1
|
Zhang Y, Wang X, Han J, Xiao J, Yong Y, Yu C, Yue N, Sun J, He K, Hao W, Zhang T, Wang B, Wang D, Yang X. Dynamic simulations of feeding and respiration of the early Cambrian periderm-bearing cnidarian polyps. eLife 2025; 12:RP90211. [PMID: 40009542 PMCID: PMC11867613 DOI: 10.7554/elife.90211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
Although fossil evidence suggests the existence of an early muscular system in the ancient cnidarian jellyfish from the early Cambrian Kuanchuanpu biota (ca. 535 Ma), south China, the mechanisms underlying the feeding and respiration of the early jellyfish are conjectural. Recently, the polyp inside the periderm of olivooids was demonstrated to be a calyx-like structure, most likely bearing short tentacles and bundles of coronal muscles at the edge of the calyx, thus presumably contributing to feeding and respiration. Here, we simulate the contraction and expansion of the microscopic periderm-bearing olivooid Quadrapyrgites via the fluid-structure interaction computational fluid dynamics (CFD) method to investigate their feeding and respiratory activities. The simulations show that the rate of water inhalation by the polyp subumbrella is positively correlated with the rate of contraction and expansion of the coronal muscles, consistent with the previous feeding and respiration hypothesis. The dynamic simulations also show that the frequent inhalation/exhalation of water through the periderm polyp expansion/contraction conducted by the muscular system of Quadrapyrgites most likely represents the ancestral feeding and respiration patterns of Cambrian sedentary medusozoans that predated the rhythmic jet-propelled swimming of the modern jellyfish. Most importantly for these Cambrian microscopic sedentary medusozoans, the increase of body size and stronger capacity of muscle contraction may have been indispensable in the stepwise evolution of active feeding and subsequent swimming in a higher flow (or higher Reynolds number) environment.
Collapse
Affiliation(s)
- Yiheng Zhang
- School of Information Science & Technology, Northwest UniversityXi'anChina
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest UniversityXi'anChina
| | - Xing Wang
- College of Life Science, Linyi UniversityLinyiChina
| | - Jian Han
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest UniversityXi'anChina
| | - Juyue Xiao
- School of Information Science & Technology, Northwest UniversityXi'anChina
| | - Yuanyuan Yong
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest UniversityXi'anChina
| | - Chiyang Yu
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest UniversityXi'anChina
| | - Ning Yue
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest UniversityXi'anChina
| | - Jie Sun
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest UniversityXi'anChina
| | - Kaiyue He
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest UniversityXi'anChina
| | - Wenjing Hao
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest UniversityXi'anChina
| | - Tao Zhang
- School of Information Science & Technology, Northwest UniversityXi'anChina
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest UniversityXi'anChina
| | - Bin Wang
- School of Information Science & Technology, Northwest UniversityXi'anChina
| | - Deng Wang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest UniversityXi'anChina
| | - Xiaoguang Yang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest UniversityXi'anChina
| |
Collapse
|
2
|
Yue X, Guo H, Wang G, Li J, Zhai Z, Wang Z, Wang W, Zhao Z, Xia X, Chen C, Cui Y, Wu C, Huang Z, Zhang X. A tailored phytosomes based nose-to-brain drug delivery strategy: Silver bullet for Alzheimer's disease. Bioact Mater 2025; 44:97-115. [DOI: 10.1016/j.bioactmat.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
3
|
Pérez-Pinedo D, Nicholls R, Neville JM, McIlroy D. Hydrodynamic insights into the paleobiology of the Ediacaran rangeomorph Fractofusus misrai. iScience 2024; 27:110107. [PMID: 38947528 PMCID: PMC11214322 DOI: 10.1016/j.isci.2024.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
The Ediacaran of Newfoundland preserves some of the oldest complex macroscopic communities, several of which are dominated by the fractal-like rangeomorph genus Fractofusus. Here we use computational fluid dynamics and a detailed reconstruction of Fractofusus misrai to document for the first time hydrodynamic phenomena associated with this sediment-reclining organism and its rangeomorph elements that are relevant to interpreting feeding strategies, explain the recently documented rheotropic growth oblique to currents, and provide insights into their impact on the Ediacaran seafloor. Obliquely oriented Fractofusus are common, likely representing a compromise between maximized aspect ratio and minimization of drag. Flow patterns on the upper surface of Fractofusus are consistent with the collection of dissolved and finely particulate nutrients, as well as gas exchange. Fractofusus produce a wake downstream, demonstrating that reclining rangeomorphs had potential to modify sedimentation patterns on the ancient seafloor by potentially allowing deposition of fine-grained sediment.
Collapse
Affiliation(s)
- Daniel Pérez-Pinedo
- Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL A1B3X5, Canada
| | | | - Jenna M. Neville
- Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL A1B3X5, Canada
| | - Duncan McIlroy
- Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL A1B3X5, Canada
| |
Collapse
|
4
|
Delahooke KM, Liu AG, Stephenson NP, Mitchell EG. 'Conga lines' of Ediacaran fronds: insights into the reproductive biology of early metazoans. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231601. [PMID: 39076788 PMCID: PMC11286166 DOI: 10.1098/rsos.231601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 07/31/2024]
Abstract
Late Ediacaran strata from Newfoundland, Canada (~574-560 Ma) document near-census palaeocommunities of some of the earliest metazoans. Such preservation enables reproductive strategies to be inferred from the spatial distribution of populations of fossilized benthic organisms, previously revealing the existence of both propagule and stoloniferous reproductive modes among Ediacaran frondose taxa. Here, we describe 'conga lines': linear arrangements of more than three closely spaced fossil specimens. We calculate probabilistic models of point maps of 13 fossil-bearing bedding surfaces and show that four surfaces contain conga lines that are not the result of chance alignments. We then test whether these features could result from passive pelagic propagules settling in the lee of an existing frond, using computational fluid dynamics and discrete phase modelling. Under Ediacaran palaeoenvironmental conditions, preferential leeside settlement at the spatial scale of the conga lines is unlikely. We therefore conclude that these features are novel and do not reflect previously described reproductive strategies employed by Ediacaran organisms, suggesting the use of mixed reproductive strategies in the earliest animals. Such strategies enabled Ediacaran frondose taxa to act as reproductive generalists and may be an important facet of early metazoan evolution.
Collapse
Affiliation(s)
| | - Alexander G. Liu
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Nile P. Stephenson
- Department of Zoology, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
| | - Emily G. Mitchell
- Department of Zoology, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Gibson BM, Chipman M, Attanasio P, Qureshi Z, Darroch SAF, Rahman IA, Laflamme M. Reconstructing the feeding ecology of Cambrian sponge reefs: the case for active suspension feeding in Archaeocyatha. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230766. [PMID: 38026009 PMCID: PMC10663785 DOI: 10.1098/rsos.230766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Sponge-grade Archaeocyatha were early Cambrian biomineralizing metazoans that constructed reefs globally. Despite decades of research, many facets of archaeocyath palaeobiology remain unclear, making it difficult to reconstruct the palaeoecology of Cambrian reef ecosystems. Of specific interest is how these organisms fed; previous experimental studies have suggested that archaeocyaths functioned as passive suspension feeders relying on ambient currents to transport nutrient-rich water into their central cavities. Here, we test this hypothesis using computational fluid dynamics (CFD) simulations of digital models of select archaeocyath species. Our results demonstrate that, given a range of plausible current velocities, there was very little fluid circulation through the skeleton, suggesting obligate passive suspension feeding was unlikely. Comparing our simulation data with exhalent velocities collected from extant sponges, we infer an active suspension feeding lifestyle for archaeocyaths. The combination of active suspension feeding and biomineralization in Archaeocyatha may have facilitated the creation of modern metazoan reef ecosystems.
Collapse
Affiliation(s)
- Brandt M. Gibson
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Earth & Environmental Sciences, Vanderbilt University, Nashville, TN, USA
| | - Max Chipman
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Paolo Attanasio
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Zaid Qureshi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Simon A. F. Darroch
- Department of Earth & Environmental Sciences, Vanderbilt University, Nashville, TN, USA
- Senckenberg Museum of Natural History, Frankfurt, Germany
| | - Imran A. Rahman
- The Natural History Museum, London, UK
- Oxford University Museum of Natural History, University of Oxford, Oxford, UK
| | - Marc Laflamme
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
6
|
Darroch SA, Gutarra S, Masaki H, Olaru A, Gibson BM, Dunn FS, Mitchell EG, Racicot RA, Burzynski G, Rahman IA. The rangeomorph Pectinifrons abyssalis: Hydrodynamic function at the dawn of animal life. iScience 2023; 26:105989. [PMID: 36756377 PMCID: PMC9900436 DOI: 10.1016/j.isci.2023.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Rangeomorphs are among the oldest putative eumetazoans known from the fossil record. Establishing how they fed is thus key to understanding the structure and function of the earliest animal ecosystems. Here, we use computational fluid dynamics to test hypothesized feeding modes for the fence-like rangeomorph Pectinifrons abyssalis, comparing this to the morphologically similar extant carnivorous sponge Chondrocladia lyra. Our results reveal complex patterns of flow around P. abyssalis unlike those previously reconstructed for any other Ediacaran taxon. Comparisons with C. lyra reveal substantial differences between the two organisms, suggesting they converged on a similar fence-like morphology for different functions. We argue that the flow patterns recovered for P. abyssalis do not support either a suspension feeding or osmotrophic feeding habit. Instead, our results indicate that rangeomorph fronds may represent organs adapted for gas exchange. If correct, this interpretation could require a dramatic reinterpretation of the oldest macroscopic animals.
Collapse
Affiliation(s)
- Simon A.F. Darroch
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA,Evolutionary Studies Institute, Vanderbilt University, Nashville, TN 37235, USA,Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt, Germany
| | | | - Hale Masaki
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Andrei Olaru
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Brandt M. Gibson
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA,Department of Chemistry and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Frances S. Dunn
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK
| | - Emily G. Mitchell
- Department of Zoology, Museum of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Rachel A. Racicot
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA,Evolutionary Studies Institute, Vanderbilt University, Nashville, TN 37235, USA,Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt, Germany
| | - Gregory Burzynski
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA
| | - Imran A. Rahman
- The Natural History Museum, London SW7 5BD, UK,Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK,Corresponding author
| |
Collapse
|
7
|
Bicknell RD, Smith PM, Brougham T, Bevitt JJ. An earliest Triassic age for Tasmaniolimulus and comments on synchrotron tomography of Gondwanan horseshoe crabs. PeerJ 2022; 10:e13326. [PMID: 35480564 PMCID: PMC9037155 DOI: 10.7717/peerj.13326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/02/2022] [Indexed: 01/13/2023] Open
Abstract
Constraining the timing of morphological innovations within xiphosurid evolution is central for understanding when and how such a long-lived group exploited vacant ecological niches over the majority of the Phanerozoic. To expand the knowledge on the evolution of select xiphosurid forms, we reconsider the four Australian taxa: Austrolimulus fletcheri, Dubbolimulus peetae, Tasmaniolimulus patersoni, and Victalimulus mcqueeni. In revisiting these taxa, we determine that, contrary to previous suggestion, T. patersoni arose after the Permian and the origin of over-developed genal spine structures within Austrolimulidae is exclusive to the Triassic. To increase the availability of morphological data pertaining to these unique forms, we also examined the holotypes of the four xiphosurids using synchrotron radiation X-ray tomography (SRXT). Such non-destructive, in situ imaging of palaeontological specimens can aid in the identification of novel morphological data by obviating the need for potentially extensive preparation of fossils from the surrounding rock matrix. This is particularly important for rare and/or delicate holotypes. Here, SRXT was used to emphasize A. fletcheri and T. patersoni cardiac lobe morphologies and illustrate aspects of the V. mcqueeni thoracetronic doublure, appendage impressions, and moveable spine notches. Unfortunately, the strongly compacted D. peetae precluded the identification of any internal structures, but appendage impressions were observed. The application of computational fluid dynamics to high-resolution 3D reconstructions are proposed to understand the hydrodynamic properties of divergent genal spine morphologies of austrolimulid xiphosurids.
Collapse
Affiliation(s)
| | - Patrick M. Smith
- Australian Museum Research Institute, Sydney, Australia
- Macquarie University, Sydney, Australia
| | | | - Joseph J. Bevitt
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| |
Collapse
|
8
|
Hamann L, Blanke A. Suspension feeders: diversity, principles of particle separation and biomimetic potential. J R Soc Interface 2022; 19:20210741. [PMID: 35078340 PMCID: PMC8790370 DOI: 10.1098/rsif.2021.0741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Suspension feeders (SFs) evolved a high diversity of mechanisms, sometimes with remarkably convergent morphologies, to retain plankton, detritus and man-made particles with particle sizes ranging from less than 1 µm to several centimetres. Based on an extensive literature review, also including the physical and technical principles of solid-liquid separation, we developed a set of 18 ecological and technical parameters to review 35 taxa of suspension-feeding Metazoa covering the diversity of morphological and functional principles. This includes passive SFs, such as gorgonians or crinoids that use the ambient flow to encounter particles, and sponges, bivalves or baleen whales, which actively create a feeding current. Separation media can be flat or funnel-shaped, built externally such as the filter houses in larvaceans, or internally, like the pleated gills in bivalves. Most SFs feed in the intermediate flow region of Reynolds number 1-50 and have cleaning mechanisms that allow for continuous feeding. Comparison of structure-function patterns in SFs to current filtration technologies highlights potential solutions to common technical design challenges, such as mucus nets which increase particle adhesion in ascidians, vanes which reduce pressure losses in whale sharks and changing mesh sizes in the flamingo beak which allow quick adaptation to particle sizes.
Collapse
Affiliation(s)
- Leandra Hamann
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Alexander Blanke
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
9
|
Abstract
AbstractAnimals, fungi, and algae with complex multicellular bodies all evolved independently from unicellular ancestors. The early history of these major eukaryotic multicellular clades, if not their origins, co-occur with an extreme phase of global glaciations known as the Snowball Earth. Here, I propose that the long-term loss of low-viscosity environments due to several rounds global glaciation drove the multiple origins of complex multicellularity in eukaryotes and the subsequent radiation of complex multicellular groups into previously unoccupied niches. In this scenario, life adapts to Snowball Earth oceans by evolving large size and faster speeds through multicellularity, which acts to compensate for high-viscosity seawater and achieve fluid flow at sufficient levels to satisfy metabolic needs. Warm, low-viscosity seawater returned with the melting of the Snowball glaciers, and with it, by virtue of large and fast multicellular bodies, new ways of life were unveiled.
Collapse
|
10
|
Racicot R. Evolution of whale sensory ecology: Frontiers in nondestructive anatomical investigations. Anat Rec (Hoboken) 2021; 305:736-752. [PMID: 34546007 DOI: 10.1002/ar.24761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
Studies surrounding the evolution of sensory system anatomy in cetaceans over the last ~100 years have shed light on aspects of the early evolution of hearing sensitivities, the small relative size of the organ of balance (semicircular canals and vestibule), brain (endocast) shape and relative volume changes, and ontogenetic development of sensory-related structures. Here, I review advances in our knowledge of sensory system anatomy as informed by the use of nondestructive imaging techniques, with a focus on applied methods in computed tomography (CT and μCT), and identify the key questions that remain to be addressed. Of these, the most important are: Is lower frequency hearing sensitivity the ancestral condition for whales? Did echolocation evolve more than once in odontocetes; and if so, when and why? How has the structure of the cetacean brain changed, through the evolution of whales, and does this correspond to changes in hearing sensitivities? Finally, what are the general pathways of ontogenetic development of sensory systems in odontocetes and mysticetes? Answering these questions will allow us to understand important macroevolutionary patterns in a fully aquatic mammalian group and provides baseline data on species for which we have limited biological information because of logistical limitations.
Collapse
Affiliation(s)
- Rachel Racicot
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturkundemuseum, Frankfurt am Main, Germany.,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Gutarra S, Rahman IA. The locomotion of extinct secondarily aquatic tetrapods. Biol Rev Camb Philos Soc 2021; 97:67-98. [PMID: 34486794 DOI: 10.1111/brv.12790] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
The colonisation of freshwater and marine ecosystems by land vertebrates has repeatedly occurred in amphibians, reptiles, birds and mammals over the course of 300 million years. Functional interpretations of the fossil record are crucial to understanding the forces shaping these evolutionary transitions. Secondarily aquatic tetrapods have acquired a suite of anatomical, physiological and behavioural adaptations to locomotion in water. However, much of this information is lost for extinct clades, with fossil evidence often restricted to osteological data and a few extraordinary specimens with soft tissue preservation. Traditionally, functional morphology in fossil secondarily aquatic tetrapods was investigated through comparative anatomy and correlation with living functional analogues. However, in the last two decades, biomechanics in palaeobiology has experienced a remarkable methodological shift. Anatomy-based approaches are increasingly rigorous, informed by quantitative techniques for analysing shape. Moreover, the incorporation of physics-based methods has enabled objective tests of functional hypotheses, revealing the importance of hydrodynamic forces as drivers of evolutionary innovation and adaptation. Here, we present an overview of the latest research on the locomotion of extinct secondarily aquatic tetrapods, with a focus on amniotes, highlighting the state-of-the-art experimental approaches used in this field. We discuss the suitability of these techniques for exploring different aspects of locomotory adaptation, analysing their advantages and limitations and laying out recommendations for their application, with the aim to inform future experimental strategies. Furthermore, we outline some unexplored research avenues that have been successfully deployed in other areas of palaeobiomechanical research, such as the use of dynamic models in feeding mechanics and terrestrial locomotion, thus providing a new methodological synthesis for the field of locomotory biomechanics in extinct secondarily aquatic vertebrates. Advances in imaging technology and three-dimensional modelling software, new developments in robotics, and increased availability and awareness of numerical methods like computational fluid dynamics make this an exciting time for analysing form and function in ancient vertebrates.
Collapse
Affiliation(s)
- Susana Gutarra
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K.,Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, U.K
| | - Imran A Rahman
- Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, U.K.,Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, U.K
| |
Collapse
|
12
|
Ferrón HG, Martínez-Pérez C, Rahman IA, Selles de Lucas V, Botella H, Donoghue PCJ. Functional assessment of morphological homoplasy in stem-gnathostomes. Proc Biol Sci 2021; 288:20202719. [PMID: 33467997 PMCID: PMC7893270 DOI: 10.1098/rspb.2020.2719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 11/12/2022] Open
Abstract
Osteostraci and Galeaspida are stem-gnathostomes, occupying a key phylogenetic position for resolving the nature of the jawless ancestor from which jawed vertebrates evolved more than 400 million years ago. Both groups are characterized by the presence of rigid headshields that share a number of common morphological traits, in some cases hindering the resolution of their interrelationships and the exact nature of their affinities with jawed vertebrates. Here, we explore the morphological and functional diversity of osteostracan and galeaspid headshields using geometric morphometrics and computational fluid dynamics to constrain the factors that promoted the evolution of their similar morphologies and informing on the ecological scenario under which jawed vertebrates emerged. Phylomorphospace, Mantel analysis and Stayton metrics demonstrate a high degree of homoplasy. Computational fluid dynamics reveals similar hydrodynamic performance among morphologically convergent species, indicating the independent acquisition of the same morphofunctional traits and, potentially, equivalent lifestyles. These results confirm that a number of the characters typically used to infer the evolutionary relationships among galeaspids, osteostracans and jawed vertebrates are convergent in nature, potentially obscuring understanding of the assembly of the gnathostome bodyplan. Ultimately, our results reveal that while the jawless relatives of the earliest jawed vertebrates were ecologically diverse, widespread convergence on the same hydrodynamic adaptations suggests they had reached the limits of their potential ecological diversity-overcome by jawed vertebrates and their later innovations.
Collapse
Affiliation(s)
- Humberto G. Ferrón
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
- Instituto Cavanilles de Biodiversidad i Biología Evolutiva, Universitat de València, C/ Catedrático José Beltrán Martínez, 2, 46980 Paterna, Valencia, Spain
| | - Carlos Martínez-Pérez
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
- Instituto Cavanilles de Biodiversidad i Biología Evolutiva, Universitat de València, C/ Catedrático José Beltrán Martínez, 2, 46980 Paterna, Valencia, Spain
| | - Imran A. Rahman
- Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
| | - Víctor Selles de Lucas
- School of Engineering and Computer Science, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
| | - Héctor Botella
- Instituto Cavanilles de Biodiversidad i Biología Evolutiva, Universitat de València, C/ Catedrático José Beltrán Martínez, 2, 46980 Paterna, Valencia, Spain
| | - Philip C. J. Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|