapse
Affiliation(s)
- Xi He
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi Province, China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Shanshan Song
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Angela Balisterieri
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Ayako Makino
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - W Gil Wier
- Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Wei-Jin Zang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi Province, China
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| |
Collapse
|
39
|
Wu K, Zhang Q, Wu X, Lu W, Tang H, Liang Z, Gu Y, Song S, Ayon RJ, Wang Z, McDermott KM, Balistrieri A, Wang C, Black SM, Garcia JGN, Makino A, Yuan JXJ, Wang J. Chloroquine is a potent pulmonary vasodilator that attenuates hypoxia-induced pulmonary hypertension. Br J Pharmacol 2017; 174:4155-4172. [PMID: 28849593 DOI: 10.1111/bph.13990] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Sustained pulmonary vasoconstriction and excessive pulmonary vascular remodelling are two major causes of elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension. The purpose of this study was to investigate whether chloroquine induced relaxation in the pulmonary artery (PA) and attenuates hypoxia-induced pulmonary hypertension (HPH). EXPERIMENTAL APPROACH Isometric tension was measured in rat PA rings pre-constricted with phenylephrine or high K+ solution. PA pressure was measured in mouse isolated, perfused and ventilated lungs. Fura-2 fluorescence microscopy was used to measure cytosolic free Ca2+ concentration levels in PA smooth muscle cells (PASMCs). Patch-clamp experiments were performed to assess the activity of voltage-dependent Ca2+ channels (VDCCs) in PASMC. Rats exposed to hypoxia (10% O2 ) for 3 weeks were used as the model of HPH or Sugen5416/hypoxia (SuHx) for in vivo experiments. KEY RESULTS Chloroquine attenuated agonist-induced and high K+ -induced contraction in isolated rat PA. Pretreatment with l-NAME or indomethacin and functional removal of endothelium failed to inhibit chloroquine-induced PA relaxation. In PASMC, extracellular application of chloroquine attenuated store-operated Ca2+ entry and ATP-induced Ca2+ entry. Furthermore, chloroquine also inhibited whole-cell Ba2+ currents through VDCC in PASMC. In vivo experiments demonstrated that chloroquine treatment ameliorated the HPH and SuHx models. CONCLUSIONS AND IMPLICATIONS Chloroquine is a potent pulmonary vasodilator that may directly or indirectly block VDCC, store-operated Ca2+ channels and receptor-operated Ca2+ channels in PASMC. The therapeutic potential of chloroquine in pulmonary hypertension is probably due to the combination of its vasodilator, anti-proliferative and anti-autophagic effects.
Collapse
Affiliation(s)
- Kang Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Qian Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Xiongting Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Zhihao Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yali Gu
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Shanshan Song
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ziyi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Kimberly M McDermott
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Angela Balistrieri
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Christina Wang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Joe G N Garcia
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ayako Makino
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|