1
|
De Novo Development of Mitochondria-Targeted Molecular Probes Targeting Pink1. Int J Mol Sci 2022; 23:ijms23116076. [PMID: 35682755 PMCID: PMC9181014 DOI: 10.3390/ijms23116076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondria play central roles in maintaining cellular metabolic homeostasis, cell survival and cell death, and generate most of the cell’s energy. Mitochondria maintain their homeostasis by dynamic (fission and fusion) and quality control mechanisms, including mitophagy, the removal of damaged mitochondria that is mediated mainly by the Pink1/Parkin pathway. Pink1 is a serine/threonine kinase which regulates mitochondrial function, hitherto many molecular mechanisms underlying Pink1 activity in mitochondrial homeostasis and cell fate remain unknown. Peptides are vital biological mediators that demonstrate remarkable potency, selectivity, and low toxicity, yet they have two major limitations, low oral bioavailability and poor stability. Herein, we rationally designed a linear peptide that targets Pink1 and, using straightforward chemistry, we developed molecular probes with drug-like properties to further characterize Pink1. Initially, we conjugated a cell-penetrating peptide and a cross-linker to map Pink1’s 3D structure and its interaction sites. Next, we conjugated a fluorescent dye for cell-imaging. Finally, we developed cyclic peptides with improved stability and binding affinity. Overall, we present a facile approach to converting a non-permeable linear peptide into a research tool possessing important properties for therapeutics. This is a general approach using straightforward chemistry that can be tailored for various applications by numerous laboratories.
Collapse
|
2
|
Wang Q, Zhang C, Yang C, Sun Y, Chen K, Lu Y. Capsaicin Alleviates Vascular Endothelial Dysfunction and Cardiomyopathy via TRPV1/eNOS Pathway in Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6482363. [PMID: 35602097 PMCID: PMC9119751 DOI: 10.1155/2022/6482363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/26/2022] [Indexed: 01/03/2023]
Abstract
Background Endothelial dysfunction and cardiomyopathy are considered to be important vascular complications associated with diabetes. This study was designed to investigate whether capsaicin (CAP), a selective TRPV1 agonist, could prevent diabetes-induced endothelial dysfunction and cardiomyopathy. Methods Male Sprague Dawley rats aged 8 weeks were injected intraperitoneally with streptozotocin (STZ, 50 mg/kg) to establish the diabetes model. The diabetic rats were randomly divided into the untreated diabetes group (DM, 10/group) and diabetes plus CAP treatment group (DM+CAP, 10/group); meanwhile, the nondiabetic healthy rats were used as normal controls (10/group). DM+CAP group were treated with CAP by gavage for 8 weeks. The cultured mouse vascular endothelial cells were exposed to different concentrations of glucose in the presence or absence of CAP treatment. The TRPV1 inhibitor capsazepine (CPZ) and eNOS inhibitor L-NAME were used in vivo and in vitro experiment. Results CAP treatment significantly decreased the serum total cholesterol (TC) and total triglyceride (TG) and ameliorated the pathogenesis and fibrosis in the heart, while did not significantly improve plasma glucose level and the body weights of diabetic rats. In addition, CAP enhanced the expression of TRPV1 and eNOS in the heart and normalized the vascular permeability under diabetic state. Similarly, CAP treatment also increased nitric oxide and reduced reactive oxygen species. The same results were observed in cultured mouse vascular endothelial cells by CAP treatment. These beneficial effects of CAP were abolished by either CPZ or L-NAME. Conclusions CAP might protect against hyperglycemia-induced endothelial dysfunction and diabetic cardiomyopathy through TRPV1/eNOS pathway.
Collapse
Affiliation(s)
- Qiuyue Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Caihui Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chen Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yue Sun
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Keyang Chen
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Ambulatory Surgery Center, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
3
|
Jia X, Yu T, Xiao C, Sheng D, Yang M, Cheng Q, Wu J, Lian T, Zhao Y, Zhang S. Expression of transient receptor potential vanilloid genes and proteins in diabetic rat heart. Mol Biol Rep 2021; 48:1217-1223. [PMID: 33523372 DOI: 10.1007/s11033-021-06182-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 11/27/2022]
Abstract
Cardiac complications are leading causes of death in diabetic patients. Imbalance of Ca2+ homeostasis is a hallmark of cardiac dysfunction in diabetes, while TRPV channels are non-selective for cations and are permeable to Ca2+. Our aim was to evaluate the expression levels of TRPV1, TRPV2, TRPV3, TRPV4, TRPV5, and TRPV6 genes and proteins in cardiac tissue at 3 days and 4, 8, and 12 weeks after induction of diabetes. Sprague-Dawley rats were assigned to control and DM groups. DM was induced by intraperitoneal injection of streptozotocin (60 mg/kg). The expression levels of TRPV genes were analyzed by the quantitative reverse transcription polymerase chain reaction, and TRPV proteins were determined by western blotting. Compared to controls, the expression levels of TRPV2, TRPV3, and TRPV6 in diabetic myocardium did not change, while TRPV1 decreased at 4, 8, and 12 weeks, TRPV4 was upregulated at 3 days and 4, 8, and 12 weeks, TRPV5 mRNA increased at 8 and 12 weeks, and TRPV5 protein increased at 4, 8, and 12 weeks. Our findings showed that TRPV1, TRPV4, and TRPV5 are associated with the diabetic heart.
Collapse
Affiliation(s)
- Xiaoli Jia
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Tao Yu
- Renhe Hospital of China Three Gorges University, Yichang, China
| | - Chao Xiao
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Deqiao Sheng
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Mengcheng Yang
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Quanyi Cheng
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Jing Wu
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Ting Lian
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China
| | - Yun Zhao
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China.
| | - Shizhong Zhang
- Department of Physiology, Medical Science College of China Three Gorges University, Yichang, China.
| |
Collapse
|
4
|
Abstract
Emerging evidence shows that the transient receptor potential vanilloid 4 (TRPV4) channel is involved in fibrosis in many organs. However, its role in diabetic cardiac fibrosis remains unclear. Our aim was to evaluate the expression level of TRPV4 in the diabetic heart and clarify its role in diabetes-induced cardiac fibrosis. A diabetic animal model was induced by a single intraperitoneal injection of streptozotocin into Sprague-Dawley rats. We also investigated cardiac fibroblasts isolated from neonatal Sprague-Dawley rats. TRPV4 expression was significantly upregulated in both diabetic myocardium and cardiac fibroblasts cultured in high-glucose medium. Masson's trichrome staining revealed that the TRPV4 antagonist HC067047 attenuated the diabetes-induced cardiac fibrosis. Furthermore, HC067047 reduced collagen Ι synthesis and suppressed the transforming growth factor beta 1 (TGF-β1) level as well as the phosphorylation of Smad3 in the diabetic heart. In addition, the TRPV4 antagonist inhibited the proliferation of cardiac fibroblasts, collagen Ι synthesis, and activation of the TGF-β1/Smad3 signaling pathway induced by high-glucose culture medium. Our findings demonstrate that the upregulation of TRPV4 expression mediates diabetic cardiac fibrosis via activation of the TGF-β1/Smad3 signaling pathway.
Collapse
|
5
|
Wu LN, Hu R, Yu JM. Morphine and myocardial ischaemia-reperfusion. Eur J Pharmacol 2020; 891:173683. [PMID: 33121952 DOI: 10.1016/j.ejphar.2020.173683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Coronary heart disease (CHD) is a cardiovascular disease with high mortality and disability worldwide. The main pathological manifestation of CHD is myocardial injury due to ischaemia-reperfusion, resulting in the death of cardiomyocytes (apoptosis and necrosis) and the occurrence of cardiac failure. Morphine is a nonselective opioid receptor agonist that has been commonly used for analgesia and to treat ischaemic heart disease. The present review focused on morphine-induced protection in an animal model of myocardial ischaemia-reperfusion and chronic heart failure and the effects of morphine on ST segment elevation myocardial infarction (STEMI) patients who underwent pre-primary percutaneous coronary intervention (pre-PPCI) or PPCI. The signalling pathways involved are also briefly described.
Collapse
Affiliation(s)
- Li-Ning Wu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Rui Hu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Jun-Ma Yu
- Institutions: Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, China.
| |
Collapse
|
6
|
Liu T, Zhang G, Wang Y, Rao M, Zhang Y, Guo A, Wang M. Identification of Circular RNA-MicroRNA-Messenger RNA Regulatory Network in Atrial Fibrillation by Integrated Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8037273. [PMID: 33062700 PMCID: PMC7545447 DOI: 10.1155/2020/8037273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Circular RNA (circRNA) is a noncoding RNA that forms a closed-loop structure, and its abnormal expression may cause disease. We aimed to find potential network for circRNA-related competitive endogenous RNA (ceRNA) in atrial fibrillation (AF). METHODS The circRNA, miRNA, and mRNA expression profiles in the heart tissue from AF patients were retrieved from the Gene Expression Omnibus database and analyzed comprehensively. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were identified, followed by the establishment of DEcircRNA-DEmiRNA-DEmRNA regulatory network. Functional annotation analysis of host gene of DEcircRNAs and DEmRNAs in ceRNA regulatory network was performed. In vitro experiment and electronic validation were used to validate the expression of DEcircRNAs, DEmiRNAs, and DEmRNAs. RESULTS A total of 1611 DEcircRNAs, 51 DEmiRNAs, and 1250 DEmRNAs were identified in AF. The DEcircRNA-DEmiRNA-DEmRNA network contained 62 circRNAs, 14 miRNAs, and 728 mRNAs. Among which, two ceRNA regulatory pairs of hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 were identified. In addition, six miRNA-mRNA regulatory pairs including hsa-miR-34c-5p-INMT, hsa-miR-1253-DDIT4L, hsa-miR-508-5p-SMOC2, hsa-miR-943-ACTA1, hsa-miR-338-3p-WIPI1, and hsa-miR-199a-3p-RAP1GAP2 were also obtained. MTOR was a significantly enriched signaling pathway of host gene of DEcircRNAs. In addition, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy were remarkably enriched signaling pathways of DEmRNAs in DEcircRNA-DEmiRNA-DEmRNA regulatory network. The expression validation of hsa-circRNA-402565, hsa-miR-34c-5p, hsa-miR-188-5p, SPON1, DDIT4L, SMOC2, and WIPI1 was consistent with the integrated analysis. CONCLUSION We speculated that hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 interaction pairs may be involved in AF.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Guoru Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yaling Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Mingyue Rao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yang Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Anjun Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Mei Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
7
|
Wu L, Yu J, Wang Q, Lu Y. Effects of nalbuphine on the cardioprotective effect of morphine in rats. Int J Cardiol 2020; 322:207-210. [PMID: 32828962 DOI: 10.1016/j.ijcard.2020.08.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND When combined with morphine, nalbuphine not only does not affect the analgesic effect but also prevents opioid-induced side effects. The authors investigated whether nalbuphine interferes with morphine-induced cardioprotection in rats. METHODS Anesthetized male Sprague-Dawley rats were randomly assigned to 1 of 4 treatment groups. Nalbuphine (NAL, 1 mg/kg) and morphine (MOR, 0.3 mg/kg) were administered 10 and 5 min prior to myocardial ischemia, respectively. Additionally, the NAL + MOR group received the combination of NAL and MOR prior to myocardial ischemia. An in vivo animal model was established by occluding the left anterior descending artery for 30 min and reperfusing it for 2 h. After 2 h of reperfusion, the infarcted area of heart was measured by Evans blue/triphenyl tetrazolium staining, and the levels of creatine kinase isoenzymes (CK-MB) in serum were detected by enzyme-linked immunosorbent assay. RESULTS Nalbuphine had no protective effect against the infarct area compared with the control treatment (NAL, 52.5 ± 5% versus CON, 52.6 ± 4%; *P < 0.01), and the infarct size-sparing effects of morphine were not affected by nalbuphine (NAL + MOR, 42.6 ± 7% versus MOR, 40.4 ± 3%; P > 0.05). The nalbuphine group did not show a change the levels of serum CK-MB compared with the control group, and nalbuphine did not affect the levels of serum CK-MB in the MOR group. CONCLUSIONS Nalbuphine does not interfere with the cardioprotective effect of morphine in vivo. Therefore, nalbuphine could be safely used or combined with morphine in patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Lining Wu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230061, PR China; Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Junma Yu
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230061, PR China
| | - Qiuyue Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230061, PR China
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230061, PR China.
| |
Collapse
|
8
|
Capsaicin-Sensitive Sensory Nerves and the TRPV1 Ion Channel in Cardiac Physiology and Pathologies. Int J Mol Sci 2020; 21:ijms21124472. [PMID: 32586044 PMCID: PMC7352834 DOI: 10.3390/ijms21124472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases, including coronary artery disease, ischemic heart diseases such as acute myocardial infarction and postischemic heart failure, heart failure of other etiologies, and cardiac arrhythmias, belong to the leading causes of death. Activation of capsaicin-sensitive sensory nerves by the transient receptor potential vanilloid 1 (TRPV1) capsaicin receptor and other receptors, as well as neuropeptide mediators released from them upon stimulation, play important physiological regulatory roles. Capsaicin-sensitive sensory nerves also contribute to the development and progression of some cardiac diseases, as well as to mechanisms of endogenous stress adaptation leading to cardioprotection. In this review, we summarize the role of capsaicin-sensitive afferents and the TRPV1 ion channel in physiological and pathophysiological functions of the heart based mainly on experimental results and show their diagnostic or therapeutic potentials. Although the actions of several other channels or receptors expressed on cardiac sensory afferents and the effects of TRPV1 channel activation on different non-neural cell types in the heart are not precisely known, most data suggest that stimulation of the TRPV1-expressing sensory nerves or stimulation/overexpression of TRPV1 channels have beneficial effects in cardiac diseases.
Collapse
|
9
|
Chen K, Yu J, Wang Q, Wu L, Liu X, Wong GTC, Lu Y. The timing of propofol administration affects the effectiveness of remote ischemic preconditioning induced cardioprotection in rats. J Cell Biochem 2020; 121:4535-4541. [PMID: 32030809 DOI: 10.1002/jcb.29671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
The cardioprotection of remote ischemic preconditioning (RIPC) is abolished under propofol maintained anesthesia. Transient receptor potential vanilloid 1 (TRPV1) channel is present in the heart, and its activation could induce cardioprotection. Therefore, we tested whether the anesthetic propofol administration phase interfered with the RIPC-induced cardioprotection, and RIPC-induced cardioprotection via the cardiac TRPV1 channel. Male Sprague-Dawley rats were subjected to myocardial 30 minutes of ischemia followed by 2 hours of reperfusion. RIPC consisted of three cycles of 5-minute ischemia/reperfusion applied to a hindlimb. Propofol infusion at 12 mg/kg/h was commenced either at 10 minutes before the start of RIPC in the P-pre + RIPC group, or immediately after myocardial ischemia at the onset of reperfusion (P-post + RIPC) while performing RIPC. These two propofol infusion regimes were applied to another two grou bs without RIPC (P-pre and P-post groups). Infarct size (IS) was assessed by triphenyltetrazolium staining. Heart TRPV1 expression was detected by Western blot and immunofluorescence. RIPC significantly reduced myocardial IS compared with the control group (36.7 ± 3% versus 57.2 ± 4%; P < .01). When propofol was started before RIPC, the IS sparing effect of RIPC was completely abolished. However, propofol infusion starting immediately after myocardial ischemia did not affect RIPC-induced cardioprotection. TRPV1 expression significant increase after RIPC, then propofol inhibited the TRPV1 activation of RIPC if given before RIPC but not after. Our results suggest that the timing of propofol administration is critical to preserve the cardioprotection of RIPC. Propofol might cancel RIPC-induced cardioprotection via the cardiac TRPV1 receptor.
Collapse
Affiliation(s)
- Ke Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junma Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China.,Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiuyue Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lining Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
11
|
Xu S, Xu Y, Cheng X, Huang C, Pan Y, Jin S, Xiong W, Zhang L, He S, Zhang Y. Inhibition of DRG-TRPV1 upregulation in myocardial ischemia contributes to exogenous cardioprotection. J Mol Cell Cardiol 2019; 138:175-184. [PMID: 31836538 DOI: 10.1016/j.yjmcc.2019.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/11/2019] [Accepted: 12/07/2019] [Indexed: 12/25/2022]
Abstract
Myocardium ischemia-reperfusion injury (IRI) is the major cause of postoperative cardiac dysfunction. While intrathecal morphine preconditioning (ITMP) can reduce IRI in animals, the molecular processes underlying IRI and ITMP remain elusive. Transient receptor potential vanilloid type 1 (TRPV1) is highly expressed in cardiac sensory neurons and has a crucial role in detecting myocardial ischemia. This study aimed to determine the role of up-regulated dorsal root ganglion (DRG)-TRPV1 in IRI and whether its inhibition contributes to ITMP-induced cardioprotection. Animal model of IRI was established by left coronary artery occlusion (30 min) and reperfusion (2 h) in rats. Intrathecal intubation was prepared for morphine preconditioning, TRPV1-shRNA or selective TRPV1 antagonist administration. After IRI, both protein and phosphorylation levels of TRPV1 were significantly increased, and the immunofluorescence intensity of TRPV1 was increased and colocalized with μ-opioid receptors in DRG. Intrathecal pre-administration of either TRPV1-shRNA or TRPV1 antagonist significantly reduced myocardial injury and the upregulation of TRPV1 in DRG induced by IRI. Simultaneously, ITMP significantly suppressed TRPV1 protein expression and phosphorylation in DRG, as well as the heart infarct size and arrhythmia score caused by IRI. The suppression of TRPV1 elevation and activation by ITMP were reversed by intrathecal injection of the selective μ receptor antagonist. Furthermore, IRI elevated DRG cAMP, while intrathecal administration of the selective cAMP-PKA inhibitor reduced myocardial injury. Finally, we showed that activation of opioid receptor by morphine inhibited PKA activator-induced TRPV1 channel activity at the cellular level. These findings suggest that the elevation and activation of TRPV1 in DRG during myocardial ischemia-reperfusion might be responsible for cardiac injury. ITMP exerts cardioprotection by inhibiting DRG-TRPV1 activity via modulation cAMP. Therefore, inhibition of TRPV1 upregulation in DRG might be used as a novel therapeutic mechanism for myocardium ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Shijin Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yan Xu
- Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230027, China
| | - Xueying Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yonglu Pan
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shiyun Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Wei Xiong
- Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230027, China
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institutes on Alcohol Abuse and Alcoholism, National Institutes of Health, MD 20892, Bethesda, USA
| | - Shufang He
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
12
|
Yu J, Chen K, Wu L, Liu X, Lu Y. Anesthetic propofol blunts remote preconditioning of trauma-induced cardioprotection via the TRPV1 receptor. Biomed Pharmacother 2019; 118:109308. [PMID: 31401396 DOI: 10.1016/j.biopha.2019.109308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 01/07/2023] Open
Abstract
Remote preconditioning of trauma (RPCT) by surgical incision is an effective cardioprotective strategy via the transient receptor potential vanilloid 1 (TRPV1) channel as a form of remote ischemic preconditioning (RIPC). However, cardioprotection by RIPC has been shown to be completely blocked by propofol. We thus hypothesized that propofol may interfere with RPCT induced cardioprotection, and that RPCT induces cardioprotection via the cardiac TRPV1 channel. Male Sprague-Dawley rats were subjected to 30 min of myocardial ischemia followed by 2 h of reperfusion. RPCT was achieved by a transverse abdominal incision. Additionally, propofol or the TRPV1 receptor inhibitor capsazepine (CPZ) was given before RPCT. Infarct size was assessed by triphenyltetrazolium staining. Heart TRPV1 expression was detected by Western blot and immunofluorescence. RPCT significantly reduced infarct size compared to control treatment (45.6 ± 4% versus 65.4 ± 2%, P < 0.01). This protective effect of RPCT was completely abolished by propofol and CPZ. TRPV1 channels are present in the heart. Therefore, cardioprotection by RPCT is also abolished by propofol, and cardiac TRPV1 mediates this cardioprotection.
Collapse
Affiliation(s)
- Junma Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, 230027, PR China; Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, PR China
| | - Ke Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Lining Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, 230061, PR China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China.
| |
Collapse
|
13
|
Gorbunov AS, Maslov LN, Jaggi AS, Singh N, De Petrocellis L, Boshchenko AA, Roohbakhsh A, Bezuglov VV, Oeltgen PR. Physiological and Pathological Role of TRPV1, TRPV2 and TRPV4 Channels in Heart. Curr Cardiol Rev 2019; 15:244-251. [PMID: 30848206 PMCID: PMC8142357 DOI: 10.2174/1573403x15666190307112326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential vanilloid channel 2 (TRPV2) is required for normal cardiac contractility. The stimulation of TRPV1 in isolated cardiomyocytes can aggravate the effect of hypoxia/ reoxygenation (H/R) on H9C2 cells. The knockout of the TRPV1 gene promotes increased tolerance of the isolated perfused heart to the impact of ischemia/reperfusion (I/R). However, activation of TRPV1 increases the resistance of the heart to I/R due to calcitonin gene-related peptide (CGRP) release from afferent nerve endings. It has been established that TRPV1 and TRPV2 are involved in the pathogenesis of myocardial infarction and, in all likelihood, ensure the cardiac tolerance to the ischemia/reperfusion. It has also been documented that the activation of TRPV4 negatively affects the stability of cardiomyocytes to the H/R. The blockade of TRPV4 can be considered as a new approach to the prevention of I/R injury of the heart. Studies also indicate that TRPV1 is involved in the pathogenesis of cardiac hypertrophy and that TRPV2 channels participate in the pathogenesis of dilated cardiomyopathy. Excessive expression of TRPV2 leads to chronic Ca2+- overload of cardiomyocytes, which may contribute to the development of cardiomyopathy.
Collapse
Affiliation(s)
| | - Leonid N. Maslov
- Address correspondence to this author at the Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Kyevskaya 111A, 634012 Tomsk, Russia; Tel. +7 3822 262174; E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu Y, Gross ER, Qian J. Risks of Impaired Organ Protection with Inhibiting Transient Receptor Potential Vanilloid 1. Anesthesiology 2018; 129:377-378. [PMID: 30020180 PMCID: PMC6430147 DOI: 10.1097/aln.0000000000002293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yu Wu
- Stanford University, Stanford, California, and the First Affiliated Hospital of Kunming Medical University, Kunming, China (J.Q.).
| | | | | |
Collapse
|
15
|
Non-opioid analgesic use and concerns for impaired organ protection. Br J Anaesth 2018; 120:403-405. [PMID: 29406189 DOI: 10.1016/j.bja.2017.11.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
|
16
|
Patel HH, Roth DM. No pain, no gain: balancing central versus peripheral benefits of analgesics in the age of the opioid crisis. Br J Pharmacol 2018; 175:855-856. [PMID: 29243218 DOI: 10.1111/bph.14130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/25/2017] [Accepted: 12/04/2017] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hemal H Patel
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, USA
| | - David M Roth
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, USA
| |
Collapse
|
17
|
Heymann HM, Wu Y, Lu Y, Qvit N, Gross GJ, Gross ER. Transient receptor potential vanilloid 1 inhibitors block laparotomy- and opioid-induced infarct size reduction in rats. Br J Pharmacol 2017; 174:4826-4835. [PMID: 28982207 DOI: 10.1111/bph.14064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/27/2017] [Accepted: 09/28/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE In light of the opioid epidemic, physicians are increasingly prescribing non-opioid analgesics to surgical patients. Transient receptor potential vanilloid 1 (TRPV1) inhibitors are potentially alternative pain therapeutics for surgery. Here, we examined in rodents whether the cardioprotection conferred by two common procedures during surgery, a laparotomy or morphine delivery, is mediated by the TRPV1 channel. We further tested whether an experimental analgesic peptide (known as P5) targeted against the TRPV1 C-terminus region interferes with laparotomy- or morphine-induced cardioprotection. EXPERIMENTAL APPROACH Male Sprague-Dawley rats were subjected to 30 min coronary occlusion followed by 120 min reperfusion. Before ischaemia, a laparotomy with or without capsaicin application (0.1% cream, a TRPV1 activator) was performed. Additional rats were given morphine (0.3 mg·kg-1 ) with or without capsaicin. In addition, capsazepine (3 mg·kg-1 , a classical TRPV1 inhibitor), or P5 (3 mg·kg-1 , a peptide analgesic and TRPV1 inhibitor), was given either alone or prior to a laparotomy or morphine administration. Myocardial infarct size was determined. KEY RESULTS A laparotomy, in addition to combining a laparotomy with capsaicin cream, reduced infarct size versus control. Morphine, in addition to combining morphine administration with capsaicin cream, also reduced infarct size versus control. When TRPV1 inhibitors capsazepine or P5 were given, either TRPV1 inhibitor abolished the infarct size reduction mediated by a laparotomy or morphine. CONCLUSIONS AND IMPLICATIONS Inhibiting the TRPV1 channel blocks laparotomy- or morphine-induced cardioprotection. Impaired organ protection may be a potential pitfall of using TRPV1 inhibitors for pain control.
Collapse
Affiliation(s)
- Helen M Heymann
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Yun Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Lu
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Nir Qvit
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Garrett J Gross
- Department of Pharmacology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|