1
|
Coiro M, McLoughlin S, Steinthorsdottir M, Vajda V, Fabrikant D, Seyfullah LJ. Parallel evolution of angiosperm-like venation in Peltaspermales: a reinvestigation of Furcula. THE NEW PHYTOLOGIST 2024; 242:2845-2856. [PMID: 38623034 DOI: 10.1111/nph.19726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Leaf venation is a pivotal trait in the success of vascular plants. Whereas gymnosperms have single or sparsely branched parallel veins, angiosperms developed a hierarchical structure of veins that form a complex reticulum. Its physiological consequences are considered to have enabled angiosperms to dominate terrestrial ecosystems in the Late Cretaceous and Cenozoic. Although a hierarchical-reticulate venation also occurs in some groups of extinct seed plants, it is unclear whether these are stem relatives of angiosperms or have evolved these traits in parallel. Here, we re-examine the morphology of the enigmatic foliage taxon Furcula, a potential early Mesozoic angiosperm relative, and argue that its hierarchical vein network represents convergent evolution (in the Late Triassic) with flowering plants (which developed in the Early Cretaceous) based on details of vein architecture and the absence of angiosperm-like stomata and guard cells. We suggest that its nearest relatives are Peltaspermales similar to Scytophyllum and Vittaephyllum, the latter being a genus that originated during the Late Triassic (Carnian) and shares a hierarchical vein system with Furcula. We further suggest that the evolution of hierarchical venation systems in the early Permian, the Late Triassic, and the Early Cretaceous represent 'natural experiments' that might help resolve the selective pressures enabling this trait to evolve.
Collapse
Affiliation(s)
- Mario Coiro
- Department of Palaeontology, University of Vienna, 1090, Vienna, Austria
- Ronin Institute for Independent Scholarship, Montclair, NJ, 07043, USA
| | - Stephen McLoughlin
- Department of Palaeobiology, Swedish Museum of Natural History, 114 18, Stockholm, Sweden
| | - Margret Steinthorsdottir
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, 114 19, Stockholm, Sweden
| | - Vivi Vajda
- Department of Palaeobiology, Swedish Museum of Natural History, 114 18, Stockholm, Sweden
| | - Dolev Fabrikant
- The Hebrew University of Jerusalem, Jerusalem, 9190501, Israel
| | - Leyla J Seyfullah
- Department of Palaeontology, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
2
|
Choi B, Hwang Y, McAdam SAM, Jang TS. Comparative microscopic investigations of leaf epidermis in four Ajuga species from Korea. Microsc Res Tech 2024; 87:434-445. [PMID: 37909218 DOI: 10.1002/jemt.24450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/07/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
The genus Ajuga is widely distributed in temperate to subtropical regions, and four species are currently recognized in Korea (A. decumbens, A. multiflora, A. nipponensis, and A. spectabilis), but epidermal anatomical differences across these species have never been described. A comparative study of the leaf micromorphological characteristics of Korean Ajuga species was performed using light microscopy (LM) and scanning electron microscopy (SEM) to elucidate their taxonomic usefulness and to assess leaf micromorphological diversity. Considerable diversity in epidermal and stomatal anatomy was observed across Korean Ajuga species. Species had both hypostomatic or amphistomatic leaves, with anomocytic, anisocytic, diactyic, or actinocytic stomatal complexes. Guard cell length across species ranged from 17.66 ± 0.57 μm to 32.50 ± 2.38 μm and correlated with genome size. Abnormal stomata were frequently observed in three species (A. decumbens, A. multiflora, and A. nipponensis) but not in A. spectabilis. Three types of glandular trichomes were found: peltate in all species, short-stalked in all species, and long-stalked glandular trichomes in A. multiflora. Among the investigated leaf micromophological characters, trichome type, epidermal cell shape, and stomatal morphology were all taxonomically informative traits at a species level. RESEARCH HIGHLIGHTS: A comprehensive micromorphological description of the leaf surface is provided for Korean Ajuga species using scanning electron microscopic (SEM) and light microscopic (LM) analyses. The diverse range of stomatal development and the occurrence of polymorphic stomatal types are documented for the first time in Korean Ajuga species. The great diversity in stomatal and trichome morphology in Korean Ajuga species are taxonomically useful traits for species identification.
Collapse
Affiliation(s)
- Bokyung Choi
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Yeojin Hwang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Tae-Soo Jang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Doll Y, Koga H, Tsukaya H. Experimental validation of the mechanism of stomatal development diversification. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5667-5681. [PMID: 37555400 PMCID: PMC10540739 DOI: 10.1093/jxb/erad279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Stomata are the structures responsible for gas exchange in plants. The established framework for stomatal development is based on the model plant Arabidopsis, but diverse patterns of stomatal development have been observed in other plant lineages and species. The molecular mechanisms behind these diversified patterns are still poorly understood. We recently proposed a model for the molecular mechanisms of the diversification of stomatal development based on the genus Callitriche (Plantaginaceae), according to which a temporal shift in the expression of key stomatal transcription factors SPEECHLESS and MUTE leads to changes in the behavior of meristemoids (stomatal precursor cells). In the present study, we genetically manipulated Arabidopsis to test this model. By altering the timing of MUTE expression, we successfully generated Arabidopsis plants with early differentiation or prolonged divisions of meristemoids, as predicted by the model. The epidermal morphology of the generated lines resembled that of species with prolonged or no meristemoid divisions. Thus, the evolutionary process can be reproduced by varying the SPEECHLESS to MUTE transition. We also observed unexpected phenotypes, which indicated the participation of additional factors in the evolution of the patterns observed in nature. This study provides novel experimental insights into the diversification of meristemoid behaviors.
Collapse
Affiliation(s)
- Yuki Doll
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Koga
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
4
|
Rudall PJ. Stomatal development and orientation: a phylogenetic and ecophysiological perspective. ANNALS OF BOTANY 2023; 131:1039-1050. [PMID: 37288594 PMCID: PMC10457030 DOI: 10.1093/aob/mcad071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/07/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Oriented patterning of epidermal cells is achieved primarily by transverse protodermal cell divisions perpendicular to the organ axis, followed by axial cell elongation. In linear leaves with parallel venation, most stomata are regularly aligned with the veins. This longitudinal patterning operates under a strong developmental constraint and has demonstrable physiological benefits, especially in grasses. However, transversely oriented stomata characterize a few groups, among both living angiosperms and extinct Mesozoic seed plants. SCOPE This review examines comparative and developmental data on stomatal patterning in a broad phylogenetic context, focusing on the evolutionary and ecophysiological significance of guard-cell orientation. It draws from a diverse range of literature to explore the pivotal roles of the plant growth hormone auxin in establishing polarity and chemical gradients that enable cellular differentiation. CONCLUSIONS Transverse stomata evolved iteratively in a few seed-plant groups during the Mesozoic era, especially among parasitic or xerophytic taxa, such as the hemiparasitic mistletoe genus Viscum and the xerophytic shrub Casuarina, indicating a possible link with ecological factors such as the Cretaceous CO2 decline and changing water availability. The discovery of this feature in some extinct seed-plant taxa known only from fossils could represent a useful phylogenetic marker.
Collapse
|
5
|
Coiro M, Roberts EA, Hofmann CC, Seyfullah LJ. Cutting the long branches: Consilience as a path to unearth the evolutionary history of Gnetales. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1082639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Gnetales are one of the most fascinating groups within seed plants. Although the advent of molecular phylogenetics has generated some confidence in their phylogenetic placement of Gnetales within seed plants, their macroevolutionary history still presents many unknowns. Here, we review the reasons for such unknowns, and we focus the discussion on the presence of “long branches” both in their molecular and morphological history. The increased rate of molecular evolution and genome instability as well as the numerous unique traits (both reproductive and vegetative) in the Gnetales have been obstacles to a better understanding of their evolution. Moreover, the fossil record of the Gnetales, though relatively rich, has not yet been properly reviewed and investigated using a phylogenetic framework. Despite these apparent blocks to progress we identify new avenues to enable us to move forward. We suggest that a consilience approach, involving different disciplines such as developmental genetics, paleobotany, molecular phylogenetics, and traditional anatomy and morphology might help to “break” these long branches, leading to a deeper understanding of this mysterious group of plants.
Collapse
|
6
|
Coiro M, Barone Lumaga MR, Rudall PJ. Stomatal development in the cycad family Zamiaceae. ANNALS OF BOTANY 2021; 128:577-588. [PMID: 34265043 PMCID: PMC8422890 DOI: 10.1093/aob/mcab095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS The gymnosperm order Cycadales is pivotal to our understanding of seed-plant phylogeny because of its phylogenetic placement close to the root node of extant spermatophytes and its combination of both derived and plesiomorphic character states. Although widely considered a 'living fossil' group, extant cycads display a high degree of morphological and anatomical variation. We investigate stomatal development in Zamiaceae to evaluate variation within the order and homologies between cycads and other seed plants. METHODS Leaflets of seven species across five genera representing all major clades of Zamiaceae were examined at various stages of development using light microscopy and confocal microscopy. KEY RESULTS All genera examined have lateral subsidiary cells of perigenous origin that differ from other pavement cells in mature leaflets and could have a role in stomatal physiology. Early epidermal patterning in a 'quartet' arrangement occurs in Ceratozamia, Zamia and Stangeria. Distal encircling cells, which are sclerified at maturity, are present in all genera except Bowenia, which shows relatively rapid elongation and differentiation of the pavement cells during leaflet development. CONCLUSIONS Stomatal structure and development in Zamiaceae highlights some traits that are plesiomorphic in seed plants, including the presence of perigenous encircling subsidiary cells, and reveals a clear difference between the developmental trajectories of cycads and Bennettitales. Our study also shows an unexpected degree of variation among subclades in the family, potentially linked to differences in leaflet development and suggesting convergent evolution in cycads.
Collapse
Affiliation(s)
- Mario Coiro
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Ronin Institute for Independent Scholarship, Montclair, NJ, USA
| | | | | |
Collapse
|
7
|
Herrera F, Shi G, Mays C, Ichinnorov N, Takahashi M, Bevitt JJ, Herendeen PS, Crane PR. Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers. PLoS One 2020; 15:e0226779. [PMID: 31940374 PMCID: PMC6961850 DOI: 10.1371/journal.pone.0226779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022] Open
Abstract
Previously unrecognized anatomical features of the cone scales of the enigmatic Early Cretaceous conifer Krassilovia mongolica include the presence of transversely oriented paracytic stomata, which is unusual for all other extinct and extant conifers. Identical stomata are present on co-occurring broad, linear, multiveined leaves assigned to Podozamites harrisii, providing evidence that K. mongolica and P. harrisii are the seed cones and leaves of the same extinct plant. Phylogenetic analyses of the relationships of the reconstructed Krassilovia plant place it in an informal clade that we name the Krassilovia Clade, which also includes Swedenborgia cryptomerioides-Podozamites schenkii, and Cycadocarpidium erdmanni-Podozamites schenkii. All three of these plants have linear leaves that are relatively broad compared to most living conifers, and that are also multiveined with transversely oriented paracytic stomata. We propose that these may be general features of the Krassilovia Clade. Paracytic stomata, and other features of this new group, recall features of extant and fossil Gnetales, raising questions about the phylogenetic homogeneity of the conifer clade similar to those raised by phylogenetic analyses of molecular data.
Collapse
Affiliation(s)
- Fabiany Herrera
- Chicago Botanic Garden, Glencoe, Illinois, United States of America
| | - Gongle Shi
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, People’s Republic of China
| | - Chris Mays
- Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia
| | - Niiden Ichinnorov
- Institute of Paleontology and Geology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Masamichi Takahashi
- Department of Environmental Sciences, Faculty of Science, Niigata University, Nishi-ku, Niigata, Japan
| | - Joseph J. Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New South Wales, Australia
| | | | - Peter R. Crane
- Oak Spring Garden Foundation, Upperville, Virginia, United States of America
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
8
|
Bateman RM. Hunting the Snark: the flawed search for mythical Jurassic angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:22-35. [PMID: 31538196 DOI: 10.1093/jxb/erz411] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Several recent palaeobotanical studies claim to have found and described pre-Cretaceous angiosperm macrofossils. With rare exceptions, these papers fail to define a flower, do not acknowledge that fossils require character-based rather than group-based classification, do not explicitly state which morphological features would unambiguously identify a fossil as angiospermous, ignore the modern conceptual framework of phylogeny reconstruction, and infer features in the fossils in question that are interpreted differently by (or even invisible to) other researchers. This unfortunate situation is compounded by the relevant fossils being highly disarticulated two-dimensional compression-impressions lacking anatomical preservation. Given current evidence, all supposed pre-Cretaceous angiosperms are assignable to other major clades among the gymnosperms sensu lato. By any workable morphological definition, flowers are not confined to, and therefore cannot delimit, the angiosperm clade. More precisely defined character states that are potentially diagnostic of angiosperms must by definition originate on the phylogenetic branch that immediately precedes the angiosperm crown group. Although the most reliable candidates for diagnostic characters (triploid endosperm reflecting double fertilization, closed carpel, bitegmic ovule, and phloem companion cells) are rarely preserved and/or difficult to detect unambiguously, similar characters have occasionally been preserved in high-quality permineralized non-angiosperm fossils. The angiosperm radiation documented by Early Cretaceous fossils involves only lineages closely similar to extant taxonomic families, lacks obvious morphological gaps, and (as agreed by both the fossil record and molecular phylogenies) was relatively rapid-all features that suggest a primary radiation. It is unlikely that ancestors of the crown group common ancestor would have fulfilled a character-based definition of (and thereby required expansion of the concept of) an angiosperm; they would instead form a new element of the non-angiosperm members of the 'anthophyte' grade, competing with Caytonia to be viewed as morphologically determined sister group for angiosperms. Conclusions drawn from molecular phylogenetics should not be allowed to routinely constrain palaeobotanical inferences; reciprocal illumination between different categories of data offers greater explanatory power than immediately resorting to Grand Syntheses. The Jurassic angiosperm-essentially a product of molecular phylogenetics-may have become the holy grail of palaeobotany but it appears equally mythical.
Collapse
|
9
|
Rudall PJ, Rice CL. Epidermal patterning and stomatal development in Gnetales. ANNALS OF BOTANY 2019; 124:149-164. [PMID: 31045221 PMCID: PMC6676381 DOI: 10.1093/aob/mcz053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS The gymnosperm order Gnetales, which has contentious phylogenetic affinities, includes three extant genera (Ephedra, Gnetum, Welwitschia) that are morphologically highly divergent and have contrasting ecological preferences: Gnetum occupies mesic tropical habitats, whereas Ephedra and Welwitschia occur in arid environments. Leaves are highly reduced in Ephedra, petiolate with a broad lamina in Gnetum and persistent and strap-like in Welwitschia. We investigate stomatal development and prepatterning stages in Gnetales, to evaluate the substantial differences among the three genera and compare them with other seed plants. METHODS Photosynthetic organs of representative species were examined using light microscopy, scanning electron microscopy and transmission electron microscopy. KEY RESULTS Stomata of all three genera possess lateral subsidiary cells (LSCs). LSCs of Ephedra are perigene cells derived from cell files adjacent to the stomatal meristemoids. In contrast, LSCs of Gnetum and Welwitschia are mesogene cells derived from the stomatal meristemoids; each meristemoid undergoes two mitoses to form a 'developmental triad', of which the central cell is the guard mother cell and the lateral pair are LSCs. Epidermal prepatterning in Gnetum undergoes a 'quartet' phase, in contrast with the linear development of Welwitschia. Quartet prepatterning in Gnetum resembles that of some angiosperms but they differ in later development. CONCLUSIONS Several factors underpin the profound and heritable differences observed among the three genera of Gnetales. Stomatal development in Ephedra differs significantly from that of Gnetum and Welwitschia, more closely resembling that of other extant gymnosperms. Differences in epidermal prepatterning broadly reflect differences in growth habit between the three genera.
Collapse
Affiliation(s)
| | - Callie L Rice
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|