1
|
Eid AH. Pharmacological Frontiers: The Rise of Selective Na V1.8 Inhibition for Pain Management. CNS Drugs 2025:10.1007/s40263-025-01186-4. [PMID: 40325338 DOI: 10.1007/s40263-025-01186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 05/07/2025]
Affiliation(s)
- Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Yang J, Xie YF, Smith R, Ratté S, Prescott SA. Discordance between preclinical and clinical testing of Na V 1.7-selective inhibitors for pain. Pain 2025; 166:481-501. [PMID: 39928833 PMCID: PMC11808711 DOI: 10.1097/j.pain.0000000000003425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT The voltage-gated sodium channel Na V 1.7 plays an important role in pain processing according to genetic data. Those data made Na V 1.7 a popular drug target, especially since its relatively selective expression in nociceptors promised pain relief without the adverse effects associated with broader sodium channel blockade. Despite encouraging preclinical data in rodents, Na V 1.7-selective inhibitors have not yet proven effective in clinical trials. Discrepancies between preclinical and clinical results should raise alarms. We reviewed preclinical and clinical reports on the analgesic efficacy of Na V 1.7-selective inhibitors and found critical differences in several factors. Putting aside species differences, most preclinical studies tested young male rodents with limited genetic variability, inconsistent with the clinical population. Inflammatory pain was the most common preclinical chronic pain model whereas nearly all clinical trials focused on neuropathic pain despite some evidence suggesting Na V 1.7 channels are not essential for neuropathic pain. Preclinical studies almost exclusively measured evoked pain whereas most clinical trials assessed average pain intensity without distinguishing between evoked and spontaneous pain. Nearly all preclinical studies gave a single dose of drug unlike the repeat dosing used clinically, thus precluding preclinical data from demonstrating whether tolerance or other slow processes occur. In summary, preclinical testing of Na V 1.7-selective inhibitors aligned poorly with clinical testing. Beyond issues that have already garnered widespread attention in the pain literature, our results highlight the treatment regimen and choice of pain model as areas for improvement.
Collapse
Affiliation(s)
- Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yu-Feng Xie
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Russell Smith
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Steven A. Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Chen D, Zhang M, He Y, Wu S, Kuang J, Zhang Z, Xu B, Fang Q. The dual modulating effects of neuropeptide FF on morphine-induced analgesia at the spinal level. Neuroscience 2025; 565:247-256. [PMID: 39647601 DOI: 10.1016/j.neuroscience.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Increasing evidence indicates that neuropeptide FF (NPFF) produces analgesic effects and augments opioid-induced analgesia at the spinal level. However, our recent research demonstrated that NPFF exerted complex opioid-modulating effects in an inflammatory pain model after intrathecal (i.t.) injection. Consistent with previous findings, we found that i.t. NPFF dose-dependently attenuated complete Freund's adjuvant-induced pain hypersensitivity. Interestingly, pharmacological results illustrated that NPFF exhibited opposite opioid-modulating effects at the spinal level depending on its administration dosage, wherein i.t. NPFF potentiated morphine-induced anti-allodynia at the dose of 10 nmol, while attenuated morphine analgesia at an ultra-low-dose of 10 pmol. Behavioral results obtained from neuropeptide FF receptor 2 (NPFFR2) knockout animals suggested that both pro- and anti-opioid effects of NPFF were mediated by NPFFR2. Moreover, these modulating effects of spinal NPFFR2 were selectively targeting mu-opioid receptor, had no effect on delta- and kappa-opioid receptor agonist-induced analgesia. Finally, the opioid-modulating effects of NPFF were further verified using in vitro calcium imaging assay, demonstrating that pretreated with NPFF in primary-cultured spinal neurons significantly attenuated the inhibitory effects of morphine on high-K+-induced neuronal excitability. Taken together, our results suggested that NPFF exhibited dual modulating effects on morphine-induced analgesia after i.t. administration, which provides a possible mechanism to explain the complex opioid-modulating effects of endogenous NPFF systems.
Collapse
Affiliation(s)
- Dan Chen
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Mengna Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Yongtao He
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Shuyuan Wu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Junzhe Kuang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Zixin Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| | - Quan Fang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Luo S, Zhou X, Wu M, Wang G, Wang L, Feng X, Wu H, Luo R, Lu M, Ju J, Wang W, Yuan L, Luo X, Peng D, Yang L, Zhang Q, Chen M, Liang S, Dong X, Hao G, Zhang Y, Liu Z. Optimizing Nav1.7-Targeted Analgesics: Revealing Off-Target Effects of Spider Venom-Derived Peptide Toxins and Engineering Strategies for Improvement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406656. [PMID: 39248322 PMCID: PMC11558128 DOI: 10.1002/advs.202406656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/22/2024] [Indexed: 09/10/2024]
Abstract
The inhibition of Nav1.7 is a promising strategy for the development of analgesic treatments. Spider venom-derived peptide toxins are recognized as significant sources of Nav1.7 inhibitors. However, their development has been impeded by limited selectivity. In this study, eight peptide toxins from three distinct spider venom Nav channel families demonstrated robust inhibition of hNav1.7, rKv4.2, and rKv4.3 (rKv4.2/4.3) currents, exhibiting a similar mode of action. The analysis of structure and function relationship revealed a significant overlap in the pharmacophore responsible for inhibiting hNav1.7 and rKv4.2 by HNTX-III, although Lys25 seems to play a more pivotal role in the inhibition of rKv4.2/4.3. Pharmacophore-guided rational design is employed for the development of an mGpTx1 analogue, mGpTx1-SA, which retains its inhibition of hNav1.7 while significantly reducing its inhibition of rKv4.2/4.3 and eliminating cardiotoxicity. Moreover, mGpTx1-SA demonstrates potent analgesic effects in both inflammatory and neuropathic pain models, accompanied by an improved in vivo safety profile. The results suggest that off-target inhibition of rKv4.2/4.3 by specific spider peptide toxins targeting hNav1.7 may arise from a conserved binding motif. This insight promises to facilitate the design of hNav1.7-specific analgesics, aimed at minimizing rKv4.2/4.3 inhibition and associated toxicity, thereby enhancing their suitability for therapeutic applications.
Collapse
|
5
|
Wang X, Luo H, Peng X, Chen J. Spider and scorpion knottins targeting voltage-gated sodium ion channels in pain signaling. Biochem Pharmacol 2024; 227:116465. [PMID: 39102991 DOI: 10.1016/j.bcp.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.
Collapse
Affiliation(s)
- Xiting Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huan Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 418000, China.
| |
Collapse
|
6
|
Xiao X, Luo X, Huang C, Feng X, Wu M, Lu M, Kuang J, Peng S, Guo Y, Zhang Z, Hu Z, Zhou X, Chen M, Liu Z. Transcriptome analysis reveals the peptide toxins diversity of Macrothele palpator venom. Int J Biol Macromol 2023; 253:126577. [PMID: 37648132 DOI: 10.1016/j.ijbiomac.2023.126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Spider venom is a large pharmacological repertoire of different bioactive peptide toxins. However, obtaining crude venom from some spiders is challenging. Thus, studying individual toxins through venom purification is a daunting task. In this study, we constructed the cDNA library and transcriptomic sequencing from the Macrothele palpator venom glands. Subsequently, 718 high-quality expressed sequence tags (ESTs) were identified, and grouped into three categories, including 449 toxin-like (62.53 %), 136 cellular component (18.94 %) and 133 non-matched (18.52 %) based on the gene function annotation. Additionally, 112 non-redundant toxin-like peptides were classified into 13 families (families A-M) based on their sequence homology and cysteine framework. Bioinformatics analysis revealed a high sequence similarity between families A-J and the toxins from Macrothele gigas in the NR database. In contrast, families K-M had a generally low sequence homology with known spider peptide toxins and unpredictable biological functions. Taken together, this study adds many new members to the spider toxin superfamily and provides a basis for identifying various potential biological tools in M. palpator venom.
Collapse
Affiliation(s)
- Xin Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xiaoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Cuiling Huang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xujun Feng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Meijing Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Minjuan Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jiating Kuang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Siyi Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yingmei Guo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zixuan Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhaotun Hu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua College, Huaihua, Hunan 418008, China
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
7
|
Pereira AFM, Cavalcante JS, Angstmam DG, Almeida C, Soares GS, Pucca MB, Ferreira Junior RS. Unveiling the Pain Relief Potential: Harnessing Analgesic Peptides from Animal Venoms. Pharmaceutics 2023; 15:2766. [PMID: 38140106 PMCID: PMC10748172 DOI: 10.3390/pharmaceutics15122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/08/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The concept of pain encompasses a complex interplay of sensory and emotional experiences associated with actual or potential tissue damage. Accurately describing and localizing pain, whether acute or chronic, mild or severe, poses a challenge due to its diverse manifestations. Understanding the underlying origins and mechanisms of these pain variations is crucial for effective management and pharmacological interventions. Derived from a wide spectrum of species, including snakes, arthropods, mollusks, and vertebrates, animal venoms have emerged as abundant repositories of potential biomolecules exhibiting analgesic properties across a broad spectrum of pain models. This review focuses on highlighting the most promising venom-derived toxins investigated as potential prototypes for analgesic drugs. The discussion further encompasses research prospects, challenges in advancing analgesics, and the practical application of venom-derived toxins. As the field continues its evolution, tapping into the latent potential of these natural bioactive compounds holds the key to pioneering approaches in pain management and treatment. Therefore, animal toxins present countless possibilities for treating pain caused by different diseases. The development of new analgesic drugs from toxins is one of the directions that therapy must follow, and it seems to be moving forward by recommending the composition of multimodal therapy to combat pain.
Collapse
Affiliation(s)
- Ana Flávia Marques Pereira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil;
| | - Joeliton S. Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil; (J.S.C.); (D.G.A.)
| | - Davi Gomes Angstmam
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil; (J.S.C.); (D.G.A.)
| | - Cayo Almeida
- Center of Mathematics, Computing Sciences and Cognition, Federal University of ABC, Santo André 09280-560, SP, Brazil;
| | - Gean S. Soares
- Delphina Rinaldi Abdel Azil Hospital and Emergency Room (HPSDRAA), Manaus 69093-415, AM, Brazil;
| | - Manuela B. Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14801-320, SP, Brazil;
| | - Rui Seabra Ferreira Junior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil;
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil; (J.S.C.); (D.G.A.)
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP, São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil
| |
Collapse
|
8
|
Yin JB, Liu HX, Dong QQ, Wu HH, Liang ZW, Fu JT, Zhao WJ, Hu HQ, Guo HW, Zhang T, Lu YC, Jin S, Wang XL, Cao BZ, Wang Z, Ding T. Correlative increasing expressions of KIF5b and Nav1.7 in DRG neurons of rats under neuropathic pain conditions. Physiol Behav 2023; 263:114115. [PMID: 36773735 DOI: 10.1016/j.physbeh.2023.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Nav1.7, one of tetrodotoxin-sensitive voltage-gated sodium channels, mainly expressed in the small diameter dorsal root ganglion (DRG) neurons. The expression and accumulation on neuronal membrane of Nav1.7 increased following peripheral tissue inflammation or nerve injury. However, the mechanisms for membrane accumulation of Nav1.7 remained unclear. We report that KIF5b, a highly expressed member of the kinesin-1 family in DRGs, promoted the translocation of Nav1.7 to the plasma membrane in DRG neurons of the rat. Following nociceptive behaviors in rats induced by peripheral spared nerve injury (SNI), synchronously increased KIF5b and Nav1.7 expressions were observed in DRGs. Immunohistochemistry staining demonstrated the co-expressions of KIF5b and Nav1.7 in the same DRG neurons. Immunoprecipitation experiments further confirmed the interactions between KIF5b and Nav1.7. Moreover, intrathecal injections of KIF5b shRNA moderated the SNI-induced both mechanical and thermal hyperalgesia. The rescued analgesic effects also alleviated SNI-induced anxiety-like behaviors. In sum, KIF5b was required for the membrane localizations of Nav1.7, which suggests a novel mechanism for the trafficking of Nav1.7 involved in neuropathic pain.
Collapse
Affiliation(s)
- Jun-Bin Yin
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China; Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China; Department of Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, China
| | - Hai-Xia Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Jinan 250021, China
| | - Qin-Qin Dong
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China; Department of Neurology, Jinzhou Medical University, Jinzhou 121000, China
| | - Huang-Hui Wu
- Department of Anesthesiology, Medical College of Xiamen University, Xiamen 361005, China
| | - Zhuo-Wen Liang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Jin-Tao Fu
- Department of Critical Care Medicine, Affiliated Yanzhou District Hospital of Jining Medical College, Jining 272100, China
| | - Wen-Jun Zhao
- Department of Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, China
| | - Huai-Qiang Hu
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China
| | - Hong-Wei Guo
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, China
| | - Ya-Cheng Lu
- Department of Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, China
| | - Shan Jin
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China
| | - Xiao-Ling Wang
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China
| | - Bing-Zhen Cao
- Department of Neurology, the 960th Hospital of PLA, Jinan 250031, China.
| | - Zhe Wang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Tan Ding
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China; Department of Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
A Novel Multi-Target Mu/Delta Opioid Receptor Agonist, HAGD, Produced Potent Peripheral Antinociception with Limited Side Effects in Mice and Minimal Impact on Human Sperm Motility In Vitro. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010427. [PMID: 36615612 PMCID: PMC9824695 DOI: 10.3390/molecules28010427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Pain is a common clinical symptom among patients. Although various opioid analgesics have been developed, their side effects hinder their application. This study aimed to develop a novel opioid analgesic, HAGD (H-Tyr-D-AIa-GIy-Phe-NH2), with limited side effects. In vivo studies on mouse models as well as in vitro studies on Chinese hamster ovary (CHO) cells expressing human mu, delta, or kappa opioid receptors (CHOhMOP, CHOhDOP, and CHOhKOP, respectively) and human sperm were conducted. Compared with subcutaneous morphine (10 mg/kg), subcutaneous HAGD (10 mg/kg) produced equipotent or even greater antinociception with a prolonged duration by activating mu/delta opioid receptors in preclinical mouse pain models. The analgesic tolerance, rewarding effects (i.e., conditioned place preference and acute hyperlocomotion), and gastrointestinal transit inhibition of HAGD were significantly reduced compared with those of morphine. Both HAGD and morphine exhibited a withdrawal response and had no impacts on motor coordination. In CHOhMOP and CHOhDOP, HAGD showed specific and efficient intracellular Ca2+ stimulation. HAGD had minimal impact on human sperm motility in vitro, whereas 1 × 10-7 and 1 × 10-8 mol/L of morphine significantly declined sperm motility at 3.5 h. Overall, HAGD may serve as a promising antinociceptive compound.
Collapse
|
10
|
Na V1.7 Channel Blocker [Ala 5, Phe 6, Leu 26, Arg 28]GpTx-1 Attenuates CFA-induced Inflammatory Hypersensitivity in Rats via Endogenous Enkephalin Mechanism. THE JOURNAL OF PAIN 2022; 24:840-859. [PMID: 36586660 DOI: 10.1016/j.jpain.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Venom-derived NaV1.7 channel blockers have promising prospects in pain management. The 34-residue tarantula peptide GpTx-1 is a potent NaV1.7 channel blocker. Its powerful analog [Ala5, Phe6, Leu26, Arg28]GpTx-1 (GpTx-1-71) displayed excellent NaV1.7 selectivity and analgesic properties in mice. The current study aimed to elucidate the anti-hyperalgesic activities of GpTx-1-71 in inflammatory pain and reveal the underlying mechanisms. Our results demonstrated that intrathecal and intraplantar injections of GpTx-1-71 dose-dependently attenuated CFA-induced inflammatory hypersensitivity in rats. Moreover, GpTx-1-71-induced anti-hyperalgesia was significantly reduced by opioid receptor antagonists and the enkephalin antibody and diminished in proenkephalin (Penk) gene knockout animals. Consistently, GpTx-1-71 treatment increased the enkephalin level in the spinal dorsal horn and promoted the Penk transcription and enkephalin release in primary dorsal root ganglion (DRG) neurons, wherein sodium played a crucial role in these processes. Mass spectrometry analysis revealed that GpTx-1-71 mainly promoted the secretion of Met-enkephalin but not Leu-enkephalin from DRG neurons. In addition, the combination of subtherapeutic Met-enkephalin and GpTx-1-71 produced synergistic anti-hyperalgesia in CFA-induced inflammatory hypersensitivity. These findings suggest that the endogenous enkephalin pathway is essential for GpTx-1-71-induced spinal and peripheral analgesia in inflammatory pain. PERSPECTIVE: This article presents a possible pharmacological mechanism underlying NaV1.7 blocker-induced analgesia in inflammatory pain, which helps us to better understand and develop venom-based painkillers for incurable pain.
Collapse
|
11
|
Reid AR, Côté PD, McDougall JJ. Long-Term Blockade of Nociceptive Na v1.7 Channels Is Analgesic in Rat Models of Knee Arthritis. Biomolecules 2022; 12:1571. [PMID: 36358921 PMCID: PMC9687684 DOI: 10.3390/biom12111571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The voltage gated sodium channels (Nav) 1.7, 1.8, and 1.9 are primarily located on nociceptors where they are involved in signalling neuropathic pain. This study examined the effect of Nav1.7 blockade on joint pain using either the small molecule inhibitor PF05089771 or an antibody directed towards the intracellular domain of the ion channel. Male Wistar rats were assigned to one of three experimental groups consisting of either intra-articular injection of 3 mg sodium monoiodoacetate (MIA-joint degeneration group), intra-articular injection of 100 μg lysophosphatidic acid (LPA-joint neuropathy group), or transection of the medial meniscus (MMT-posttraumatic osteoarthritis group). G-ratio calculations were performed to determine potential demyelination and immunohistochemistry was used to measure Nav1.7 expression on joint afferent cell bodies. Pain behaviour was evaluated over 3 h by von Frey hair algesiometry and hindlimb weight bearing before and after local administration of PF05089771 (0.1 mg/50 µL). Chronic pain behaviour was assessed over 28 days following peripheral treatment with a Nav1.7 antibody (Ab) in conjunction with the transmembrane carrier peptide Pep1. Demyelination and increased Nav1.7 channel expression were observed in MIA and LPA rats, but not with MMT. Acute secondary allodynia was diminished by PF05089771 while a single injection of Nav1.7 Ab-Pep1 reduced pain up to 28 days. This analgesia only occurred in MIA and LPA animals. Hindlimb incapacitance was not affected by any treatment. These data indicate that joint pain associated with neural demyelination can be alleviated somewhat by Nav1.7 channel blockade. Biologics that inactivate Nav1.7 channels have the potential to reduce arthritis pain over a protracted period of time.
Collapse
Affiliation(s)
- Allison R. Reid
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Patrice D. Côté
- Department of Biology, Dalhousie University, 1355 Oxford, Halifax, NS B3H 4R2, Canada
| | - Jason J. McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
12
|
Muller JAI, Chan LY, Toffoli-Kadri MC, Mortari MR, Craik DJ, Koehbach J. Antinociceptive peptides from venomous arthropods. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2065510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jessica A. I. Muller
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Lai Y. Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Monica C. Toffoli-Kadri
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Marcia R. Mortari
- Laboratory of Neuropharmacology, IB/University of Brasilia, Brasilia, Brazil
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
13
|
Spinal microglia-derived TNF promotes the astrocytic JNK/CXCL1 pathway activation in a mouse model of burn pain. Brain Behav Immun 2022; 102:23-39. [PMID: 35143878 DOI: 10.1016/j.bbi.2022.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
Burn injury-induced pain (BIP) is an extremely complicated condition usually resistant to analgesic drugs, while its pathogenesis remains unknown. Considerable attention has been attracted to elucidate the glial mechanisms in chronic pain. In this study, we initiatively used a mouse model of second-degree BIP to investigate the underlying non-neuronal mechanisms at the spinal cord level. Our behavioral results showed that hind-paw burn injury caused persistent allodynia and hyperalgesia for 2 weeks in mice. Further studies revealed that both microglia and astrocytes activated in a spatially- and temporally-dependent manner in spinal cord after burn injury. In addition, the phosphorylated p38 mitogen-activated protein kinase (MAPK)-mediated tumor necrosis factor (TNF) release in spinal microglia is essentially attributed to the early stage of BIP, while the c-Jun N-terminal kinase (JNK) MAPK-dependent chemokine CXCL1 expression is mainly involved in the maintenance of pain hypersensitivity. Most strikingly, burn injury-induced pain symptoms and the activation of astrocytes were significantly suppressed by TNF inhibitor Thalidomide. On the contrary, intrathecal injection of TNF caused apparent pain hypersensitivity, accompanied by the activation of astrocytes and the upregulation of CXCL1 via the JNK MAPK signaling pathway, indicating that TNF is the key cytokine in the interaction between microglia and astrocytes at the spinal level. Moreover, treatment with the CXCR2 receptor antagonist SB225002 to block the biological activities of CXCL1 significantly attenuated the mechanical allodynia and thermal hyperalgesia in this BIP model. Taken together, this study indicates that intervention of glial pathways provides a new perspective in the management of BIP.
Collapse
|
14
|
Chen Y, Xu E, Sang M, Wang Z, Zhang Y, Ye J, Zhou Q, Zhao C, Hu C, Lu W, Cao P. Makatoxin-3, a thermostable Nav1.7 agonist from Buthus martensii Karsch (BmK) scorpion elicits non-narcotic analgesia in inflammatory pain models. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114998. [PMID: 35063590 DOI: 10.1016/j.jep.2022.114998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic pain management represents a serious healthcare problem worldwide. The use of opioid analgesics for pain has always been hampered by their side effects; in particular, the addictive liability associated with chronic use. Finding a morphine replacement has been a long-standing goal in the field of analgesia. In traditional Chinese medicine, processed Buthus martensii Karsch (BmK) scorpion has been used as a painkiller to treat chronic inflammatory arthritis and spondylitis, so called "Scorpio-analgesia". However, the molecular basis and the underline mechanism for the Scorpio-analgesia are still unclear. AIM OF THE STUDY The study aims to investigate the molecular basis of "Scorpio analgesia" and identify novel analgesics from BmK scorpion. MATERIALS AND METHODS In this study, the analgesic abilities were determined using formalin-, acetic acid- and complete Freund's adjuvant-induced pain models. The effect of BmK venom and processed BmK venom on Nav1.7 were detected by whole-cell voltage-clamp recordings on HEK293-hNav1.7 stable cell line. Action potentials in Dorsal root ganglion (DRG) neurons induced by Makatoxin-3-R58A were recorded in current-clamp mode. The content of Makatoxin-3 was detected using competitive enzyme-linked immunosorbent assay based on the Makatoxin-3 antibody. High performance liquid chromatography, western blot and circular dichroism spectroscopy were used to analysis the stability of Makatoxin-3. RESULTS Here we demonstrate that Makatoxin-3, an α-like toxin in BmK scorpion venom targeting Nav1.7 is the critical component in Scorpio-analgesia. The analgesic effect of Makatoxin-3 could not be reversed by naloxone and is more potent than Nav1.7-selective inhibitors and non-steroidal anti-inflammatory drugs in inflammatory models. Moreover, a R58A mutant of Makatoxin-3 is capable of eliciting analgesia effect without inducing pain response. CONCLUSIONS This study advances ion channel biology and proposes Nav1.7 agonists, rather than the presumed Nav1.7-only blockers, for non-narcotic relief of chronic pain.
Collapse
Affiliation(s)
- Yonggen Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Erjin Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Ming Sang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Zhiheng Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Yuxin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Qian Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Chenglei Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Wuguang Lu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
15
|
Diochot S. Pain-related toxins in scorpion and spider venoms: a face to face with ion channels. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210026. [PMID: 34925480 PMCID: PMC8667759 DOI: 10.1590/1678-9199-jvatitd-2021-0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pain is a common symptom induced during envenomation by spiders and scorpions.
Toxins isolated from their venom have become essential tools for studying the
functioning and physiopathological role of ion channels, as they modulate their
activity. In particular, toxins that induce pain relief effects can serve as a
molecular basis for the development of future analgesics in humans. This review
provides a summary of the different scorpion and spider toxins that directly
interact with pain-related ion channels, with inhibitory or stimulatory effects.
Some of these toxins were shown to affect pain modalities in different animal
models providing information on the role played by these channels in the pain
process. The close interaction of certain gating-modifier toxins with membrane
phospholipids close to ion channels is examined along with molecular approaches
to improve selectivity, affinity or bioavailability in vivo for
therapeutic purposes.
Collapse
Affiliation(s)
- Sylvie Diochot
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS) UMR 7275 et Université Côte d'Azur (UCA), 06560 Valbonne, France. Institut de Pharmacologie Moléculaire et Cellulaire Centre National de la Recherche Scientifique Université Côte d'Azur Valbonne France
| |
Collapse
|
16
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Neff RA, Wickenden AD. Selective Targeting of Nav1.7 with Engineered Spider Venom-Based Peptides. Channels (Austin) 2021; 15:179-193. [PMID: 33427574 PMCID: PMC7808416 DOI: 10.1080/19336950.2020.1860382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 01/12/2023] Open
Abstract
A fundamental mechanism that drives the propagation of electrical signals in the nervous system is the activation of voltage-gated sodium channels. The sodium channel subtype Nav1.7 is critical for the transmission of pain-related signaling, with gain-of-function mutations in Nav1.7 resulting in various painful pathologies. Loss-of-function mutations cause complete insensitivity to pain and anosmia in humans that otherwise have normal nervous system function, rendering Nav1.7 an attractive target for the treatment of pain. Despite this, no Nav1.7 selective therapeutic has been approved for use as an analgesic to date. Here we present a summary of research that has focused on engineering peptides found in spider venoms to produce Nav1.7 selective antagonists. We discuss the progress that has been made on various scaffolds from different venom families and highlight the challenges that remain in the effort to produce a Nav1.7 selective, venom-based analgesic.
Collapse
Affiliation(s)
- Robert A. Neff
- Neuroscience Discovery, Janssen Research and Development, LLC, San Diego, CA, USA
| | - Alan D. Wickenden
- Molecular and Cellular Pharmacology, Janssen Research and Development, LLC, San Diego, CA, USA
| |
Collapse
|
18
|
Cai S, Moutal A, Yu J, Chew LA, Isensee J, Chawla R, Gomez K, Luo S, Zhou Y, Chefdeville A, Madura C, Perez-Miller S, Bellampalli SS, Dorame A, Scott DD, François-Moutal L, Shan Z, Woodward T, Gokhale V, Hohmann AG, Vanderah TW, Patek M, Khanna M, Hucho T, Khanna R. Selective targeting of NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces pain in rodents. Sci Transl Med 2021; 13:eabh1314. [PMID: 34757807 PMCID: PMC11729770 DOI: 10.1126/scitranslmed.abh1314] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The voltage-gated sodium NaV1.7 channel, critical for sensing pain, has been actively targeted by drug developers; however, there are currently no effective and safe therapies targeting NaV1.7. Here, we tested whether a different approach, indirect NaV1.7 regulation, could have antinociceptive effects in preclinical models. We found that preventing addition of small ubiquitin-like modifier (SUMO) on the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 functions and had antinociceptive effects in rodents. In silico targeting of the SUMOylation site in CRMP2 (Lys374) identified >200 hits, of which compound 194 exhibited selective in vitro and ex vivo NaV1.7 engagement. Orally administered 194 was not only antinociceptive in preclinical models of acute and chronic pain but also demonstrated synergy alongside other analgesics—without eliciting addiction, rewarding properties, or neurotoxicity. Analgesia conferred by 194 was opioid receptor dependent. Our results demonstrate that 194 is a first-in-class protein-protein inhibitor that capitalizes on CRMP2-NaV1.7 regulation to deliver safe analgesia in rodents.
Collapse
Affiliation(s)
- Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Lindsey A. Chew
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, University Cologne, Joseph-Stelzmann-Str 9, Cologne D-50931, Germany
| | - Reena Chawla
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
| | - Kimberly Gomez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Yuan Zhou
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Cynthia Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Shreya Sai Bellampalli
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - David D. Scott
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Taylor Woodward
- Department of Psychological and Brain Sciences, Program in Neuroscience and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405-2204, USA
| | - Vijay Gokhale
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Andrea G. Hohmann
- Department of Psychological and Brain Sciences, Program in Neuroscience and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405-2204, USA
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ 85724, USA
| | - Marcel Patek
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
- Bright Rock Path LLC, Tucson, AZ 85724, USA
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, USA
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, University Cologne, Joseph-Stelzmann-Str 9, Cologne D-50931, Germany
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, USA
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ 85724, USA
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
| |
Collapse
|
19
|
MacDonald DI, Sikandar S, Weiss J, Pyrski M, Luiz AP, Millet Q, Emery EC, Mancini F, Iannetti GD, Alles SRA, Arcangeletti M, Zhao J, Cox JJ, Brownstone RM, Zufall F, Wood JN. A central mechanism of analgesia in mice and humans lacking the sodium channel Na V1.7. Neuron 2021; 109:1497-1512.e6. [PMID: 33823138 PMCID: PMC8110947 DOI: 10.1016/j.neuron.2021.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/05/2020] [Accepted: 03/08/2021] [Indexed: 11/18/2022]
Abstract
Deletion of SCN9A encoding the voltage-gated sodium channel NaV1.7 in humans leads to profound pain insensitivity and anosmia. Conditional deletion of NaV1.7 in sensory neurons of mice also abolishes pain, suggesting that the locus of analgesia is the nociceptor. Here we demonstrate, using in vivo calcium imaging and extracellular recording, that NaV1.7 knockout mice have essentially normal nociceptor activity. However, synaptic transmission from nociceptor central terminals in the spinal cord is greatly reduced by an opioid-dependent mechanism. Analgesia is also reversed substantially by central but not peripheral application of opioid antagonists. In contrast, the lack of neurotransmitter release from olfactory sensory neurons is opioid independent. Male and female humans with NaV1.7-null mutations show naloxone-reversible analgesia. Thus, inhibition of neurotransmitter release is the principal mechanism of anosmia and analgesia in mouse and human Nav1.7-null mutants.
Collapse
Affiliation(s)
- Donald Iain MacDonald
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | - Shafaq Sikandar
- Centre for Experimental Medicine & Rheumatology, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jan Weiss
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Ana P Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Queensta Millet
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Edward C Emery
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Flavia Mancini
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Gian D Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy
| | - Sascha R A Alles
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Manuel Arcangeletti
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
20
|
Eagles DA, Chow CY, King GF. Fifteen years of Na
V
1.7 channels as an analgesic target: Why has excellent in vitro pharmacology not translated into in vivo analgesic efficacy? Br J Pharmacol 2020; 179:3592-3611. [DOI: 10.1111/bph.15327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- David A. Eagles
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Glenn F. King
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| |
Collapse
|
21
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
22
|
Xu B, Guo Y, Zhang M, Zhang R, Chen D, Zhang Q, Xiao J, Xu K, Li N, Qiu Y, Zhu H, Niu J, Zhang X, Fang Q. Central and peripheral modulation of gastrointestinal transit in mice by DN-9, a multifunctional opioid/NPFF receptor agonist. Neurogastroenterol Motil 2020; 32:e13848. [PMID: 32281198 DOI: 10.1111/nmo.13848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/05/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The nonapeptide DN-9 functions as a multifunctional agonist to opioid and neuropeptide FF (NPFF) receptors and exhibits antinociceptive effects at the central and peripheral levels. METHODS The effects of DN-9 on small and colonic intestinal transit were evaluated using the upper gastrointestinal (GI) transit test and colonic bead expulsion assay, respectively. Opioid and NPFF receptor antagonists were used to investigate the mechanisms of DN-9-induced GI inhibition. Furthermore, the agonism of the DN-9 analog [Phg9 ]-DN-9 to opioid and NPFF receptors was tested by the cAMP assay. KEY RESULTS Intracerebroventricular administration of DN-9 dose-dependently slowed upper GI transit and colonic expulsion via mu- and kappa-opioid receptors in the brain, independent of the delta-opioid receptor. Similarly, intraperitoneal injection of DN-9 dose-dependently inhibited GI propulsion via the peripheral opioid receptors. DN-9-induced GI transit inhibitions were significantly aggravated by the NPFF receptor antagonist RF9. Moreover, the DN-9 analog [Phg9 ]-DN-9, an agonist at mu-, delta-, and kappa-opioid receptors but not NPFF receptors, inhibited GI more potently than DN-9. In addition, intracerebroventricular NPFF significantly attenuated the central inhibitory effects induced by [Phg9 ]-DN-9 and morphine. However, central and peripheral injections of NPFF or RF9 almost had no significant effects on GI transit by itself. CONCLUSION AND INFERENCES Intracerebroventricular and intraperitoneal administrations of DN-9 inhibit GI transit via opioid receptors in mice by central and peripheral mechanisms, respectively. In addition, the NPFF agonism of DN-9 possesses antiopioid effects on GI transit, which might explain the reduced constipation at the antinociceptive doses.
Collapse
Affiliation(s)
- Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yuanyuan Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoyu Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Xu B, Xiao J, Xu K, Zhang Q, Chen D, Zhang R, Zhang M, Zhu H, Niu J, Zheng T, Li N, Zhang X, Fang Q. VF-13, a chimeric peptide of VD-hemopressin(α) and neuropeptide VF, produces potent antinociception with reduced cannabinoid-related side effects. Neuropharmacology 2020; 175:108178. [PMID: 32544481 DOI: 10.1016/j.neuropharm.2020.108178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 05/31/2020] [Indexed: 01/13/2023]
Abstract
Pharmacological evidence indicated a functional interaction between neuropeptide FF (NPFF) and cannabinoid systems, and the cannabinoids combined with the NPFF receptor agonist neuropeptide VF (NPVF) produced antinociception without tolerance. In the present study, VF-13, a chimeric peptide containing the pharmacophores of the endogenous cannabinoid peptide VD-hemopressin(α) (VD-Hpα) and NPVF, was synthesized and pharmacologically evaluated. In vitro, VF-13 significantly upregulated the phosphorylated level of extracellular signal-regulated kinase 1/2 (ERK1/2) in CHO cells stably expressing CB1 receptors and inhibited forskolin-induced cAMP accumulation in HEK293 cells stably expressing NPFF1 or NPFF2 receptors. Moreover, VF-13 induced neurite outgrowth in Neuro 2A cells via CB1 and NPFF receptors. These results suggest that VF-13 exhibits multifunctional agonism at CB1, NPFF1 and NPFF2 receptors in vitro. Interestingly, intracerebroventricular VF-13 produced dose-dependent antinociception in mouse models of tail-flick and carrageenan-induced inflammatory pain via the TRPV1 receptor. In contrast, the reference compound (m)VD-Hpα-NH2 induced CB1 receptor-mediated supraspinal antinociception. Additionally, subcutaneous injection of (m)VD-Hpα-NH2 and VF-13 produced significant antinociception in carrageenan-induced inflammatory pain model. In the tetrad assay, our data demonstrated that VF-13 elicited hypothermia, but not catalepsy and hypoactivity after intracerebroventricular injection. Notably, VF-13 produced non-tolerance forming antinociception over 6 days treatment in both acute and inflammatory pain models. Furthermore, VF-13 had no apparent effects on gastrointestinal transit, pentobarbitone-induced sedation, food intake, and motor coordination at the supraspinal level. In summary, VF-13, a novel chimeric peptide of VD-Hpα and NPVF, produced non-tolerance forming antinociception in preclinical pain models with reduced cannabinoid-related side effects.
Collapse
Affiliation(s)
- Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hanwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ting Zheng
- Department of Clinical Medicine, Gansu Health Vocational College, 60 Donggang West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xiaoyu Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, And Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
24
|
McCarthy S, Robinson J, Thalassinos K, Tabor AB. A Chemical Biology Approach to Probing the Folding Pathways of the Inhibitory Cystine Knot (ICK) Peptide ProTx-II. Front Chem 2020; 8:228. [PMID: 32309273 PMCID: PMC7145985 DOI: 10.3389/fchem.2020.00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/10/2020] [Indexed: 11/24/2022] Open
Abstract
Peptide toxins that adopt the inhibitory cystine knot (ICK) scaffold have very stable three-dimensional structures as a result of the conformational constraints imposed by the configuration of the three disulfide bonds that are the hallmark of this fold. Understanding the oxidative folding pathways of these complex peptides, many of which are important therapeutic leads, is important in order to devise reliable synthetic routes to correctly folded, biologically active peptides. Previous research on the ICK peptide ProTx-II has shown that in the absence of an equilibrating redox buffer, misfolded intermediates form that prevent the formation of the native disulfide bond configuration. In this paper, we used tandem mass spectrometry to examine these misfolded peptides, and identified two non-native singly bridged peptides, one with a Cys(III)-Cys(IV) linkage and one with a Cys(V)-Cys(VI) linkage. Based on these results, we propose that the C-terminus of ProTx-II has an important role in initiating the folding of this peptide. To test this hypothesis, we have also studied the folding pathways of analogs of ProTx-II containing the disulfide-bond directing group penicillamine (Pen) under the same conditions. We find that placing Pen residues at the C-terminus of the ProTx-II analogs directs the folding pathway away from the singly bridged misfolded intermediates that represent a kinetic trap for the native sequence, and allows a fully oxidized final product to be formed with three disulfide bridges. However, multiple two-disulfide peptides were also produced, indicating that further study is required to fully control the folding pathways of this modified scaffold.
Collapse
Affiliation(s)
| | | | - Konstantinos Thalassinos
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | | |
Collapse
|
25
|
Kushnarev M, Pirvulescu IP, Candido KD, Knezevic NN. Neuropathic pain: preclinical and early clinical progress with voltage-gated sodium channel blockers. Expert Opin Investig Drugs 2020; 29:259-271. [PMID: 32070160 DOI: 10.1080/13543784.2020.1728254] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Neuropathic pain is a chronic condition that significantly affects the quality of life of millions of people globally. Most of the pharmacologic treatments currently in use demonstrate modest efficacy and over half of all patients do not respond to medical management. Hence, there is a need for new, efficacious drugs. Evidence points toward voltage-gated sodium channels as a key target for novel analgesics.Area covered: The role of voltage-gated sodium channels in pain pathophysiology is illuminated and the preclinical and clinical data for new sodium channel blockers and toxin-derived lead compounds are examined. The expansion of approved sodium channel blockers is discussed along with the limitations of current research, trends in drug development, and the potential of personalized medicine.Expert opinion: The transition from preclinical to clinical studies can be difficult because of the inherent inability of animal models to express the complexities of pain states. Pain pathways are notoriously intricate and may be pharmacologically modulated at a variety of targets; it is unlikely that action at a single target could completely abolish a pain response because pain is rarely unifactorial. Combination therapy may be necessary and this could further confound the discovery of novel agents.
Collapse
Affiliation(s)
- Mikhail Kushnarev
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Iulia Paula Pirvulescu
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Kenneth D Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA.,Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL, USA.,Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA.,Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL, USA.,Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, USA
| |
Collapse
|
26
|
Chen C, Xu B, Shi X, Zhang M, Zhang Q, Zhang T, Zhao W, Zhang R, Wang Z, Li N, Fang Q. GpTx-1 and [Ala 5 , Phe 6 , Leu 26 , Arg 28 ]GpTx-1, two peptide Na V 1.7 inhibitors: analgesic and tolerance properties at the spinal level. Br J Pharmacol 2018; 175:3911-3927. [PMID: 30076786 DOI: 10.1111/bph.14461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The voltage-gated sodium channel NaV 1.7 is considered a therapeutic target for pain treatment based on human genetic evidence. GpTx-1 and its potent analogue [Ala5 , Phe6 , Leu26 , Arg28 ]GpTx-1 (GpTx-1-71) were recently characterized as NaV 1.7 inhibitors in vitro. Furthermore, the present work was conducted to investigate the analgesic properties of these two peptides in different pain models after spinal administration. EXPERIMENTAL APPROACH The antinociceptive activities of both GpTx-1 and GpTx-1-71 were investigated in mouse models of acute, visceral, inflammatory and neuropathic pain. Furthermore, the side effects of GpTx-1 and GpTx-1-71 were evaluated in rotarod, antinociceptive tolerance, acute hyperlocomotion and gastrointestinal transit tests. KEY RESULTS The i.t. administration of both GpTx-1 and GpTx-1-71 dose-dependently produced powerful antinociception in the different pain models. This effect was attenuated by the opioid receptor antagonist naloxone, suggesting the involvement of the opioid system. In this study, repeated administration of these two_peptides produced spinal analgesia without a loss of potency over 8 days in mouse models of acute, inflammatory and neuropathic pain. Moreover, spinal administration of GpTx-1 and GpTx-1-71 did not induce significant effects on motor coordination, evoke acute hyperlocomotion or increase gastrointestinal transit time. CONCLUSIONS AND IMPLICATIONS Our data indicate that the NaV 1.7 peptide inhibitors GpTx-1 and GpTx-1-71 produce powerful, nontolerance-forming analgesia in preclinical pain models, which might be dependent on the endogenous opioid system. In addition, at the spinal level, the limited side effects imply that these NaV 1.7 peptide inhibitors could be potentially developed as GpTx-1-based drugs for pain relief.
Collapse
Affiliation(s)
- Chao Chen
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xuerui Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Weidong Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zilong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|