1
|
Quan X, Wang S, Lu J, Zhu X, Hua Y. Glimepiride/hydroxypropyl-β-cyclodextrin inclusion compound: preparation, characterization, and evaluation. Drug Dev Ind Pharm 2025; 51:419-429. [PMID: 40079949 DOI: 10.1080/03639045.2025.2479748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/15/2025]
Abstract
OBJECTIVE To enhance solubility and bioavailability of GM, an inclusion compound of glimepiride/hydroxypropyl-β-cyclodextrin (GM/HP-β-CD) was prepared using mechanical ball milling. SIGNIFICANCE Based on response surface optimization for the ball milling preparation of the inclusion compound, this study investigates its in vitro and in vivo release and pharmacokinetics. METHODS GM/HP-β-CD inclusion compound was prepared by optimized ball milling based on response surface methodology and characterized using powder x-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier transform infrared spectroscopy, and the stability of the compound was studied. In addition, GM/HP-β-CD inclusion compound's in vitro release and in vivo release assays were performed. RESULTS Optimal ball milling conditions for a 1:1 molar ratio of GM/HP-β-CD were a milling speed of 296 rpm, a milling time of 88 min, and a filling rate of 17.7%. Solubility and dissolution rate experiments indicated that the solubility of the GM/HP-β-CD inclusion compound was 20 times higher than that of GM, and the dissolution rate was 12.7 times faster. Additionally, the thermal stability and photostability of the inclusion compound were improved. In vivo pharmacokinetics and pharmacodynamics studies showed that, compared to GM, the GM/HP-β-CD inclusion compound shortened the Tmax by 1 h, increased the maximum plasma concentration by nearly 3.5 times, and significantly enhanced bioavailability. CONCLUSION GM/HP-β-CD inclusion compound demonstrates potential for developing sustained-release formulations, thereby prolonging the hypoglycemic effect of GM, reducing dosing frequency, and improving patient compliance with oral administration.
Collapse
Affiliation(s)
- Xin Quan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shurui Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jiamin Lu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xingyi Zhu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yunfen Hua
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Yamada Y, Ishitsuka Y, Fukaura-Nishizawa M, Kawata T, Ishii A, Shirakawa A, Sakai T, Tanaka M, Kondo Y, Takeo T, Nakagata N, Motoyama K, Higashi T, Arima H, Seki T, Kurauchi Y, Katsuki H, Higaki K, Ikeda R, Matsuo M, Era T, Irie T. Intracerebroventricular 2-hydroxypropyl-γ-cyclodextrin alleviates hepatic manifestations without distributing to the liver in a murine model of Niemann-Pick disease type C. Life Sci 2024; 350:122776. [PMID: 38852794 DOI: 10.1016/j.lfs.2024.122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Niemann-Pick disease type C (NPC) is a lysosomal lipid storage disorder characterized by progressive neurodegeneration and hepatic dysfunction. A cyclic heptasaccharide, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), is currently under clinical investigation for NPC, but its adverse events remain problematic. We previously identified that a cyclic octasaccharide, 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD), also ameliorated NPC manifestations with higher biocompatibility than HP-β-CD. However, preclinical studies describing the associations between the biodistribution and pharmacodynamics of these compounds, which are essential for clinical application, are still lacking. Here, we investigated these properties of HP-γ-CD by measuring its organ biodistribution and therapeutic effect after systemic and central administration. The effect of HP-γ-CD on disturbed cholesterol homeostasis appeared within several hours after exposure and persisted for several days in NPC model cells and mice. Tissue distribution indicated that only a small fraction of subcutaneously administered HP-γ-CD rapidly distributed to peripheral organs and contributed to disease amelioration. We found that a subcutaneous dose of HP-γ-CD negligibly ameliorated neurological characteristics because it has limited penetration of the blood-brain barrier; however, an intracerebroventricular microdose unexpectedly attenuated hepatic dysfunction without the detection of HP-γ-CD in the liver. These results demonstrate that central administration of HP-γ-CD can indirectly attenuate peripheral manifestations of NPC.
Collapse
Affiliation(s)
- Yusei Yamada
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Madoka Fukaura-Nishizawa
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tatsuya Kawata
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Akira Ishii
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Aina Shirakawa
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taichi Sakai
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mayuko Tanaka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan
| | - Takahiro Seki
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kami-ohno, Himeji, Hyogo 670-8524, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Ryuji Ikeda
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tetsumi Irie
- Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
3
|
Wu J, Ji P, Zhang A, Hu H, Shen Y, Wang Q, Fan C, Chen K, Ding R, Huang W, Xiang M, Ye B. Impact of cholesterol homeostasis within cochlear cells on auditory development and hearing loss. Front Cell Neurosci 2024; 17:1308028. [PMID: 38239289 PMCID: PMC10794501 DOI: 10.3389/fncel.2023.1308028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Cholesterol is the most abundant sterol molecule in mammalian cells, which not only constitutes the cell membrane but also plays essential roles in the synthesis of important hormones, synapse formation, and cell signal transduction. The effect of hypercholesterolemia on hearing has been studied extensively, and multiple studies have demonstrated that hypercholesterolemia is a risk factor for hearing loss. However, the impact of cholesterol homeostasis within auditory cells on peripheral auditory development and maintenance has not been evaluated in detail. Mutations in certain cholesterol metabolism-related genes, such as NPC1, SERAC1, DHCR7, and OSBPL2, as well as derivatives of cholesterol metabolism-related ototoxic drugs, such as β-cyclodextrin, can lead to disruptions of cholesterol homeostasis within auditory cells, resulting in hearing loss. This article aims to review the impact of cholesterol homeostasis within auditory cells on the peripheral auditory function from the following two perspectives: (1) changes in cholesterol homeostasis regulatory genes in various hearing loss models; (2) mechanisms underlying the effects of some drugs that have a therapeutic effect on hearing loss via regulating cholesterol homeostasis. This article aims to summarize and analyze the impact of disruption of cellular cholesterol homeostasis within auditory cells on hearing, in order to provide evidence regarding the underlying mechanisms.
Collapse
Affiliation(s)
- Jichang Wu
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Ji
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andi Zhang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Chen
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ding
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyi Huang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology and Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Kubota Y, Hoshiko T, Higashi T, Motoyama K, Okada S, Kimura S. Folate-Appended Hydroxypropyl-β-Cyclodextrin Induces Autophagic Cell Death in Acute Myeloid Leukemia Cells. Int J Mol Sci 2023; 24:16720. [PMID: 38069042 PMCID: PMC10706821 DOI: 10.3390/ijms242316720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous myeloid neoplasm that remains challenging to treat. Because intensive conventional chemotherapy reduces survival rates in elderly patients, drugs with lower toxicity and fewer side effects are needed urgently. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD) is used clinically as a pharmaceutical excipient for poorly water-soluble drugs. Previously, we showed that HP-β-CyD exerts antitumor activity by disrupting cholesterol homeostasis. Recently, we developed folate-conjugated HP-β-CyD (FA-HP-β-CyD) and demonstrated its potential as a new antitumor agent that induces not only apoptosis, but also autophagic cell death; however, we do not know whether FA-HP-β-CyD exerts these effects against AML. Here, we investigated the effects of FA-HP-β-CyD on folate receptor (FR)-expressing AML cells. We found that the cytotoxic activity of FA-HP-β-CyD against AML cells was stronger than that of HP-β-CyD. Also, FA-HP-CyD induced the formation of autophagosomes in AML cell lines. FA-HP-β-CyD increased the inhibitory effects of cytarabine and a BCL-2-selective inhibitor, Venetoclax, which are commonly used treat elderly AML patients. Notably, FA-HP-β-CyD suppressed the proliferation of AML cells in BALB/c nude recombinase-activating gene-2 (Rag-2)/Janus kinase 3 (Jak3) double-deficient mice with AML. These results suggest that FA-HP-β-CyD acts as a potent anticancer agent for AML chemotherapy by regulating autophagy.
Collapse
Affiliation(s)
- Yasushi Kubota
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
- Department of Transfusion Medicine and Cell Therapy, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Japan
| | - Toshimi Hoshiko
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (T.H.); (K.M.)
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (T.H.); (K.M.)
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto 860-0811, Japan;
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| |
Collapse
|
5
|
Yamada Y, Fukaura‐Nishizawa M, Nishiyama A, Ishii A, Kawata T, Shirakawa A, Tanaka M, Kondo Y, Takeo T, Nakagata N, Miwa T, Takeda H, Orita Y, Motoyama K, Higashi T, Arima H, Seki T, Kurauchi Y, Katsuki H, Higaki K, Minami K, Yoshikawa N, Ikeda R, Matsuo M, Irie T, Ishitsuka Y. Different solubilizing ability of cyclodextrin derivatives for cholesterol in Niemann-Pick disease type C treatment. Clin Transl Med 2023; 13:e1350. [PMID: 37620691 PMCID: PMC10449817 DOI: 10.1002/ctm2.1350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is a fatal neurodegenerative disorder caused by abnormal intracellular cholesterol trafficking. Cyclodextrins (CDs), the most promising therapeutic candidates for NPC, but with concerns about ototoxicity, are cyclic oligosaccharides with dual functions of unesterified cholesterol (UC) shuttle and sink that catalytically enhance the bidirectional flux and net efflux of UC, respectively, between the cell membrane and the extracellular acceptors. However, the properties of CDs that regulate these functions and how they could be used to improve treatments for NPC are unclear. METHODS We estimated CD-UC complexation for nine CD derivatives derived from native α-, β-, and γ-CD with different cavity sizes, using solubility and molecular docking analyses. The stoichiometry and complexation ability of the resulting complexes were investigated in relation to the therapeutic effectiveness and toxicity of each CD derivative in NPC experimental models. FINDINGS We found that shuttle and sink activities of CDs are dependent on cavity size-dependent stoichiometry and substituent-associated stability of CD-UC complexation. The ability of CD derivatives to form 1:1 and 2:1 complexes with UC were correlated with their ability to normalize intracellular cholesterol trafficking serving as shuttle and with their cytotoxicity associated with cellular UC efflux acting as sink, respectively, in NPC model cells. Notably, the ability of CD derivatives to form an inclusion complex with UC was responsible for not only efficacy but ototoxicity, while a representative derivative without this ability negligibly affected auditory function, underscoring its preventability. CONCLUSIONS Our findings highlight the importance of strategies for optimizing the molecular structure of CDs to overcome this functional dilemma in the treatment of NPC.
Collapse
Affiliation(s)
- Yusei Yamada
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
- Department of PharmacyUniversity of Miyazaki HospitalMiyazakiJapan
| | - Madoka Fukaura‐Nishizawa
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Asami Nishiyama
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Akira Ishii
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Tatsuya Kawata
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Aina Shirakawa
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Mayuko Tanaka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD)Kumamoto UniversityKumamotoJapan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD)Kumamoto UniversityKumamotoJapan
| | - Toru Miwa
- Department of Otolaryngology, Graduate School of MedicineOsaka Metropolitan UniversityOsakaJapan
| | - Hiroki Takeda
- Department of Otolaryngology‐Head and Neck SurgeryGraduate School of MedicineKumamoto UniversityKumamotoJapan
| | - Yorihisa Orita
- Department of Otolaryngology‐Head and Neck SurgeryGraduate School of MedicineKumamoto UniversityKumamotoJapan
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Taishi Higashi
- Priority Organization for Innovation and ExcellenceKumamoto UniversityKumamotoJapan
| | - Hidetoshi Arima
- Laboratory of Evidence‐Based PharmacotherapyDaiichi University of PharmacyFukuokaJapan
| | - Takahiro Seki
- Department of Pharmacology, Faculty of Pharmaceutical SciencesHimeji Dokkyo UniversityHyogoJapan
| | - Yuki Kurauchi
- Department of Chemico‐Pharmacological Sciences, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Hiroshi Katsuki
- Department of Chemico‐Pharmacological Sciences, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and PromotionTottori UniversityYonagoJapan
| | - Kentaro Minami
- Department of PharmacyUniversity of Miyazaki HospitalMiyazakiJapan
| | - Naoki Yoshikawa
- Department of PharmacyUniversity of Miyazaki HospitalMiyazakiJapan
| | - Ryuji Ikeda
- Department of PharmacyUniversity of Miyazaki HospitalMiyazakiJapan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of MedicineSaga UniversitySagaJapan
| | - Tetsumi Irie
- Department of Pharmaceutical Packaging Technology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
6
|
Ishitsuka Y, Irie T, Matsuo M. Cyclodextrins applied to the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 191:114617. [PMID: 36356931 DOI: 10.1016/j.addr.2022.114617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide, is a pharmaceutical additive that improves the solubility of hydrophobic compounds. Recent research has focused on the potential active pharmaceutical abilities of CD. Lysosomal storage diseases are inherited metabolic diseases characterized by lysosomal dysfunction and abnormal lipid storage. Niemann-Pick disease type C (NPC) is caused by mutations in cholesterol transporter genes (NPC1, NPC2) and is characterized by cholesterol accumulation in lysosomes. A biocompatible cholesterol solubilizer 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was recently used in NPC patients for compassionate use and in clinical trials. HP-β-CD is an attractive drug candidate for NPC; however, its adverse effects, such as ototoxicity, should be solved. In this review, we discuss the current use of HP-β-CD in basic and clinical research and discuss alternative CD derivatives that may outperform HP-β-CD, which should be considered for clinical use. The potential of CD therapy for the treatment of other lysosomal storage diseases is also discussed.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
7
|
Effects of Hydroxypropyl-Beta-Cyclodextrin on Cultured Brain Endothelial Cells. Molecules 2022; 27:molecules27227738. [PMID: 36431844 PMCID: PMC9694004 DOI: 10.3390/molecules27227738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The application of 2-hydroxypropyl-beta-cyclodextrin (HPBCD) in the treatment of the rare cholesterol and lipid storage disorder Niemann-Pick disease type C opened new perspectives in the development of an efficient therapy. Even if the systemic administration of HPBCD was found to be effective, its low permeability across the blood-brain barrier (BBB) limited the positive neurological effects. Nevertheless, the cellular interactions of HPBCD with brain capillary endothelial cells have not been investigated in detail. In this study, the cytotoxicity, permeability, and cellular internalization of HPBCD on primary rat and immortalized human (hCMEC/D3) brain capillary endothelial cells were investigated. HPBCD shows no cytotoxicity on endothelial cells up to 100 µM, measured by impedance kinetics. Using a fluorescent derivative of HPBCD (FITC-HPBCD) the permeability measurements reveal that on an in vitro triple co-culture BBB model, FITC-HPBCD has low permeability, 0.50 × 10-6 cm/s, while on hCMEC/D3 cell layers, the permeability is higher, 1.86 × 10-5 cm/s. FITC-HPBCD enters brain capillary endothelial cells, is detected in cytoplasmic vesicles and rarely localized in lysosomes. The cellular internalization of HPBCD at the BBB can help to develop new strategies for improved HPBCD effects after systemic administration.
Collapse
|
8
|
Yamada Y, Miwa T, Nakashima M, Shirakawa A, Ishii A, Namba N, Kondo Y, Takeo T, Nakagata N, Motoyama K, Higashi T, Arima H, Kurauchi Y, Seki T, Katsuki H, Okada Y, Ichikawa A, Higaki K, Hayashi K, Minami K, Yoshikawa N, Ikeda R, Ishikawa Y, Kajii T, Tachii K, Takeda H, Orita Y, Matsuo M, Irie T, Ishitsuka Y. Fine-tuned cholesterol solubilizer, mono-6-O-α-D-maltosyl-γ-cyclodextrin, ameliorates experimental Niemann-Pick disease type C without hearing loss. Biomed Pharmacother 2022; 155:113698. [PMID: 36116252 DOI: 10.1016/j.biopha.2022.113698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is a fatal disorder with abnormal intracellular cholesterol trafficking resulting in neurodegeneration and hepatosplenomegaly. A cyclic heptasaccharide with different degrees of substitution of 2-hydroxypropyl groups, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), acts as a strong cholesterol solubilizer and is under investigation for treating this disease in clinical trials, but its physicochemical properties and ototoxicity remain a concern. Here, we evaluated the potential of mono-6-O-α-maltosyl-γ-CD (G2-γ-CD), a single-maltose-branched cyclic octasaccharide with a larger cavity than HP-β-CD, for treating NPC. We identified that G2-γ-CD ameliorated NPC manifestations in model mice and showed lower ototoxicity in mice than HP-β-CD. To investigate the molecular mechanisms of action behind the differential ototoxicity of these CDs, we performed cholesterol solubility analysis, proton nuclear magnetic resonance spectroscopy, and molecular modeling, and estimated that the cholesterol inclusion mode of G2-γ-CD maintained solely the 1:1 inclusion complex, whereas that of HP-β-CD shifted to the highly-soluble 2:1 complex at higher concentrations. We predicted the associations of these differential complexations of CDs with cholesterol with the profile of disease attenuation and of the auditory cell toxicity using specific cell models. We proposed that G2-γ-CD can serve as a fine-tuned cholesterol solubilizer for treating NPC, being highly biocompatible and physicochemically suitable for clinical application.
Collapse
Affiliation(s)
- Yusei Yamada
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan.
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgi-machi, Kita-ku, Osaka 530-8480, Japan
| | - Masaki Nakashima
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Aina Shirakawa
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Akira Ishii
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Nanami Namba
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yasuyo Okada
- Institute Biosciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Atsushi Ichikawa
- Institute Biosciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Ken Hayashi
- Kawagoe Otology Institute, 103, Wakitamachi, Kawagoe-shi, Saitama 350-1122, Japan
| | - Kentaro Minami
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Naoki Yoshikawa
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Ryuji Ikeda
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Yoshihide Ishikawa
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tomohito Kajii
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kyoko Tachii
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroki Takeda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Yorihisa Orita
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Tetsumi Irie
- Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
9
|
Irie T. Inclusion Solves Insolubility —Translational Research Cycle from Bedside to Bench and Bench to Bedside for Drug Development Targeting Niemann-Pick Disease Type C—. YAKUGAKU ZASSHI 2022; 142:389-400. [DOI: 10.1248/yakushi.21-00215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tetsumi Irie
- Graduate School of Life Sciences, Kumamoto University
| |
Collapse
|
10
|
Maekawa M, Mano N. Searching, Structural Determination, and Diagnostic Performance Evaluation of Biomarker Molecules for Niemann-Pick Disease Type C Using Liquid Chromatography/Tandem Mass Spectrometry. Mass Spectrom (Tokyo) 2022; 11:A0111. [PMID: 36713801 PMCID: PMC9853955 DOI: 10.5702/massspectrometry.a0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder that is characterized by progressive neuronal degeneration. Patients with NPC have a wide age of onset and various clinical symptoms. Therefore, the discovery and diagnosis of NPC are very difficult. Conventional laboratory tests are complicated and time consuming. In this context, biomarker searches have recently been performed. Our research group has previously also investigated NPC biomarkers based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) and related techniques. To identify biomarker candidates, nontargeted analysis with high-resolution MS and MS/MS scanning is commonly used. Structural speculation has been performed using LC/MS/MS fragmentation and chemical derivatization, while identification is performed by matching authentic standards and sample specimens. Diagnostic performance evaluation was performed using the validated LC/MS/MS method and analysis of samples from patients and control subjects. NPC biomarkers, which have been identified and evaluated in terms of performance, are various classes of lipid molecules. Oxysterols, cholenoic acids, and conjugates are cholesterol-derived molecules detected in the blood or urine. Plasma lyso-sphingolipids are biomarkers for both NPC and other lysosomal diseases. N-palmitoyl-O-phosphocholine-serine is a novel class of lipid biomarkers for NPC. This article reviews biomarkers for NPC and the analysis methods employed to that end.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan,Correspondence to: Masamitsu Maekawa, Department of Pharmaceutical Sciences, Tohoku University Hospital, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan, e-mail:
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
11
|
Kovacs T, Sohajda T, Szente L, Nagy P, Panyi G, Varga Z, Zakany F. Cyclodextrins Exert a Ligand-like Current Inhibitory Effect on the K V1.3 Ion Channel Independent of Membrane Cholesterol Extraction. Front Mol Biosci 2021; 8:735357. [PMID: 34805269 PMCID: PMC8599428 DOI: 10.3389/fmolb.2021.735357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides capable of forming water-soluble complexes with a variety of otherwise poorly soluble molecules including cholesterol and different drugs. Consistently, CDs are widely used in research and clinical practice to deplete cholesterol from cellular membranes or to increase solubility and bioavailability of different pharmaceuticals at local concentrations in the millimolar range. Effects of CDs exerted on cellular functions are generally thought to originate from reductions in cholesterol levels. Potential direct, ligand-like CD effects are largely neglected in spite of several recent studies reporting direct interaction between CDs and proteins including AMP-activated protein kinase, β-amyloid peptides, and α-synuclein. In this study, by using patch-clamp technique, time-resolved quantitation of cholesterol levels and biophysical parameters and applying cholesterol-extracting and non-cholesterol-extracting CDs at 1 and 5 mM concentrations, we provide evidence for a previously unexplored ligand-like, cholesterol-independent current inhibitory effect of CDs on KV1.3, a prototypical voltage-gated potassium channel with pathophysiological relevance in various autoimmune and neurodegenerative disorders. Our findings propose that potential direct CD effects on KV channels should be taken into consideration when interpreting functional consequences of CD treatments in both research and clinical practice. Furthermore, current-blocking effects of CDs on KV channels at therapeutically relevant concentrations might contribute to additional beneficial or adverse effects during their therapeutic applications.
Collapse
Affiliation(s)
- Tamas Kovacs
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Sohajda
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Peter Nagy
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Hoshiko T, Kubota Y, Onodera R, Higashi T, Yokoo M, Motoyama K, Kimura S. Folic Acid-Appended Hydroxypropyl-β-Cyclodextrin Exhibits Potent Antitumor Activity in Chronic Myeloid Leukemia Cells via Autophagic Cell Death. Cancers (Basel) 2021; 13:cancers13215413. [PMID: 34771576 PMCID: PMC8582559 DOI: 10.3390/cancers13215413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary 2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD) is a cyclic oligosaccharide widely used as an excipient in pharmaceutical preparations, in addition to also being used as a cholesterol regulator. HP-β-CyD was used in clinical trials for patients with Niemann-Pick Type C disease to remove accumulated intracellular lipid. HP-β-CyD has anti-leukemia activity by inducing apoptosis and cell-cycle arrest; however, the antitumor activity of HP-β-CyD lacks tumor cell-selectivity. Taking advantage of the fact that folate receptors are highly expressed in many cancer cells, we synthesized folate-appended HP-β-CyD (FA-HP-β-CyD) to confer tumor cell-selectivity to HP-β-CyD. FA-HP-β-CyD inhibited the proliferation of chronic myeloid leukemia (CML) cells and the mechanism underlying the effect of FA-HP-β-CyD in inducing cell death may involve autophagy. The combination of FA-HP-β-CyD and ABL tyrosine kinase inhibitors (imatinib and ponatinib) had a synergistic inhibitory effect on CML cells. In a mouse model of BCR-ABL-induced leukemia, FA-HP-β-CyD had a stronger inhibitory effect on leukemia progression than HP-β-CyD or imatinib. Abstract 2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD) is widely used as an enabling excipient in pharmaceutical formulations. We previously demonstrated that HP-β-CyD disrupted cholesterol homeostasis, and inhibited the proliferation of leukemia cells by inducing apoptosis and cell-cycle arrest. Recently developed drug delivery systems using folic acid (FA) and folic acid receptors (FR) are currently being used in cancer treatment. To confer tumor cell-selectivity to HP-β-CyD, we synthesized folate-appended HP-β-CyD (FA-HP-β-CyD) and evaluated the potential of FA-HP-β-CyD as an anticancer agent using chronic myeloid leukemia (CML) cells in vitro and in vivo. FA-HP-β-CyD inhibited the growth of FR-expressing cells but not that of FR-negative cells. FA-HP-β-CyD had stronger anti-leukemia and cell-binding activities than HP-β-CyD in CML cells. Unlike HP-β-CyD, FA-HP-β-CyD entered CML cells through endocytosis and induced both apoptosis and autophagy via mitophagy. FA-HP-β-CyD increased the inhibitory effects of the ABL tyrosine kinase inhibitors imatinib mesylate and ponatinib, which are commonly used in CML. In vivo experiments in a BCR-ABL leukemia mouse model showed that FA-HP-β-CyD was more effective than HP-β-CyD at a ten-fold lower dose. These results indicate that FA-HP-β-CyD may be a novel tumor-targeting agent for the treatment of leukemia.
Collapse
Affiliation(s)
- Toshimi Hoshiko
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (T.H.); (Y.K.)
| | - Yasushi Kubota
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (T.H.); (Y.K.)
- Saitama Medical Center, Department of Transfusion Medicine and Cell Therapy, Saitama Medical University, Kawagoe 350-8550, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (R.O.); (T.H.); (K.M.)
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (R.O.); (T.H.); (K.M.)
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 862-0973, Japan
| | - Masako Yokoo
- Saga Medical Center Koseikan, Department of Hematology, Saga 849-8571, Japan;
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (R.O.); (T.H.); (K.M.)
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan; (T.H.); (Y.K.)
- Correspondence: ; Tel.: +81-952-34-2353; Fax: +81-952-34-2017
| |
Collapse
|
13
|
Ohashi M, Tamura A, Yui N. Terminal Structure of Triethylene Glycol-Tethered Chains on β-Cyclodextrin-Threaded Polyrotaxanes Dominates Temperature Responsivity and Biointeractions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11102-11114. [PMID: 34478294 DOI: 10.1021/acs.langmuir.1c01894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pharmacological and biomedical applications of cyclodextrin (CD)-threaded polyrotaxanes (PRXs) have gained increasing attention. We had previously investigated the therapeutic effects of oligo(ethylene glycol) (OEG)-modified β-CD PRXs in congenital metabolic disorders. Although the chemical modification of PRXs is crucial for these applications, the influences of the chemical structure of OEG modified on PRXs were not completely understood. The current study focuses on the terminal group structures of triethylene glycol (TEG)-tethered chains, wherein three series of TEG-tethered PRXs (TEG-PRXs) with various TEG terminal group structures (hydroxy, methoxy, and ethoxy) were synthesized to investigate their physicochemical properties and biointeractions. The methoxy and ethoxy-terminated TEG-PRXs exhibited temperature-dependent phase transitions in phosphate buffer saline and formed coacervate droplets above their cloud points. A comprehensive analysis revealed that the hydrophobicity of the terminal group structures of the TEG-tethered chains played a dominant role in exhibiting temperature-dependent phase transition. Furthermore, the hydrophobicity of the terminal group structures of TEG-tethered chains on PRXs also affected the interactions with lipids and proteins, with the hydrophobic ethoxy-terminated TEG-tethered chains showing the highest interactions. However, in normal human skin fibroblasts, the moderately hydrophobic methoxy-terminated TEG-modified PRXs showed the highest intracellular uptake levels. As a result, we concluded that methoxy-terminated TEG is a suitable chemical modification for the biomedical applications of PRXs due to the negligible temperature responsivity around physiological temperature and significant intracellular uptake levels. The findings of this study shall contribute significantly to the rational design of PRXs and CD-based materials for future pharmacological and biomedical applications.
Collapse
Affiliation(s)
- Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|