1
|
Ismeurt-Walmsley C, Giannoni P, Servant F, Mekki LN, Baranger K, Rivera S, Marin P, Lelouvier B, Claeysen S. The same but different: impact of animal facility sanitary status on a transgenic mouse model of Alzheimer's disease. mBio 2025; 16:e0400124. [PMID: 40243365 PMCID: PMC12077201 DOI: 10.1128/mbio.04001-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The gut-brain axis has emerged as a key player in the regulation of brain function and cognitive health. Gut microbiota dysbiosis has been observed in preclinical models of Alzheimer's disease and patients. Manipulating the composition of the gut microbiota enhances or delays neuropathology and cognitive deficits in mouse models. Accordingly, the health status of the animal facility may strongly influence these outcomes. In the present study, we longitudinally analyzed the fecal microbiota composition and amyloid pathology of 5XFAD mice housed in a specific opportunistic pathogen-free (SOPF) and a conventional facility. The composition of the microbiota of 5XFAD mice after aging in conventional facility showed marked differences compared to WT littermates that were not observed when the mice were bred in SOPF facility. The development of amyloid pathology was also enhanced by conventional housing. We then transplanted fecal microbiota (FMT) from both sources into wild-type (WT) mice and measured memory performance, assessed in the novel object recognition test, in transplanted animals. Mice transplanted with microbiota from conventionally bred 5XFAD mice showed impaired memory performance, whereas FMT from mice housed in SOPF facility did not induce memory deficits in transplanted mice. Finally, 18 weeks of housing SOPF-born animals in a conventional facility resulted in the reappearance of specific microbiota compositions in 5XFAD vs WT mice. In conclusion, these results show a strong impact of housing conditions on microbiota-associated phenotypes and question the relevance of breeding preclinical models in specific pathogen-free (SPF) facilities. IMPORTANCE Housing conditions affect the composition of the gut microbiota. Gut microbiota of 6-month-old conventionally bred Alzheimer's mice is dysbiotic. Gut dysbiosis is absent in Alzheimer's mice housed in highly sanitized facilities. Transfer of fecal microbiota from conventionally bred mice affects cognition. Microbiota of mice housed in highly sanitized facilities has no effect on cognition.
Collapse
Affiliation(s)
| | - Patrizia Giannoni
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, Occitanie, France
| | | | - Linda-Nora Mekki
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, Occitanie, France
| | - Kevin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Philippe Marin
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, Occitanie, France
| | | | - Sylvie Claeysen
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, Occitanie, France
| |
Collapse
|
2
|
Canet G, Zussy C, Vitalis M, Morin F, Chevallier N, Hunt H, Claeysen S, Blaquière M, Marchi N, Planel E, Meijer OC, Desrumaux C, Givalois L. Advancing Alzheimer's disease pharmacotherapy: efficacy of glucocorticoid modulation with dazucorilant (CORT113176) in preclinical mouse models. Br J Pharmacol 2025; 182:1930-1956. [PMID: 39891319 DOI: 10.1111/bph.17457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND AND PURPOSE Exposure to chronic stress and high levels of glucocorticoid hormones in adulthood has been associated with cognitive deficits and increased risk of Alzheimer's disease (AD). Dazucorilant has recently emerged as a selective glucocorticoid receptor (NR3C1) modulator, exhibiting efficacy in counteracting amyloid-β toxicity in an acute model of AD. We aim to assess the therapeutic potential of dazucorilant in reversing amyloid and tau pathologies through the inhibition of glucocorticoid receptor pathological activity, and providing additional evidence for its consideration in AD treatment. EXPERIMENTAL APPROACH The efficacy of dazucorilant was evaluated in two transgenic mouse models of amyloid pathology. The slowly progressing J20 and the aggressively pathological 5xFAD mice. Behavioural analysis was conducted to evaluate welfare, cognitive performances and anxiety levels. The activity of the glucocorticoid receptor system, neuroinflammation, amyloid burden and tau phosphorylation were examined in hippocampi. KEY RESULTS In both AD models, chronic treatment with dazucorilant improved working and long-term spatial memories along with the inhibition of glucocorticoid receptor-dependent pathogenic processes and the normalization of plasma glucocorticoid levels. Dazucorilant treatment also resulted in a reduction in tau hyperphosphorylation and amyloid production and aggregation. Additionally, dazucorilant seemed to mediate a specific re-localization of activated glial cells onto amyloid plaques in J20 mice, suggesting a restoration of physiological neuroinflammatory processes. CONCLUSION AND IMPLICATIONS Dazucorilant exhibited sustained disease-modifying effects in two AD models. Given that this compound has demonstrated safety and tolerability in human subjects, our results provide pre-clinical support for conducting clinical trials to evaluate its potential in AD.
Collapse
Affiliation(s)
- Geoffrey Canet
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | - Charleine Zussy
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
| | - Mathieu Vitalis
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
| | - Françoise Morin
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | | | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California, USA
| | | | | | - Nicola Marchi
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Planel
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | - Onno C Meijer
- Einthoven Laboratory, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catherine Desrumaux
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- LIPSTIC LabEx, Dijon, France
| | - Laurent Givalois
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
- CNRS, Paris, France
| |
Collapse
|
3
|
Azam U, Naseer MM, Rochais C. Analysis of skeletal diversity of multi-target directed ligands (MTDLs) targeting Alzheimer's disease. Eur J Med Chem 2025; 286:117277. [PMID: 39848035 DOI: 10.1016/j.ejmech.2025.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Alzheimer's disease (AD) remains a significant healthcare challenge, necessitating innovative therapeutic approaches to address its complex and multifactorial nature. Traditional drug discovery strategies targeting single molecular targets are not sufficient for the effective treatment of AD. In recent years, MTDLs have emerged as promising candidates for AD therapy, aiming to simultaneously modulate multiple pathological targets. Among the various strategies employed in MTDL design, pharmacophore hybridization offers a versatile approach to integrate diverse pharmacophoric features within a single molecular scaffold. This strategy provides access to a wide array of chemical space for the design and development of novel therapeutic agents. This review, therefore, provides a comprehensive overview of skeletal diversity exhibited by MTDLs designed recently for AD therapy based on pharmacophore hybridization approach. A diverse range of pharmacophoric elements and core scaffolds hybridized to construct MTDLs that has the potential to target multiple pathological features of AD including amyloid-beta aggregation, tau protein hyperphosphorylation, cholinergic dysfunction, oxidative stress, and neuroinflammation are discussed. Through the comprehensive analysis and integration of structural insights of key biomolecular targets, this review aims to enhance optimization efforts in MTDL design, ultimately striving towards a comprehensive cure for the multifaceted pathophysiology of the disease.
Collapse
Affiliation(s)
- Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| | - Christophe Rochais
- Université de Caen Normandie, Normandie Univ., CERMN, 14000, Caen, France.
| |
Collapse
|
4
|
Blicharz-Futera K, Kamiński M, Grychowska K, Canale V, Zajdel P. Current development in sulfonamide derivatives to enable CNS-drug discovery. Bioorg Chem 2025; 156:108076. [PMID: 39889550 DOI: 10.1016/j.bioorg.2024.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 02/03/2025]
Abstract
The encouraging therapeutic potential of sulfonamide-based derivatives has been unraveled by breakthrough discovery of Paul Ehrlich, who pointed out the possibility of fighting microbes with chemicals. Over the decades, the utility of sulfonamides has expanded beyond antimicrobial agents, revealing their usefulness in many areas of pharmacotherapy, including the treatment of central nervous system (CNS) diseases. Through a detailed analysis of preclinical and clinical data, we identify key sulfonamide-based compounds that have demonstrated significant CNS activity. We also discuss the challenges in the development of sulfonamide derivatives as enzyme/ion channel inhibitors or receptor ligands for CNS applications, describing their mode of action and therapeutic significance. This is followed by the characteristics of pharmacological targets, structure-activity relationships, ADMET properties, efficacy in experimental animal models, and outcomes from clinical trials. Overall, the versatile nature of arylsulfonamides makes them a valuable motif in drug discovery, offering diverse opportunities for the development of novel agents for treating CNS disorders.
Collapse
Affiliation(s)
- Klaudia Blicharz-Futera
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza Street, 31-530 Krakow, Poland
| | - Michał Kamiński
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Łazarza Street, 31-530 Krakow, Poland
| | - Katarzyna Grychowska
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Vittorio Canale
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Paweł Zajdel
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| |
Collapse
|
5
|
Groo AC, Curel T, Malzert-Fréon A, Séguy L, Bento O, Corvaisier S, Culerier T, Legrand R, Callizot N, Henriques A, Culley G, Claeysen S, Rochais C, Dallemagne P. Evidence from a mouse model supports repurposing an anti-asthmatic drug, bambuterol, against Alzheimer's disease by administration through an intranasal route. Commun Biol 2025; 8:155. [PMID: 39893320 PMCID: PMC11787381 DOI: 10.1038/s42003-025-07599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025] Open
Abstract
Bambuterol is a long-acting anti-asthmatic prodrug which releases terbutaline. Terbutaline is an agonist of the β2-adrenergic receptors which is formed by decarbamoylation of bambuterol by butyrylcholinesterase. Inhibition of the latter, as well as activation of β2-AR, are of interest for the treatment of Alzheimer's disease (AD). Combining these two activities, bambuterol could express a good clinical efficacy against AD. The present work firstly confirmed the capacity of bambuterol to display in cellulo neuroprotective activities, reduction of Tau hyperphosphorylation and preservation of synapses in rat hippocampal neuronal cultures intoxicated with Aβ peptides. Further, bambuterol, in the form of a liposomal gel, showed a good bioavailability in CNS after intranasal administration, which should reduce any side effects linked to peripheral terbutaline release. Indeed, even if the latter is more selective than other β2-mimetics towards bronchial β2-AR, cardiovascular effects (tachycardia, arrhythmias…) could occur upon cardiac β1-AR activation. Finally, intranasal administration of low doses of bambuterol gel in mice intoxicated with Aβ peptides, prevented long-term spatial memory impairment and showed beneficial effects on the survival of neurons and on synapse preservation.
Collapse
Affiliation(s)
- Anne-Claire Groo
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000, Caen, France
| | - Thomas Curel
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | | | - Line Séguy
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000, Caen, France
| | - Ophélie Bento
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Sophie Corvaisier
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000, Caen, France
| | - Thomas Culerier
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000, Caen, France
| | - Romain Legrand
- RONOMA Pharma, 31 rue Léon Delille, F-76800, Saint Etienne du Rouvray, France
| | - Noëlle Callizot
- Neuro-Sys, 410 chemin départemental 60, F-13120, Gardanne, France
| | | | - Georgia Culley
- Neuro-Sys, 410 chemin départemental 60, F-13120, Gardanne, France
| | - Sylvie Claeysen
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Christophe Rochais
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000, Caen, France.
| | - Patrick Dallemagne
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000, Caen, France.
| |
Collapse
|
6
|
Rochais C, Lecoutey C, Lalut J, Davis A, Duval E, Gaven F, Largillière S, Née G, Corvaisier S, Sopkova de Oliveira Santos J, Since M, Freret T, Legrand R, Callizot N, Claeysen S, Boulouard M, Dallemagne P. Synthesis, in vitro and in vivo biological evaluation of novel dual compounds targeting both acetylcholinesterase and serotonergic 5-HT 4 receptors with potential interest in the treatment of Alzheimer's disease. Eur J Med Chem 2024; 280:116975. [PMID: 39454222 DOI: 10.1016/j.ejmech.2024.116975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
In this work, we exemplified the "copride" family of drug candidates able to both inhibit acetylcholinesterase and to activate 5-HT4 receptors, with anti-amnesiant and promnesiant activities in mice. Twenty-one analogs of donecopride, the first-in class representative of the series, were synthesized exploring the influence on the biological activities of the substituents (methoxy, amine and chlorine) carried by its phenyl ring. This work was the support of an intensive structure-activity relationship study and allowed to obtain some interesting derivatives of donecopride. In this respect, the replacement of the methoxy group of the latter with a deuterated one led to deudonecopride. On the other hand, the replacement of the chlorine atom of donecopride by various halogen atoms was of particular interest, among which fluorine led to a potent analog, we called flucopride. The latter exhibited promising in vitro activities associated to excellent drugability parameters. Flucopride was consequently involved in in vivo studies such as a scopolamine-induced deficit model of working memory and in a novel object recognition test. Through these evaluations, flucopride demonstrated both its antiamnesiant and promnesiant capacities, which could make it a potential preclinical drug candidate for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Christophe Rochais
- Université de Caen Normandie, Normandie Univ., Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France.
| | - Cédric Lecoutey
- Université de Caen Normandie, Normandie Univ., Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Julien Lalut
- Université de Caen Normandie, Normandie Univ., Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Audrey Davis
- Université de Caen Normandie, Normandie Univ., Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Emilie Duval
- Université de Caen Normandie, Normandie Univ., Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Florence Gaven
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Stacy Largillière
- Université de Caen Normandie, Normandie Univ., Mobilités: Vieillissement, Pathologie, Santé (COMETE), INSERM UMR-S 1075, 14000, Caen, France
| | - Gérald Née
- Université de Caen Normandie, Normandie Univ., Mobilités: Vieillissement, Pathologie, Santé (COMETE), INSERM UMR-S 1075, 14000, Caen, France
| | - Sophie Corvaisier
- Université de Caen Normandie, Normandie Univ., Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Jana Sopkova de Oliveira Santos
- Université de Caen Normandie, Normandie Univ., Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Marc Since
- Université de Caen Normandie, Normandie Univ., Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France; PRISMM Platform, PLATON Service Unit, Caen, Université de Caen Normandie, France
| | - Thomas Freret
- Université de Caen Normandie, Normandie Univ., Mobilités: Vieillissement, Pathologie, Santé (COMETE), INSERM UMR-S 1075, 14000, Caen, France
| | - Romain Legrand
- RONOMA Pharma, 31 Rue Léon Delille, F-76800, Saint Etienne du Rouvray, France
| | - Noëlle Callizot
- Neuro-Sys, 410 Chemin départemental 60, F-13120, Gardanne, France
| | - Sylvie Claeysen
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Michel Boulouard
- Université de Caen Normandie, Normandie Univ., Mobilités: Vieillissement, Pathologie, Santé (COMETE), INSERM UMR-S 1075, 14000, Caen, France
| | - Patrick Dallemagne
- Université de Caen Normandie, Normandie Univ., Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France.
| |
Collapse
|
7
|
Neumann J, Hesse C, Yahiaoui S, Dallemagne P, Rochais C, Hofmann B, Gergs U. Studies on the mechanisms of action of MR33317. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8893-8902. [PMID: 38856912 PMCID: PMC11522085 DOI: 10.1007/s00210-024-03226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
MR33317 was synthesized as an acetylcholinesterase-inhibitor and an agonist at brain 5-HT4-receptors. MR33317 might be used to treat Morbus Alzheimer. This therapeutic action of MR33317 might be based on MR33317´s dual synergistic activity. We tested the hypothesis that MR33317 also stimulates 5-HT4-receptors in the heart. MR33317 (starting at 10 nM) increased force of contraction and beating rate in isolated atrial preparations from mice with cardiac confined overexpression of the human 5-HT4-serotonin receptor (5-HT4-TG) but was inactive in wild type mouse hearts (WT). Only in the presence of the phosphodiesterase III-inhibitor cilostamide, MR33317 raised force of contraction under isometric conditions in isolated paced (1 Hz) human right atrial preparations (HAP). This increase in force of contraction in human atrium by MR33317 was attenuated by 10 µM tropisetron or GR125487. These data suggest that MR33317 is an agonist at human 5-HT4-serotonin receptors in the human atrium. Clinically, one would predict that MR33317 may lead to atrial fibrillation.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany.
| | - C Hesse
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - S Yahiaoui
- Normandie Univ, UNICAEN CERMN (Centre d'Etudes Et de Recherche Sur Le Médicament de Normandie), 14032, Caen, France
| | - P Dallemagne
- Normandie Univ, UNICAEN CERMN (Centre d'Etudes Et de Recherche Sur Le Médicament de Normandie), 14032, Caen, France
| | - C Rochais
- Normandie Univ, UNICAEN CERMN (Centre d'Etudes Et de Recherche Sur Le Médicament de Normandie), 14032, Caen, France
| | - B Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst-Grube Straße 40, 06097, Halle (Saale), Germany
| | - U Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| |
Collapse
|
8
|
Ghafir El Idrissi I, Santo A, Lacivita E, Leopoldo M. Multitarget-Directed Ligands Hitting Serotonin Receptors: A Medicinal Chemistry Survey. Pharmaceuticals (Basel) 2024; 17:1238. [PMID: 39338400 PMCID: PMC12068022 DOI: 10.3390/ph17091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a ubiquitous neurotransmitter in the human body. In the central nervous system, 5-HT affects sleep, pain, mood, appetite, and attention, while in the peripheral nervous system, 5-HT modulates peristalsis, mucus production, and blood vessel dilation. Fourteen membrane receptors mediate 5-HT activity. In agreement with the crucial roles played by 5-HT, many drugs target 5-HT receptors (5-HTRs). Therefore, it is unsurprising that many efforts have been devoted to discovering multitarget-directed ligands (MTDLs) capable of engaging one or more 5-HTRs plus another target phenotypically linked to a particular disease. In this review, we will describe medicinal chemistry efforts in designing MTDLs encompassing activity for one or more 5-HTRs, starting with atypical antipsychotics and moving to dual 5-HT1AR/serotonin transporter ligands, 5-HT6R antagonists/acetyl cholinesterases inhibitors, and 5-HT4R agonists/acetyl cholinesterases inhibitors. We will also provide an outlook on the most recent efforts made in the field.
Collapse
Affiliation(s)
| | | | - Enza Lacivita
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona, 4, 70125 Bari, Italy; (I.G.E.I.); (A.S.); (M.L.)
| | | |
Collapse
|
9
|
Gephine L, Roux CM, Freret T, Boulouard M, Leger M. Vulnerability of Spatial Pattern Separation in 5xFAD Alzheimer's Disease Mouse Model. J Alzheimers Dis 2024; 97:1889-1900. [PMID: 38306047 DOI: 10.3233/jad-231112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Background Alzheimer's disease (AD) is the most common cause of dementia and remains incurable. This age-related neurodegenerative disease is characterized by an early decline in episodic and spatial memory associated with progressive disruption of the hippocampal functioning. Recent clinical evidence suggests that impairment of the spatial pattern separation (SPS) function, which enables the encoding and storage of episodic spatial information, may be an indicator of the early stages of AD. Objective The aim of our study was to characterize SPS performance at a prodromal stage in 5xFAD transgenic mouse model of AD. Methods Behavioral performance of male wild-type (WT) and 5xFAD mice (n = 14 per group) was assessed from the age of 4 months in two validated paradigms of SPS function either based on spontaneous exploration of objects or on the use of a touchscreen system. Results Compared with age-matched WT littermates, a mild deficit in SPS function was observed in the object recognition task in 5xFAD mice, whereas both groups showed similar performance in the touchscreen-based task. These results were observed in the absence of changes in locomotor activity or anxiety-like behavior that could have interfered with the tasks assessing SPS function. Conclusions Our results indicate an early vulnerability of the SPS function in 5xFAD mice in the paradigm based on spontaneous exploration of objects. Our work opens up the possibility of examining the early neurobiological processes involved in the decline of episodic memory and may help to propose new therapeutic strategies in the context of AD.
Collapse
Affiliation(s)
- Lucas Gephine
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Caen, France
| | - Candice M Roux
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Caen, France
| | - Thomas Freret
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Caen, France
| | - Michel Boulouard
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Caen, France
| | - Marianne Leger
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Caen, France
| |
Collapse
|
10
|
Matošević A, Opsenica DM, Spasić M, Maraković N, Zandona A, Žunec S, Bartolić M, Kovarik Z, Bosak A. Evaluation of 4-aminoquinoline derivatives with an n-octylamino spacer as potential multi-targeting ligands for the treatment of Alzheimer's disease. Chem Biol Interact 2023; 382:110620. [PMID: 37406982 DOI: 10.1016/j.cbi.2023.110620] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
The most successful therapeutic strategy in the treatment of Alzheimer's disease (AD) is directed toward increasing levels of the neurotransmitter acetylcholine (ACh) by inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the enzymes responsible for its hydrolysis. In this paper, we extended our study on 4-aminoquinolines as human cholinesterase inhibitors on twenty-six new 4-aminoquinolines containing an n-octylamino spacer on C(4) and different substituents on the terminal amino group. We evaluated the potency of new derivatives to act as multi-targeted ligands by determining their inhibition potency towards human AChE and BChE, ability to chelate biometals Fe, Cu and Zn, ability to inhibit the action of β-secretase 1 (BACE1) and their antioxidant capacity. All of the tested derivatives were very potent inhibitors of human AChE and BChE with inhibition constants (Ki) ranging from 0.0023 to 1.6 μM. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport and were nontoxic to human neuronal, kidney and liver cells in concentrations in which they inhibit cholinesterases. Generally, newly synthesised compounds were weak reductants compared to standard antioxidants, but all possessed a certain amount of antioxidant activity compared to tacrine. Of the eleven most potent cholinesterase inhibitors, eight compounds also inhibited BACE1 activity at 10-18%. Based on our overall results, compounds 8 with 3-fluorobenzyl, 11 with 3-chlorobenzyl and 17 with 3-metoxy benzyl substituents on the terminal amino group stood out as the most promising for the treatment of AD; they strongly inhibited AChE and BChE, were non-toxic on HepG2, HEK293 and SH-SY5Y cells, had the potential to cross the BBB and possessed the ability to chelate biometals and/or inhibit the activity of BACE1 within a range close to the therapeutically desired degree of inhibition.
Collapse
Affiliation(s)
- Ana Matošević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Dejan M Opsenica
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Studentski trg 12-16, 11000, Beograd, Serbia; Centre of Excellence in Environmental Chemistry and Engineering, ICTM, 11000, Belgrade, Serbia
| | - Marta Spasić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11158, Belgrade, Serbia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marija Bartolić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Anita Bosak
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
11
|
Antonijevic M, Charou D, Ramos I, Valcarcel M, Gravanis A, Villace P, Callizot N, Since M, Dallemagne P, Charalampopoulos I, Rochais C. Design, synthesis and biological characterization of novel activators of the TrkB neurotrophin receptor. Eur J Med Chem 2023; 248:115111. [PMID: 36645981 DOI: 10.1016/j.ejmech.2023.115111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Numerous studies have been published about the implication of the neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB in the pathogenesis of several neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, Multiple Sclerosis and motor neuron disease. BDNF activates the TrkB receptor with high potency and specificity, promoting neuronal survival, differentiation and synaptic plasticity. Based on the main structural characteristics of LM22A-4, a previously published small molecule that acts as activator of the TrkB receptor, we have designed and synthesized a small data set of compounds. The lead idea for the design of the new compounds was to modify the third position of the LM22A-4, by introducing different substitutions in order to obtain compounds which will have not only better physicochemical properties but selective activity as well. ADME and toxicity profiles of molecules have been evaluated as well as their biological properties through the TrkB receptor and affinity to promote neurite differentiation.
Collapse
Affiliation(s)
| | - Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | | | | | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | | | | | - Marc Since
- Normandie Univ., UNICAEN, CERMN, 14000, Caen, France
| | | | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | | |
Collapse
|
12
|
Fan XY, Shi G, Feng J, Jian LY. DNA hypomethylation promotes learning and memory recovery in a rat model of cerebral ischemia/reperfusion injury. Neural Regen Res 2023; 18:863-868. [PMID: 36204855 PMCID: PMC9700107 DOI: 10.4103/1673-5374.353494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Cerebral ischemia/reperfusion injury impairs learning and memory in patients. Studies have shown that synaptic function is involved in the formation and development of memory, and that DNA methylation plays a key role in the regulation of learning and memory. To investigate the role of DNA hypomethylation in cerebral ischemia/reperfusion injury, in this study, we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery and then treated the rats with intraperitoneal 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. Our results showed that 5-aza-2′-deoxycytidine markedly improved the neurological function, and cognitive, social and spatial memory abilities, and dose-dependently increased the synaptic density and the expression of SYP and SHANK2 proteins in the hippocampus in a dose-dependent manner in rats with cerebral ischemia/reperfusion injury. The effects of 5-aza-2′-deoxycytidine were closely related to its reduction of genomic DNA methylation and DNA methylation at specific sites of the Syp and Shank2 genes in rats with cerebral ischemia/reperfusion injury. These findings suggest that inhibition of DNA methylation by 5-aza-2′-deoxycytidine promotes the recovery of learning and memory impairment in a rat model of cerebral ischemia/reperfusion injury. These results provide theoretical evidence for stroke treatment using epigenetic methods.
Collapse
|
13
|
Pradhan LK, Sahoo PK, Chauhan S, Das SK. Recent Advances Towards Diagnosis and Therapeutic Fingerprinting for Alzheimer's Disease. J Mol Neurosci 2022; 72:1143-1165. [PMID: 35553375 DOI: 10.1007/s12031-022-02009-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022]
Abstract
Since the report of "a peculiar severe disease process of the cerebral cortex" by Alois Alzheimer in 1906, it was considered to be a rare condition characterized by loss of cognition, memory impairment, and pathological markers such as senile plaques or neurofibrillary tangles (NFTs). Later on, the report was published in the textbook "Psychiatrie" and the disease was named as Alzheimer's disease (AD) and was known to be the consequences of aging; however, owing to its complex etiology, there is no cure for the progressive neurodegenerative disorder. Our current understanding of the mechanisms involved in the pathogenesis of AD is still at the mechanistic level. The treatment strategies applied currently only alleviate the symptoms and co-morbidities. For instance, the available treatments such as the usage of acetylcholinesterase inhibitors and N-methyl D-aspartate antagonists have minimal impact on the disease progression and target the later aspects of the disease. The recent advancements in the last two decades have made us more clearly understand the pathophysiology of the disease which has led to the development of novel therapeutic strategies. This review gives a brief idea about the various facets of AD pathophysiology and its management through modern investigational therapies to give a new direction for development of targeted therapeutic measures.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India
| | - Santosh Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar-751023, India.
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India.
| |
Collapse
|
14
|
Wichur T, Godyń J, Góral I, Latacz G, Bucki A, Siwek A, Głuch-Lutwin M, Mordyl B, Śniecikowska J, Walczak M, Knez D, Jukič M, Sałat K, Gobec S, Kołaczkowski M, Malawska B, Brazzolotto X, Więckowska A. Development and crystallography-aided SAR studies of multifunctional BuChE inhibitors and 5-HT 6R antagonists with β-amyloid anti-aggregation properties. Eur J Med Chem 2021; 225:113792. [PMID: 34530376 DOI: 10.1016/j.ejmech.2021.113792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
The lack of an effective treatment makes Alzheimer's disease a serious healthcare problem and a challenge for medicinal chemists. Herein we report interdisciplinary research on novel multifunctional ligands targeting proteins and processes involved in the development of the disease: BuChE, 5-HT6 receptors and β-amyloid aggregation. Structure-activity relationship analyses supported by crystallography and docking studies led to the identification of a fused-type multifunctional ligand 50, with remarkable and balanced potencies against BuChE (IC50 = 90 nM) and 5-HT6R (Ki = 4.8 nM), and inhibitory activity against Aβ aggregation (53% at 10 μM). In in vitro ADME-Tox and in vivo pharmacokinetic studies compound 50 showed good stability in the mouse liver microsomes, favourable safety profile and brain permeability with the brain to plasma ratio of 6.79 after p.o. administration in mice, thus being a promising candidate for in vivo pharmacology studies and a solid foundation for further research on effective anti-AD therapies.
Collapse
Affiliation(s)
- Tomasz Wichur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Izabella Góral
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Adam Bucki
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Barbara Mordyl
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Joanna Śniecikowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Maria Walczak
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Marko Jukič
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory of Physical Chemistry and Chemical Thermodynamics, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
15
|
Wichur T, Pasieka A, Godyń J, Panek D, Góral I, Latacz G, Honkisz-Orzechowska E, Bucki A, Siwek A, Głuch-Lutwin M, Knez D, Brazzolotto X, Gobec S, Kołaczkowski M, Sabate R, Malawska B, Więckowska A. Discovery of 1-(phenylsulfonyl)-1H-indole-based multifunctional ligands targeting cholinesterases and 5-HT 6 receptor with anti-aggregation properties against amyloid-beta and tau. Eur J Med Chem 2021; 225:113783. [PMID: 34461507 DOI: 10.1016/j.ejmech.2021.113783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022]
Abstract
Multifunctional ligands as an essential variant of polypharmacology are promising candidates for the treatment of multi-factorial diseases like Alzheimer's disease. Based on clinical evidence and following the paradigm of multifunctional ligands we have rationally designed and synthesized a series of compounds targeting processes involved in the development of the disease. The biological evaluation led to the discovery of two compounds with favorable pharmacological characteristics and ADMET profile. Compounds 17 and 35 are 5-HT6R antagonists (Ki = 13 nM and Ki = 15 nM respectively) and cholinesterase inhibitors with distinct mechanisms of enzyme inhibition. Compound 17, a tacrine derivative is a reversible inhibitor of acetyl- and butyrylcholinesterase (IC50 = 8 nM and IC50 = 24 nM respectively), while compound 35 with rivastigmine-derived phenyl N-ethyl-N-methylcarbamate fragment is a selective, pseudo-irreversible inhibitor of butyrylcholinesterase (IC50 = 455 nM). Both compounds inhibit aggregation of amyloid β in vitro (75% for compound 17 and 68% for 35 at 10 μM) moreover, compound 35 is a potent tau aggregation inhibitor in cellulo (79%). In ADMET in vitro studies both compounds showed acceptable metabolic stability on mouse liver microsomes (28% and 60% for compound 17 and 35 respectively), no or little effect on CYP3A4 and 2D6 up to a concentration of 10 μM and lack of toxicity on HepG2 cell line (IC50 values of 80 and 21 μM, for 17 and 35 respectively). Based on the pharmacological characteristics and favorable pharmacokinetic properties, we propose compounds 17 and 35 as an excellent starting point for further optimization and in-depth biological studies.
Collapse
Affiliation(s)
- Tomasz Wichur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Izabella Góral
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | | | - Adam Bucki
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223 Brétigny sur Orge, France
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
16
|
Active Targeted Nanoemulsions for Repurposing of Tegaserod in Alzheimer's Disease Treatment. Pharmaceutics 2021; 13:pharmaceutics13101626. [PMID: 34683919 PMCID: PMC8540544 DOI: 10.3390/pharmaceutics13101626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose: The activation of 5-HT4 receptors with agonists has emerged as a valuable therapeutic strategy to treat Alzheimer’s disease (AD) by enhancing the nonamyloidogenic pathway. Here, the potential therapeutic effects of tegaserod, an effective agent for irritable bowel syndrome, were assessed for AD treatment. To envisage its efficient repurposing, tegaserod-loaded nanoemulsions were developed and functionalized by a blood–brain barrier shuttle peptide. Results: The butyrylcholinesterase inhibitory activity of tegaserod and its neuroprotective cellular effects were highlighted, confirming the interest of this pleiotropic drug for AD treatment. In regard to its drugability profile, and in order to limit its peripheral distribution after IV administration, its encapsulation into monodisperse lipid nanoemulsions (Tg-NEs) of about 50 nm, and with neutral zeta potential characteristics, was performed. The stability of the formulation in stock conditions at 4 °C and in blood biomimetic medium was established. The adsorption on Tg-NEs of peptide-22 was realized. The functionalized NEs were characterized by chromatographic methods (SEC and C18/HPLC) and isothermal titration calorimetry, attesting the efficiency of the adsorption. From in vitro assays, these nanocarriers appeared suitable for enabling tegaserod controlled release without hemolytic properties. Conclusion: The developed peptide-22 functionalized Tg-NEs appear as a valuable tool to allow exploration of the repurposed tegaserod in AD treatment in further preclinical studies.
Collapse
|
17
|
|
18
|
Bockaert J, Bécamel C, Chaumont-Dubel S, Claeysen S, Vandermoere F, Marin P. Novel and atypical pathways for serotonin signaling. Fac Rev 2021; 10:52. [PMID: 34195691 PMCID: PMC8204760 DOI: 10.12703/r/10-52] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Serotonin (5-HT) appeared billions of years before 5-HT receptors and synapses. It is thus not surprising that 5-HT can control biological processes independently of its receptors. One example is serotonylation, which consists of covalent binding of 5-HT to the primary amine of glutamine. Over the past 20 years, serotonylation has been involved in the regulation of many signaling mechanisms. One of the most striking examples is the recent evidence that serotonylation of histone H3 constitutes an epigenetic mark. However, the pathophysiological role of histone H3 serotonylation remains to be discovered. All but one of the 5-HT receptors are G-protein-coupled receptors (GPCRs). The signaling pathways they control are finely tuned, and new, unexpected regulatory mechanisms are being uncovered continuously. Some 5-HT receptors (5-HT2C, 5-HT4, 5-HT6, and 5-HT7) signal through mechanisms that require neither G-proteins nor β-arrestins, the two classical and almost universal GPCR signal transducers. 5-HT6 receptors are constitutively activated via their association with intracellular GPCR-interacting proteins (GIPs), including neurofibromin 1, cyclin-dependent kinase 5 (Cdk5), and G-protein-regulated inducer of neurite outgrowth 1 (GPRIN1). Interactions of 5-HT6 receptor with Cdk5 and GPRIN1 are not concomitant but occur sequentially and play a key role in dendritic tree morphogenesis. Furthermore, 5-HT6 receptor-mediated G-protein signaling in neurons is different in the cell body and primary cilium, where it is modulated by smoothened receptor activation. Finally, 5-HT2A receptors form heteromers with mGlu2 metabotropic glutamate receptors. This heteromerization results in a specific phosphorylation of mGlu2 receptor on a serine residue (Ser843) upon agonist stimulation of 5-HT2A or mGlu2 receptor. mGlu2 receptor phosphorylation on Ser843 is an essential step in engagement of Gi/o signaling not only upon mGlu2 receptor activation but also following 5-HT2A receptor activation, and thus represents a key molecular event underlying functional crosstalk between both receptors.
Collapse
Affiliation(s)
- Joël Bockaert
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Carine Bécamel
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Séverine Chaumont-Dubel
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Sylvie Claeysen
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Franck Vandermoere
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- The Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
19
|
Szałaj N, Godyń J, Jończyk J, Pasieka A, Panek D, Wichur T, Więckowski K, Zaręba P, Bajda M, Pislar A, Malawska B, Sabate R, Więckowska A. Multidirectional in vitro and in cellulo studies as a tool for identification of multi-target-directed ligands aiming at symptoms and causes of Alzheimer's disease. J Enzyme Inhib Med Chem 2021; 35:1944-1952. [PMID: 33092411 PMCID: PMC7594877 DOI: 10.1080/14756366.2020.1835882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Effective therapy of Alzheimer's disease (AD) requires treatment with a combination of drugs that modulate various pathomechanisms contributing to the disease. In our research, we have focused on the development of multi-target-directed ligands - 5-HT6 receptor antagonists and cholinesterase inhibitors - with disease-modifying properties. We have performed extended in vitro (FRET assay) and in cellulo (Escherichia coli model of protein aggregation) studies on their β-secretase, tau, and amyloid β aggregation inhibitory activity. Within these multifunctional ligands, we have identified compound 17 with inhibitory potency against tau and amyloid β aggregation in in cellulo assay of 59% and 56% at 10 µM, respectively, hBACE IC50=4 µM, h5TH6 K i=94 nM, hAChE IC50=26 nM, and eqBuChE IC50=5 nM. This study led to the development of multifunctional ligands with a broad range of biological activities crucial not only for the symptomatic but also for the disease-modifying treatment of AD.
Collapse
Affiliation(s)
- Natalia Szałaj
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Jakub Jończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Wichur
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Więckowski
- Department of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Anja Pislar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
20
|
Development of Novel Potential Pleiotropic Compounds of Interest in Alzheimer's Disease Treatment through Rigidification Strategy. Molecules 2021; 26:molecules26092536. [PMID: 33926141 PMCID: PMC8123621 DOI: 10.3390/molecules26092536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
The development of Multi-Target Directed Ligand is of clear interest for the treatment of multifactorial pathology such as Alzheimer’s disease (AD). In this context, acetylcholinesterase (AChE) inhibitors have been modulated in order to generate novel pleiotropic compounds targeting a second protein of therapeutic interest in AD. Among them, donecopride was the first example of a dual acetylcholinesterase inhibitor and 5-HT4 receptor agonist. In order to explore the structural diversity around this preclinical candidate we have explored the preparation of novel constrained analogs through late-stage rigidification strategy. A series of phenylpyrazoles was prepared in a late-stage functionalization process and all compounds were evaluated in vitro towards AChE and 5-HTRs. A docking study was performed in order to better explain the observed SAR towards AChE, 5-HT4R and 5-HT6R and this study led to the description of novel ligand targeting both AChE and 5-HT6R.
Collapse
|
21
|
Bortolami M, Rocco D, Messore A, Di Santo R, Costi R, Madia VN, Scipione L, Pandolfi F. Acetylcholinesterase inhibitors for the treatment of Alzheimer's disease - a patent review (2016-present). Expert Opin Ther Pat 2021; 31:399-420. [PMID: 33428491 DOI: 10.1080/13543776.2021.1874344] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction - AD, the most common form of dementia, has a multifactorial etiology, and the current therapy (AChEIs and memantine) is unable to interrupt its progress and fatal outcome. This is reflected in the research programs that are oriented toward the development of new therapeutics able to operate on multiple targets involved in the disease progression.Areas covered - The patents from 2016 to present regarding the use of AChEIs in AD, concerns the development of new AChEIs, multitarget or multifunctional ligands, or the associations of currently used AChEIs with other compounds acting on different targets involved in the AD.Expert opinion - The development of new multitarget AChEIs promises to identify compounds with great therapeutic potential but requires more time and effort in order to obtain drugs with the optimal pharmacodynamic profile. Otherwise, the research on new combinations of existing drugs, with known pharmacodynamic and ADME profile, could shorten the time and reduce the costs to develop a new therapeutic treatment for AD. From the analyzed data, it seems more likely that a response to the urgent need to develop effective treatments for AD therapy could come more quickly from studies on drug combinations than from the development of new AChEIs.
Collapse
Affiliation(s)
- Martina Bortolami
- Department of Scienze Di Base E Applicate per l'Ingegneria, Sapienza University of Rome, Rome, Italy
| | - Daniele Rocco
- Department of Scienze Di Base E Applicate per l'Ingegneria, Sapienza University of Rome, Rome, Italy
| | - Antonella Messore
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Roberto Di Santo
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Roberta Costi
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Valentina Noemi Madia
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Luigi Scipione
- Department of Chimica E Tecnologia Del Farmaco, Dipartimento Di Eccellenza 2018-2022, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabiana Pandolfi
- Department of Scienze Di Base E Applicate per l'Ingegneria, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Alarcón-Espósito J, Mallea M, Rodríguez-Lavado J. From Hybrids to New Scaffolds: The Latest Medicinal Chemistry Goals in Multi-target Directed Ligands for Alzheimer's Disease. Curr Neuropharmacol 2021; 19:832-867. [PMID: 32928087 PMCID: PMC8686302 DOI: 10.2174/1570159x18666200914155951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic, progressive, and fatal neurodegenerative disorder affecting cognition, behavior, and function, being one of the most common causes of mental deterioration in elderly people. Once thought as being just developed because of β amyloid depositions or neurofibrillary Tau tangles, during the last decades, numerous AD-related targets have been established, the multifactorial nature of AD became evident. In this context, the one drug-one target paradigm has resulted in being inefficient in facing AD and other disorders with complex etiology, opening the field for the emergence of the multitarget approach. In this review, we highlight the recent advances within this area, emphasizing in hybridization tools of well-known chemical scaffolds endowed with pharmacological properties concerning AD, such as curcumin-, resveratrol-, chromone- and indole-. We focus mainly on well established and incipient AD therapeutic targets, AChE, BuChE, MAOs, β-amyloid deposition, 5-HT4 and Serotonin transporter, with the aim to shed light about new insights in the AD multitarget therapy.
Collapse
Affiliation(s)
- Jazmín Alarcón-Espósito
- Departamento de Quimica Organica y Fisicoquimica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Olivos 1007, Independencia, Santiago, Chile
| | - Michael Mallea
- Departamento de Quimica Organica y Fisicoquimica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Olivos 1007, Independencia, Santiago, Chile
| | - Julio Rodríguez-Lavado
- Departamento de Quimica Organica y Fisicoquimica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Olivos 1007, Independencia, Santiago, Chile
| |
Collapse
|
23
|
First Synthesis of Racemic Trans Propargylamino-Donepezil, a Pleiotrope Agent Able to Both Inhibit AChE and MAO-B, with Potential Interest against Alzheimer's Disease. Molecules 2020; 26:molecules26010080. [PMID: 33375412 PMCID: PMC7795340 DOI: 10.3390/molecules26010080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease towards which pleiotropic approach using Multi-Target Directed Ligands is nowadays recognized as probably convenient. Among the numerous targets which are today validated against AD, acetylcholinesterase (ACh) and Monoamine Oxidase-B (MAO-B) appear as particularly convincing, especially if displayed by a sole agent such as ladostigil, currently in clinical trial in AD. Considering these results, we wanted to take benefit of the structural analogy lying in donepezil (DPZ) and rasagiline, two indane derivatives marketed as AChE and MAO-B inhibitors, respectively, and to propose the synthesis and the preliminary in vitro biological characterization of a structural compromise between these two compounds, we called propargylaminodonepezil (PADPZ). The synthesis of racemic trans PADPZ was achieved and its biological evaluation established its inhibitory activities towards both (h)AChE (IC50 = 0.4 µM) and (h)MAO-B (IC50 = 6.4 µM).
Collapse
|
24
|
Toublet FX, Lalut J, Hatat B, Lecoutey C, Davis A, Since M, Corvaisier S, Freret T, Sopková-de Oliveira Santos J, Claeysen S, Boulouard M, Dallemagne P, Rochais C. Pleiotropic prodrugs: Design of a dual butyrylcholinesterase inhibitor and 5-HT 6 receptor antagonist with therapeutic interest in Alzheimer's disease. Eur J Med Chem 2020; 210:113059. [PMID: 33310288 DOI: 10.1016/j.ejmech.2020.113059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Beside acetylcholinesterase, butyrylcholinesterase could be considered as a putative target of interest for the symptomatic treatment of Alzheimer's disease (AD). As a result of complexity of AD, no molecule has been approved since 2002. Idalopirdine, a 5-HT6 receptors antagonist, did not show its effectiveness in clinical trial despite its evaluation as adjunct to cholinesterase inhibitors. Pleiotropic molecules, known as multitarget directed ligands (MTDLs) are currently developed to tackle the multifactorial origin of AD. In this context, we have developed a pleiotropic carbamate 7, that behaves as a covalent inhibitor of BuChE (IC50 = 0.97 μM). The latter will deliver after hydrolysis, compound 6, a potent 5-HT6 receptors antagonist (Ki = 11.4 nM) related to idalopirdine. In silico and in vitro evaluation proving our concept were performed completed with first in vivo results that demonstrate great promise in restoring working memory.
Collapse
Affiliation(s)
| | - Julien Lalut
- Normandie Univ, Unicaen, CERMN, 14000 Caen, France
| | - Bérénice Hatat
- Normandie Univ, Unicaen, CERMN, 14000 Caen, France; IGF, Univ. Montpellier, CNRS, INSERM Montpellier, France
| | | | - Audrey Davis
- Normandie Univ, Unicaen, CERMN, 14000 Caen, France
| | - Marc Since
- Normandie Univ, Unicaen, CERMN, 14000 Caen, France
| | | | - Thomas Freret
- Normandie Univ, Unicaen, INSERM, Comete, GIP CYCERON, 14000 Caen, France
| | | | | | - Michel Boulouard
- Normandie Univ, Unicaen, INSERM, Comete, GIP CYCERON, 14000 Caen, France
| | | | | |
Collapse
|
25
|
Lanthier C, Dallemagne P, Lecoutey C, Claeysen S, Rochais C. Therapeutic modulators of the serotonin 5-HT4 receptor: a patent review (2014-present). Expert Opin Ther Pat 2020; 30:495-508. [DOI: 10.1080/13543776.2020.1767587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Caroline Lanthier
- Normandie Univ, UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Cédric Lecoutey
- Normandie Univ, UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | | | - Christophe Rochais
- Normandie Univ, UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| |
Collapse
|
26
|
Rochais C, Lecoutey C, Hamidouche K, Giannoni P, Gaven F, Cem E, Mignani S, Baranger K, Freret T, Bockaert J, Rivera S, Boulouard M, Dallemagne P, Claeysen S. Donecopride, a Swiss army knife with potential against Alzheimer's disease. Br J Pharmacol 2020; 177:1988-2005. [PMID: 31881553 DOI: 10.1111/bph.14964] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/21/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE We recently identified donecopride as a pleiotropic compound able to inhibit AChE and to activate 5-HT4 receptors. Here, we have assessed the potential therapeutic effects of donecopride in treating Alzheimer's disease (AD). EXPERIMENTAL APPROACH We used two in vivo animal models of AD, transgenic 5XFAD mice and mice exposed to soluble amyloid-β peptides and, in vitro, primary cultures of rat hippocampal neurons. Pro-cognitive and anti-amnesic effects were evaluated with novel object recognition, Y-maze, and Morris water maze tests. Amyloid load in mouse brain was measured ex vivo and effects of soluble amyloid-β peptides on neuronal survival and neurite formation determined in vitro. KEY RESULTS In vivo, chronic (3 months) administration of donecopride displayed potent anti-amnesic properties in the two mouse models of AD, preserving learning capacities, including working and long-term spatial memories. These behavioural effects were accompanied by decreased amyloid aggregation in the brain of 5XFAD mice and, in cultures of rat hippocampal neurons, reduced tau hyperphosphorylation. In vitro, donecopride increased survival in neuronal cultures exposed to soluble amyloid-β peptides, improved the neurite network and provided neurotrophic benefits, expressed as the formation of new synapses. CONCLUSIONS AND IMPLICATIONS Donecopride acts like a Swiss army knife, exhibiting a range of sustainable symptomatic therapeutic effects and potential disease-modifying effects in models of AD. Clinical trials with this promising drug candidate will soon be undertaken to confirm its therapeutic potential in humans.
Collapse
Affiliation(s)
- Christophe Rochais
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Cédric Lecoutey
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Katia Hamidouche
- Normandie Univ, Caen, France.,UNICAEN, INSERM U1075 COMETE, Caen, France
| | - Patrizia Giannoni
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France.,Equipe Chrome, EA7352, Université de Nîmes, Nîmes, France
| | - Florence Gaven
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France.,CRBM, CNRS UMR5237, Montpellier, France
| | - Eleazere Cem
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Serge Mignani
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | - Kevin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Thomas Freret
- Normandie Univ, Caen, France.,UNICAEN, INSERM U1075 COMETE, Caen, France
| | - Joël Bockaert
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Michel Boulouard
- Normandie Univ, Caen, France.,UNICAEN, INSERM U1075 COMETE, Caen, France
| | - Patrick Dallemagne
- Normandie Univ, Caen, France.,UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Caen, France
| | | |
Collapse
|