1
|
Meher N, Bidkar AP, Wadhwa A, Bobba KN, Dhrona S, Dasari C, Mu C, Fong COY, Cámara JA, Ali U, Basak M, Bulkley D, Steri V, Fontaine SD, Zhu J, Oskowitz A, Aggarwal RR, Sriram R, Chou J, Wilson DM, Seo Y, Santi DV, Ashley GW, VanBrocklin HF, Flavell RR. PET Imaging Using 89Zr-Labeled StarPEG Nanocarriers Reveals Heterogeneous Enhanced Permeability and Retention in Prostate Cancer. Mol Cancer Ther 2025; 24:141-151. [PMID: 39331510 DOI: 10.1158/1535-7163.mct-24-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/05/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
The enhanced permeability and retention (EPR) effect controls passive nanodrug uptake in tumors and may provide a high tumor payload with prolonged retention for cancer treatment. However, EPR-mediated tumor uptake and distribution vary by cancer phenotype. Thus, we hypothesized that a companion PET imaging surrogate may benefit EPR-mediated therapeutic drug delivery. We developed two 89Zr-radiolabeled nanocarriers based on 4-armed starPEG40kDa with or without talazoparib (TLZ), a potent PARP inhibitor, as surrogates for the PEG-TLZ4 therapeutic scaffold. For PET imaging, PEG-DFB4 and PEG-DFB1-TLZ3 were radiolabeled with 89Zr by replacing one or all four copis of TLZ on PEG-TLZ4 with deferoxamine B (DFB). The radiolabeled nanodrugs [89Zr]PEG-DFB4 and [89Zr]PEG-DFB1-TLZ3 were tested in vivo in prostate cancer subcutaneous (s.c.) xenografts (22Rv1, LTL-545, and LTL-610) and 22Rv1 metastatic models. Their EPR-mediated tumoral uptake and penetration was compared with CT26, a known EPR-high cell line. MicroPET/CT images, organ biodistribution, and calculated kinetic parameters showed high uptake in CT26 and LTL-545 and moderate to low uptake in LTL-610 and 22Rv1. MicroPET/CT and high-resolution autoradiographic images showed nanocarrier penetration into highly permeable CT26, but heterogeneous peripheral accumulation was observed in LTL-545, LTL-610, and 22Rv1 s.c. xenografts and metastatic tumors. CD31 staining of tumor sections showed homogenous vascular development in CT26 tumors and heterogeneity in other xenografts. Both [89Zr]PEG-DFB4 and [89Zr]PEG-DFB1-TLZ3 showed similar accumulation and distribution in s.c. and metastatic tumor models. Both nanocarriers can measure tumor model passive uptake heterogeneity. Although heterogeneous, prostate cancer xenografts had low EPR. These starPEG nanocarriers could be used as PET imaging surrogates to predict drug delivery and efficacy.
Collapse
Affiliation(s)
- Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Anil P Bidkar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Suchi Dhrona
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Chandrashekhar Dasari
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Division of Vascular and Endovascular Surgery, University of California San Francisco, San Francisco, California
| | - Changhua Mu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Cyril O Y Fong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Juan A Cámara
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Umama Ali
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Megha Basak
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - David Bulkley
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | | | - Jun Zhu
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Adam Oskowitz
- Division of Vascular and Endovascular Surgery, University of California San Francisco, San Francisco, California
| | - Rahul R Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Jonathan Chou
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | | | | | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| |
Collapse
|
2
|
Ferrera F, Resaz R, Bari E, Fenoglio D, Mastracci L, Miletto I, Modena A, Perteghella S, Sorlini M, Segale L, Filaci G, Torre ML, Giovannelli L. Silk fibroin nanoparticles for locoregional cancer therapy: Preliminary biodistribution in a murine model and microfluidic GMP-like production. Int J Biol Macromol 2024; 282:137121. [PMID: 39500437 DOI: 10.1016/j.ijbiomac.2024.137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/10/2024]
Abstract
Silk fibroin nanoparticles (SFNs) have been widely investigated for drug delivery, but their clinical application still faces technical (large-scale and GMP-compliant manufacturing), economic (cost-effectiveness in comparison to other polymer-based nanoparticles), and biological (biodistribution assessments) challenges. To address biodistribution challenge, we provide a straightforward desolvation method (in acetone) to produce homogeneous SFNs incorporating increasing amounts of Fe2O3 (SFNs-Fe), detectable by Magnetic Resonance Imaging (MRI), and loaded with curcumin as a model lipophilic drug. SFNs-Fe were characterized by a homogeneous distribution of the combined materials and showed an actual Fe2O3 loading close to the theoretical one. The amount of Fe2O3 incorporated affected the physical-chemical properties of SFNs-Fe, such as polymer matrix compactness, mean diameter and drug release mechanism. All formulations were cytocompatible; curcumin encapsulation mitigated its cytotoxicity, and iron oxide incorporation did not impact cell metabolic activity but affected cellular uptake in vitro. SFNs-Fe proved optimal for biodistribution studies, as MRI showed significant nanoparticle retention at the administration site, supporting their potential for locoregional cancer therapy. Finally, technical and economic challenges in SFN production were overcome using a GMP-compliant microfluidic scalable technology, which optimized preparation to produce smaller particle sizes compared to manual methods and reduced acetone usage, thus offering environmental and economic benefits. Moreover, enabling large-scale production of GMP-like SFNs, this represents a considerable step forward for their application in the clinic.
Collapse
Affiliation(s)
- Francesca Ferrera
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Roberta Resaz
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy.
| | - Daniela Fenoglio
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV 6, 16132 Genova, Italy; Biotherapy Unit, IRCCS Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Luca Mastracci
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV 6, 16132 Genova, Italy; Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Ivana Miletto
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Angelo Modena
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; PharmaExceed s.r.l., Piazza Castello 19, 27100 Pavia, Italy
| | - Marzio Sorlini
- PharmaExceed s.r.l., Piazza Castello 19, 27100 Pavia, Italy; Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, SUPSI, Lugano University Centre, Campus Est, Via la Santa 1, CH-6962 Viganello, Switzerland
| | - Lorena Segale
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Gilberto Filaci
- Department of Internal Medicine, Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV 6, 16132 Genova, Italy; Biotherapy Unit, IRCCS Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy; PharmaExceed s.r.l., Piazza Castello 19, 27100 Pavia, Italy
| | - Lorella Giovannelli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| |
Collapse
|
3
|
Dai Z, Zhao W, Cao L, Zhu Z, Xia Z, Xia L. Engineered probiotic E.coli Nissle 1917 for release PTEN to improve the tumor microenvironment and suppress tumor growth. Biotechnol Lett 2024; 46:1237-1247. [PMID: 39331305 DOI: 10.1007/s10529-024-03536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
The cancer is one of the diseases of serious threat to people's health and life nowadays. But heterogeneity, drug resistance and treatment side effects of cancer, traditional treatments still have limitations. Tumor-targeting probiotics with a well-established Biosafety and efficient targeting as a delivery vectors to deliver anticancer genes or antitumor drugs to tumor microenvironment has attracted much attention in cancer therapies. In this study, E.coil Nissle 1917 (EcN) was utilized to deliver eukaryotic anti-tumor protein PTEN to tumor microenvironment and suppress tumor growth. Therefore, the EcN (PTEN) was developed. Our results demonstrated that EcN (PTEN) could colonize the tumor site accurately and inhibit the growth of colorectal cancer cells in tumor-bearing mice. It is worth noting that the tumor microenvironment of the treated mice showed significant recruitment of and M1 macrophages, neutrophils and T lymphocytes. No toxicity was observed in the normal tissues during the experiments. This research show the probiotic EcN(PTEN) holds the promise of becoming a powerful weapon against cancer and expected to provide more effective treatments for cancer patients.
Collapse
Affiliation(s)
- Zirui Dai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No. 36 Lushan Street, Changsha, 410081, People's Republic of China
| | - Wenjuan Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No. 36 Lushan Street, Changsha, 410081, People's Republic of China
| | - Li Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No. 36 Lushan Street, Changsha, 410081, People's Republic of China
| | - Zirong Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No. 36 Lushan Street, Changsha, 410081, People's Republic of China
| | - Ziyuan Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No. 36 Lushan Street, Changsha, 410081, People's Republic of China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, No. 36 Lushan Street, Changsha, 410081, People's Republic of China.
| |
Collapse
|
4
|
Jiang C, Zheng L, Yan YJ, Wang M, Liu XJ, Dai JY. A Supramolecular Antibiotic Targeting Drug-Resistant Pseudomonas aeruginosa through the Inhibition of Virulence Factors and Activation of Acquired Immunity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41828-41842. [PMID: 39088848 PMCID: PMC11331443 DOI: 10.1021/acsami.4c06665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
The bacterium Pseudomonas aeruginosa is an exceptionally resilient opportunistic pathogen, presenting formidable challenges for treatment due to its proclivity for developing drug resistance. To address this predicament, we have devised a self-assembled supramolecular antibiotic known as dHTSN1@pHPplus, which can circumvent the drug resistance mechanism of Pseudomonas aeruginosa and effectively combat Pseudomonas aeruginosa infection by impeding the secretion of key virulence factors through the inhibition of the type III secretion system while simultaneously mobilizing immune cells to eradicate Pseudomonas aeruginosa. Furthermore, dHTSN1@pHPplus was ingeniously engineered with infection-targeting capabilities, enabling it to selectively concentrate precisely at the site of infection. As anticipated, the administration of dHTSN1@pHPplus exhibited a remarkable therapeutic efficacy in combating dual resistance to Meropenem and imipenem in a mouse model of P. aeruginosa lung infection. The results obtained from metagenomic detection further confirmed these findings, demonstrating a significant reduction in the proportion of Pseudomonas aeruginosa compared to untreated mice with Pseudomonas aeruginosa-infected lungs. Additionally, no notable acute toxicity was observed in the acute toxicity experiments. The present study concludes that the remarkable efficacy of dHTSN1@pHPplus in treating drug-resistant P. aeruginosa infection confirms its immense potential as a groundbreaking antibiotic agent for combating drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Cheng Jiang
- Department
of Hepatobiliary Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing 100142, PR China
- Graduate
School of China Medical University, Shenyang 110000, China
| | - Lei Zheng
- Department
of Hepatobiliary Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing 100142, PR China
- Graduate
School of China Medical University, Shenyang 110000, China
| | - Yu-jie Yan
- The
College of Life Sciences, Northwest University, Xi’an, Shaanxi 710072, China
| | - Miao Wang
- Key
Laboratory for Space Biosciences and Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Xiao-Jing Liu
- Department
of Infectious Disease, The First Affiliated
Hospital of Xi’an Jiaotong University, Xi’an 710061, PR China
| | - Jing-Yao Dai
- Department
of Hepatobiliary Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing 100142, PR China
- Fourth Military
Medical University, Xi’an, Shaanxi 710072, PR China
| |
Collapse
|
5
|
de Roode KE, Hashemi K, Verdurmen WPR, Brock R. Tumor-On-A-Chip Models for Predicting In Vivo Nanoparticle Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402311. [PMID: 38700060 DOI: 10.1002/smll.202402311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 05/05/2024]
Abstract
Nanosized drug formulations are broadly explored for the improvement of cancer therapy. Prediction of in vivo nanoparticle (NP) behavior, however, is challenging, given the complexity of the tumor and its microenvironment. Microfluidic tumor-on-a-chip models are gaining popularity for the in vitro testing of nanoparticle targeting under conditions that simulate the 3D tumor (microenvironment). In this review, following a description of the tumor microenvironment (TME), the state of the art regarding tumor-on-a-chip models for investigating nanoparticle delivery to solid tumors is summarized. The models are classified based on the degree of compartmentalization (single/multi-compartment) and cell composition (tumor only/tumor microenvironment). The physiological relevance of the models is critically evaluated. Overall, microfluidic tumor-on-a-chip models greatly improve the simulation of the TME in comparison to 2D tissue cultures and static 3D spheroid models and contribute to the understanding of nanoparticle behavior. Interestingly, two interrelated aspects have received little attention so far which are the presence and potential impact of a protein corona as well as nanoparticle uptake through phagocytosing cells. A better understanding of their relevance for the predictive capacity of tumor-on-a-chip systems and development of best practices will be a next step for the further refinement of advanced in vitro tumor models.
Collapse
Affiliation(s)
- Kim E de Roode
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Khadijeh Hashemi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, 329, Bahrain
| |
Collapse
|
6
|
Aloss K, Hamar P. Augmentation of the EPR effect by mild hyperthermia to improve nanoparticle delivery to the tumor. Biochim Biophys Acta Rev Cancer 2024; 1879:189109. [PMID: 38750699 DOI: 10.1016/j.bbcan.2024.189109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
The clinical translation of the nanoparticle (NP)-based anticancer therapies is still unsatisfactory due to the heterogeneity of the enhanced permeability and retention (EPR) effect. Despite the promising preclinical outcome of the pharmacological EPR enhancers, their systemic toxicity can limit their clinical application. Hyperthermia (HT) presents an efficient tool to augment the EPR by improving tumor blood flow (TBF) and vascular permeability, lowering interstitial fluid pressure (IFP), and disrupting the structure of the extracellular matrix (ECM). Furthermore, the HT-triggered intravascular release approach can overcome the EPR effect. In contrast to pharmacological approaches, HT is safe and can be focused to cancer tissues. Moreover, HT conveys direct anti-cancer effects, which improve the efficacy of the anti-cancer agents encapsulated in NPs. However, the clinical application of HT is challenging due to the heterogeneous distribution of temperature within the tumor, the length of the treatment and the complexity of monitoring.
Collapse
Affiliation(s)
- Kenan Aloss
- Institute of Translational Medicine - Semmelweis University - 1094, Tűzoltó utca, 37-49, Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine - Semmelweis University - 1094, Tűzoltó utca, 37-49, Budapest, Hungary.
| |
Collapse
|
7
|
Slayden O, Luo F, Park Y, Moses AS, Demessie AA, Singh P, Korzun T, Taratula O, Taratula O. Targeted nanoparticles for imaging and therapy of endometriosis†. Biol Reprod 2024; 110:1191-1200. [PMID: 38738758 PMCID: PMC11180615 DOI: 10.1093/biolre/ioae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024] Open
Abstract
In this brief review, we discuss our efforts to validate nanoplatforms for imaging and treatment of endometriosis. We specifically highlight our use of nonhuman primates and primate tissues in this effort. Endometriosis is a painful disorder of women and nonhuman primates where endometrium-like tissue exists outside of the uterus. There are no reliable, specific, and noninvasive diagnostic tests for endometriosis. Laparoscopic imaging remains the gold standard for identifying small endometriotic lesions in both women and monkeys. Visualizing and surgically removing microscopic lesions remains a clinical challenge. To address this challenge, we have created nanoparticle reagents that, when administered intravenously, enter endometriotic lesions both passively and by targeting endometriotic cells. The particles can carry payloads, including near-infrared fluorescent dyes and magnetic nanoparticles. These agents can be used for imaging and thermal ablation of diseased tissues. We evaluated this approach on macaque endometriotic cells, human and macaque endometrium engrafted into immunodeficient mice, in endometrium subcutaneously autografted in macaques, and in rhesus monkeys with spontaneous endometriosis. Employing these models, we report that nanoplatform-based reagents can improve imaging and provide thermal ablation of endometriotic tissues.
Collapse
Affiliation(s)
- Ov Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Fangzhou Luo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Youngrong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Ananiya A Demessie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| |
Collapse
|
8
|
Trencsényi G, Csikos C, Képes Z. Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results. Int J Mol Sci 2024; 25:664. [PMID: 38203834 PMCID: PMC10779852 DOI: 10.3390/ijms25010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes-Radium-223 and Radium-224 (223/224Ra)-in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of 223/224Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of 223/224Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with 223/224Ra-doped nanoparticles and related advances in targeted alpha radiotherapy.
Collapse
Affiliation(s)
- György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| | - Csaba Csikos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (G.T.); (C.C.)
| |
Collapse
|
9
|
Hrochová M, Kotrchová L, Frejková M, Konefał R, Gao S, Fang J, Kostka L, Etrych T. Adaptable polymerization platform for therapeutics with tunable biodegradability. Acta Biomater 2023; 171:417-427. [PMID: 37696413 DOI: 10.1016/j.actbio.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Biodegradable polymer-based therapeutics have recently become essential drug delivery biomaterials for various bioactive compounds. Biodegradable and biocompatible polymer-based biomaterials fulfill the requirements of these therapeutics because they enable to obtain polymer biomaterials with optimized blood circulation, pharmacokinetics, biodegradability, and renal excretion. Herein, we describe an adaptable polymerization platform employed for the synthesis of long-circulating, stimulus-sensitive and biodegradable biomaterials, therapeutics, or theranostics. Four chain transfer agents (CTA) were designed and successfully synthesized for the reversible addition-fragmentation chain transfer polymerization, allowing the straightforward synthesis of hydrolytically biodegradable structures of block copolymers-based biomaterials. The controlled polymerization using the CTAs enables controlling the half-life of the hydrolytic degradation of polymer precursors in a wide range from 5 h to 21 days. Moreover, the antitumor drug pirarubicin (THP) was successfully conjugated to the polymer biomaterials via a pH-sensitive hydrazone bond for in vitro and in vivo experiments. Polymer conjugates demonstrated superior antitumor efficacy compared to basic linear polymer-based conjugates. Notably, the biodegradable systems, even though those with degradation in the order of hours were selected, increased the half-life of THP in the bloodstream almost two-fold. Indeed, the presented platform design enables the main chain-end specific attachment of targeting ligands or diagnostic molecules. The adaptable polymerization platform design allows tuning of the biodegradability rate, stimuli-sensitive drug bonding, and optimized pharmacokinetics to increase the therapy outcome and system targeting, thus allowing the preparation of targeted or theranostic polymer conjugates. STATEMENT OF SIGNIFICANCE: Biodegradable and biocompatible polymer-based biomaterials are recognized as potential future bioactive nanomedicines. To advance the development of such biomaterials, we developed polymerization platforms utilizing tailored chain transfer agents allowing the straightforward synthesis of hydrolytically degradable polymer biomaterials with tuned biodegradability from hours to several days. The platform allows for the synthesis of long-circulating, stimulus-sensitive and biodegradable biomaterial serving as drug carriers or theranostics. The therapeutic potential was validated by preparation of polymer biomaterials containing pirarubicin, anticancer drug, bound via pH sensitive bond and by showing prolonged blood circulation and increased antitumor activity while keeping the drug side effects low. This work paves the way for future development of biodegradable polymer biomaterials with advanced properties in drug delivery.
Collapse
Affiliation(s)
- M Hrochová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague 16200, Czechia
| | - L Kotrchová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague 16200, Czechia
| | - M Frejková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague 16200, Czechia
| | - R Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague 16200, Czechia
| | - S Gao
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - J Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - L Kostka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague 16200, Czechia
| | - T Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague 16200, Czechia.
| |
Collapse
|
10
|
Jung JM, Park IJ, Park EJ, Son GM. Fluorescence-guided colorectal surgery: applications, clinical results, and protocols. Ann Surg Treat Res 2023; 105:252-263. [PMID: 38023438 PMCID: PMC10648611 DOI: 10.4174/astr.2023.105.5.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
In recent years, the rise of minimally invasive surgery has driven the development of surgical devices. Indocyanine green (ICG) fluorescence imaging is receiving increased attention in colorectal surgery for improved intraoperative visualization and decision-making. ICG, approved by the U.S. Food and Drug Administration in 1959, rapidly binds to plasma proteins and is primarily intravascular. ICG absorption of near-infrared light (750-800 nm) and emission as fluorescence (830 nm) when bound to tissue proteins enhances deep tissue visualization. Applications include assessing anastomotic perfusion, identifying sentinel lymph nodes, and detecting colorectal cancer metastasis. However, standardized protocols and research on clinical outcomes remain limited. This study explores ICG's role, advantages, disadvantages, and potential clinical impact in colorectal surgery.
Collapse
Affiliation(s)
- Jin-Min Jung
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Ja Park
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Jung Park
- Division of Colon and Rectal Surgery, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Gyung Mo Son
- Department of Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | | |
Collapse
|
11
|
Jin M, He B, Cai X, Lei Z, Sun T. Research progress of nanoparticle targeting delivery systems in bacterial infections. Colloids Surf B Biointerfaces 2023; 229:113444. [PMID: 37453264 DOI: 10.1016/j.colsurfb.2023.113444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Bacterial infection is a huge threat to the health of human beings and animals. The abuse of antibiotics have led to the occurrence of bacterial multidrug resistance, which have become a difficult problem in the treatment of clinical infections. Given the outstanding advantages of nanodrug delivery systems in cancer treatment, many scholars have begun to pay attention to their application in bacterial infections. However, due to the similarity of the microenvironment between bacterial infection lesions and cancer sites, the targeting and accuracy of traditional microenvironment-responsive nanocarriers are questionable. Therefore, finding new specific targets has become a new development direction of nanocarriers in bacterial prevention and treatment. This article reviews the infectious microenvironment induced by bacteria and a series of virulence factors of common pathogenic bacteria and their physiological functions, which may be used as potential targets to improve the targeting accuracy of nanocarriers in lesions.
Collapse
Affiliation(s)
- Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
12
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Lin C, Li Y, Peng Y, Zhao S, Xu M, Zhang L, Huang Z, Shi J, Yang Y. Recent development of surface-enhanced Raman scattering for biosensing. J Nanobiotechnology 2023; 21:149. [PMID: 37149605 PMCID: PMC10163864 DOI: 10.1186/s12951-023-01890-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/10/2023] [Indexed: 05/08/2023] Open
Abstract
Surface-Enhanced Raman Scattering (SERS) technology, as a powerful tool to identify molecular species by collecting molecular spectral signals at the single-molecule level, has achieved substantial progresses in the fields of environmental science, medical diagnosis, food safety, and biological analysis. As deepening research is delved into SERS sensing, more and more high-performance or multifunctional SERS substrate materials emerge, which are expected to push Raman sensing into more application fields. Especially in the field of biological analysis, intrinsic and extrinsic SERS sensing schemes have been widely used and explored due to their fast, sensitive and reliable advantages. Herein, recent developments of SERS substrates and their applications in biomolecular detection (SARS-CoV-2 virus, tumor etc.), biological imaging and pesticide detection are summarized. The SERS concepts (including its basic theory and sensing mechanism) and the important strategies (extending from nanomaterials with tunable shapes and nanostructures to surface bio-functionalization by modifying affinity groups or specific biomolecules) for improving SERS biosensing performance are comprehensively discussed. For data analysis and identification, the applications of machine learning methods and software acquisition sources in SERS biosensing and diagnosing are discussed in detail. In conclusion, the challenges and perspectives of SERS biosensing in the future are presented.
Collapse
Affiliation(s)
- Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Meimei Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lingxia Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhengren Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Jianlin Shi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
14
|
Xue Y, Zhang D, Wei Y, Guo C, Song B, Cui Y, Zhang C, Xu D, Zhang S, Fang J. Polymeric nano-micelle of carbon monoxide donor SMA/CORM2 ameliorates acetaminophen-induced liver injury via suppressing HMGB1/TLR4 signaling pathway. Eur J Pharm Sci 2023; 184:106413. [PMID: 36863618 DOI: 10.1016/j.ejps.2023.106413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/10/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
Acetaminophen (APAP) overdose-induced hepatotoxicity is the most common cause of acute liver failure. Excessive generation of reactive oxygen species (ROS) and inflammatory responses are the major causes of necrosis and/or necroptosis of the liver cells. Currently, the treatment options for APAP-induced liver injury are very limited, N-acetylcysteine (NAC) is the only approved drug to treat APAP overdose patients. It is of great necessity to develop new therapeutic strategies. In a previous study, we focused on the anti-oxidative, anti-inflammatory signal molecule carbon monoxide (CO), and developed a nano-micelle encapsulating CO donor, i.e., SMA/CORM2. Administration of SMA/CORM2 to the mice exposed to APAP significantly ameliorated the liver injury and inflammatory process, in which modulating macrophage reprogramming plays a critical role. Along this line, in this study, we investigated the potential effect of SMA/CORM2 on toll-like receptor 4 (TLR4) and high mobility group protein B1 (HMGB1) signaling pathways that are known to be closely involved in many inflammatory responses and necroptosis. In a mouse APAP-induced liver injury model, similar to the previous study, SMA/CORM2 at 10 mg/kg remarkably improved the condition of the liver after injury as evidenced by histological examination and liver function. During the process of liver injury triggered by APAP, TLR4 expression gradually increased over time, and it was significantly upregulated as early as 4 h after APAP exposure, whereas, an increase of HMGB1 was a late-stage event. Notably, SMA/CORM2 treatment suppressed significantly both TLR4 and HMGB1, consequently inhibiting the progression of inflammation and liver injury. Compared to CORM2 without SMA modification (native CORM2) of 1 mg/kg that is equivalent to 10 mg/kg of SMA/CORM2 (the amount of CORM2 in SMA/CORM2 is 10% [w/w]), SMA/CORM2 exhibited a much better therapeutic effect, indicating its superior therapeutic efficacy to native CORM2. These findings revealed that SMA/CORM2 protects against APAP-induced liver injury via mechanisms involving the suppression of TLR4 and HMGB1 signaling pathways. Taking together the results in this study and previous studies, SMA/CORM2 exhibits great therapeutic potential for APAP overdose-induced liver injury, we thus anticipate the clinical application of SMA/CORM2 for the treatment of APAP overdose, as well as other inflammatory diseases.
Collapse
Affiliation(s)
- Yanni Xue
- Department of Maternal, Child and Adolescent Health, School of Public Health, and MOE Key Laboratory of Population Health Across Life Cycle/ Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Daoxu Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 MeiLong Road, Shanghai 200237, China
| | - Yanyan Wei
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chunyu Guo
- Department of Toxicology, School of Public Health, and Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Bingdong Song
- Department of Toxicology, School of Public Health, and Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Yingying Cui
- Department of Toxicology, School of Public Health, and Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, and Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, and Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
| | - Shichen Zhang
- School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei 230601, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, China.
| | - Jun Fang
- Department of Toxicology, School of Public Health, and Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, China; Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan.
| |
Collapse
|
15
|
Gao S, Yang K, Nohara T, Ikeda T, Zhou JR, Yokomizo K, Fang J. Garlicnin B1, an Active Cyclic Sulfide from Garlic, Exhibits Potent Anti-Inflammatory and Anti-Tumor Activities. Antioxidants (Basel) 2023; 12:antiox12040869. [PMID: 37107245 PMCID: PMC10135383 DOI: 10.3390/antiox12040869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
This study aimed to investigate the pharmacological activities of garlicnin B1, a cyclic sulfide compound found abundantly in garlic and structurally similar to onionin A1, which has been shown to possess strong anti-tumor effects. In vitro studies demonstrated that garlicnin B1 significantly reduced intracellular reactive oxygen species triggered by hydrogen peroxide in colon cancer cells. In a mouse colitis model induced by dextran sulfate sodium, garlicnin B1 at a low dose (5 mg/kg) remarkably ameliorated the symptoms and pathological progression. Additionally, garlicnin B1 exhibited considerable tumoricidal activity with an IC50 value of ~20 μM, as observed in cytotoxicity assays. In vivo experiments using the mouse sarcoma S180 transplanted model and the azoxymethane (AOM) or DSS-induced colon cancer model showed that garlicnin B1 effectively suppressed tumor growth in a dose-dependent manner, with marked inhibition at 80 mg/kg. These results suggest that garlicnin B1 has diverse functions that could be achieved by carefully manipulating the dosing regimen. We anticipate that garlicnin B1 has the potential to be used beneficially in the future for the treatment of cancer and inflammatory diseases, although further studies are warranted to elucidate its mechanisms of action.
Collapse
Affiliation(s)
- Shanghui Gao
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Kai Yang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
- Department of Medical Technology, Anhui Medical College, No. 632, Furong Road, Hefei 230601, China
| | - Toshihiro Nohara
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Tsuyoshi Ikeda
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Jian-Rong Zhou
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Kazumi Yokomizo
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| |
Collapse
|
16
|
Shahcheraghi SH, Shahcheraghi SH, Lotfi M, Lotfi M, Khaleghinejad SH, Tambuwala ZM, Mishra V, Mishra Y, Serrano-Aroca Á, A Aljabali AA, El-Tanani M, Naikoo GA, Chava SR, Charbe NB, Bharti S, Jaganathan SK, Goyal R, Negi P, Tambuwala MM, Folorunso O. Photonic nanoparticles: emerging theranostics in cancer treatment. Ther Deliv 2023; 14:311-329. [PMID: 37403985 DOI: 10.4155/tde-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023] Open
Abstract
This review explores the potential of photonic nanoparticles for cancer theranostics. Photonic nanoparticles offer unique properties and photonics capabilities that make them promising materials for cancer treatment, particularly in the presence of near-infrared light. However, the size of the particles is crucial to their absorption of near-infrared light and therapeutic potential. The limitations and challenges associated with the clinical use of photonic nanoparticles, such as toxicity, immune system clearance, and targeted delivery to the tumor are also discussed. Researchers are investigating strategies such as surface modification, biodegradable nanoparticles, and targeting strategies to improve biocompatibility and accumulation in the tumor. Ongoing research suggests that photonic nanoparticles have potential for cancer theranostics, further investigation and development are necessary for clinical use.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of medical sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Hadi Shahcheraghi
- Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Iran
- Laboratory & Quality Control Unit, Gohar Zamin Iron Ore Company, Sirjan, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Malihe Lotfi
- Department of Medical Genetics & Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Zara M Tambuwala
- College of Science, University of Lincoln, Brayford Campus, Lincoln, LN6 7TS, UK
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia, 46001, Spain
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Mohamed El-Tanani
- Pharmacological & Diagnostic Research Centre, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan; Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Gowhar A Naikoo
- Department of Mathematics & Sciences, College of Arts & Applied Sciences, Dhofar University, Salalah, PC 211, Oman
| | | | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Shivani Bharti
- School of Physical sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saravana Kumar Jaganathan
- School of Engineering, College of Science, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK
| | - Oladipo Folorunso
- Department of Electrical & Electronical Engineering Technology, University of Johannesburg, Johannesburg, 2006, South Africa
- Department of Electrical/Electronic & Computer Engineering, Afe Babalola University, Km 8.5, Afe Babalola Way, Ado-Ekiti, Nigeria
| |
Collapse
|
17
|
Nunoi H, Nakamura H, Nishimura T, Matsukura M. Recent topics and advanced therapies in chronic granulomatous disease. Hum Cell 2023; 36:515-527. [PMID: 36534309 DOI: 10.1007/s13577-022-00846-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by the inability of phagocytes to produce reactive oxygen species (ROS) owing to a defect in any of the five components (CYBB/gp91phox, CYBA/p22phox, NCF1/p47phox, NCF2/p67phox, and NCF4/p40phox) and a concomitant regulatory component of Rac1/2 and CYBC1/Eros of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. Patients with CGD are at an increased risk of life-threatening infections caused by catalase-positive bacteria and fungi and of inflammatory complications such as CGD colitis. Antimicrobial and azole antifungal prophylaxes have considerably reduced the incidence and severity of bacterial and improved fungal infections and overall survival. CGD studies have revealed the precise epidemiology and role of NADPH oxidase in innate immunity which has led to a new understanding of the importance of phagocyte oxygen metabolism in various host-defense systems and the fields leading to cell death processes. Moreover, ROS plays central roles in the determination of cell fate as secondary messengers and by modifying of various signaling molecules. According to this increasing knowledge about the effects of ROS on the inflammasomal system, immunomodulatory treatments, such as IFN-γ and anti-IL-1 antibodies, have been established. This review covers the current topics in CGD and the relationship between ROS and ROS-mediated pathophysiological phenomena. In addition to the shirt summary of hematopoietic stem cell transplantation and gene therapy, we introduce a novel ROS-producing enzyme replacement therapy using PEG-fDAO to compensate for NADPH oxidase deficiency.
Collapse
Affiliation(s)
- Hiroyuki Nunoi
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki-City, Miyazaki, 889-1692, Japan. .,Aisenkai Nichinan Hospital, 3649-2 Kazeta, Nichinan-City, Miyazaki, 887-0034, Japan.
| | - Hideki Nakamura
- Laboratory of Environmental Science and Technology, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto City, 860-0082, Japan
| | - Toyoki Nishimura
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki-City, Miyazaki, 889-1692, Japan
| | - Makoto Matsukura
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto City, 860-0082, Japan
| |
Collapse
|
18
|
He Y, Zhang W, Xiao Q, Fan L, Huang D, Chen W, He W. Liposomes and liposome-like nanoparticles: From anti-fungal infection to the COVID-19 pandemic treatment. Asian J Pharm Sci 2022; 17:817-837. [PMID: 36415834 PMCID: PMC9671608 DOI: 10.1016/j.ajps.2022.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/18/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The liposome is the first nanomedicine transformed into the market and applied to human patients. Since then, such phospholipid bilayer vesicles have undergone technological advancements in delivering small molecular-weight compounds and biological drugs. Numerous investigations about liposome uses were conducted in different treatment fields, including anti-tumor, anti-fungal, anti-bacterial, and clinical analgesia, owing to liposome's ability to reduce drug cytotoxicity and improve the therapeutic efficacy and combinatorial delivery. In particular, two liposomal vaccines were approved in 2021 to combat COVID-19. Herein, the clinically used liposomes are reviewed by introducing various liposomal preparations in detail that are currently proceeding in the clinic or on the market. Finally, we discuss the challenges of developing liposomes and cutting-edge liposomal delivery for biological drugs and combination therapy.
Collapse
Affiliation(s)
- Yonglong He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wanting Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingqing Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lifang Fan
- Jiangsu Aosaikang Pharmaceutical Co., Ltd., Nanjing 211112, China
| | - Dechun Huang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
19
|
Bhartiya P, Chawla R, Dutta PK. Folate receptor targeted chitosan and polydopamine coated mesoporous silica nanoparticles for photothermal therapy and drug delivery. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2135443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Prabha Bhartiya
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh, India
| | - Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh, India
| | - Pradip Kumar Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
20
|
Chen S, Wang J, Tang K, Liao H, Xu Y, Wang L, Niu C. Multi-Modal Imaging Monitored M2 Macrophage Targeting Sono-Responsive Nanoparticles to Combat MRSA Deep Infections. Int J Nanomedicine 2022; 17:4525-4546. [PMID: 36193213 PMCID: PMC9526443 DOI: 10.2147/ijn.s383237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/13/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND MRSA with high morbidity and mortality is prone to cause serious infection, SDT has become a new antibiotic-free modality for bacterial infection treatment. Switching from proinflammatory M1 macrophages to anti-inflammatory M2 macrophages dominant could activate the immune system to generate an anti-infection immune response. METHODS Herein, we developed M2 macrophages derived cell membranes coated PLGA nanoparticles with IR780 encapsulation (M2/IR780@PLGA) for antibacterial SDT and subsequent M2 macrophage polarization to enhance the therapeutic efficacy of MRSA myositis. For in situ visualization of antibacterial SDT, both diagnostic high-frequency US and magnetic resonance imaging (MRI) were introduced to monitor the sono-therapeutic progression of M2/IR780@PLGA nanoparticles in mice with bacterial myositis. RESULTS Our developed M2/IR780@PLGA nanoparticles exhibited excellent antibacterial effects due to the IR780 under low-frequency US irradiation in vitro. In an MRSA-infected mice model, a great deal of M2/IR780@PLGA nanoparticles accumulated at the site of inflammation due to M2 macrophage coating. The infected legs in the M2/IR780@PLGA nanoparticles-based SDT group were significantly smaller, fewer blood flow signals, a slight muscular edema without obvious intermuscular abscesses under high-frequency US and MR images guidance. Histopathology proved the infected legs in the M2/IR780@PLGA nanoparticles-mediated SDT group had less clumped bacteria infiltration, more M2 macrophage expression and less M1 macrophage expression. The percentage of mature dendritic cells in spleens was much higher in the group of mice with M2/IR780@PLGA nanoparticles-based SDT. CONCLUSION This study provides a promising nanoparticles-based SDT anti-bacterial strategy, which could effectively enhance the antibacterial SDT and subsequent promote M2 macrophage polarization to boost the therapeutic efficacy of MRSA myositis.
Collapse
Affiliation(s)
- Sijie Chen
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Kui Tang
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Haiqin Liao
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yan Xu
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
21
|
An overview of kinin mediated events in cancer progression and therapeutic applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188807. [PMID: 36167271 DOI: 10.1016/j.bbcan.2022.188807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
Kinins are bioactive peptides generated in the inflammatory milieu of the tissue microenvironment, which is involved in cancer progression and inflammatory response. Kinins signals through activation of two G-protein coupled receptors; inducible Bradykinin Receptor B1 (B1R) and constitutive receptor B2 (B2R). Activation of kinin receptors and its cross-talk with receptor tyrosine kinases activates multiple signaling pathways, including ERK/MAPK, PI3K, PKC, and p38 pathways regulating cancer hallmarks. Perturbations of the kinin-mediated events are implicated in various aspects of cancer invasion, matrix remodeling, and metastasis. In the tumor microenvironment, kinins initiate fibroblast activation, mesenchymal stem cell interactions, and recruitment of immune cells. Albeit the precise nature of kinin function in the metastasis and tumor microenvironment are not completely clear yet, several kinin receptor antagonists show anti-metastatic potential. Here, we showcase an overview of the complex biology of kinins and their role in cancer pathogenesis and therapeutic aspects.
Collapse
|
22
|
Shekhar S, Chauhan M, Sonali, Yadav B, Dutt R, Hu L, Muthu MS, Singh RP. Enhanced permeability and retention effect-focused tumor-targeted nanomedicines: latest trends, obstacles and future perspective. Nanomedicine (Lond) 2022; 17:1213-1216. [PMID: 36136592 DOI: 10.2217/nnm-2022-0065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Saurabh Shekhar
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India
| | - Mahima Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India
| | - Sonali
- Guru Teg Bahadur Hospital, GTB Enclave, Dilshad Garden, New Delhi, Delhi, 110095, India
| | - Bhavna Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India
| | - Rohit Dutt
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India
| | - Liandong Hu
- College of Quality and Technical Supervision and Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Rahul Pratap Singh
- Department of Pharmacy, School of Medical and Allied Sciences, GD Goenka University, Gurugram, 122103, India
| |
Collapse
|
23
|
Thinking about Enhanced Permeability and Retention Effect (EPR). J Pers Med 2022; 12:jpm12081259. [PMID: 36013208 PMCID: PMC9409951 DOI: 10.3390/jpm12081259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/14/2023] Open
|
24
|
Meng T, Ma W, Fan M, Tang W, Duan X. Enhancing the Contrast of Tumor Imaging for Image-Guided Surgery Using a Tumor-Targeting Probiotic with the Continuous Expression of a Biomarker. Anal Chem 2022; 94:10109-10117. [PMID: 35802615 DOI: 10.1021/acs.analchem.2c01200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor recurrence commonly results from tumor-positive resection margins and metastatic lesions. The complete removal of tumor-positive margins is particularly essential in clinics. Thus, we designed a strategy based on Escherichia coli Nissle 1917 (EcN) nitroreductase (NTR) with a polyethylene glycol (PEG) polymer coating (PC-EcN-NTR) to specifically target and colonize in tumors for high-contrast tumor imaging by providing a large amount of NTR as biomarkers in situ. NTR is a favorable biomarker for tumor detection and imaging. The nfsB-encoding plasmid with a 16S promoter was transfected into EcN for the continuous and stable expression of NTR (E. coli. NfsB). PC-EcN-NTR can accumulate and proliferate for a long time in tumors to substantially express NTR. When the NTR-activated fluorescence (FL) probe was sprayed on the tumor, the tumor region showed fluorescence signals within 5 min. Compared to the tumor without colonization with bacteria, the PC-EcN-NTR-colonized tumors displayed 3.15× enhanced fluorescence signals. Furthermore, the fluorescence signals of the whole tumor can last at least 3 h, which is suitable for a long and meticulous surgical operation. More importantly, in the PC-EcN-NTR-harboring tumor, obvious FL appeared even at the very edge (approximately 200 μm away from the edge) of the tumor tissue. A TCF-Based near-infrared-II fluorescent probe (probe 2) was designed and synthesized. Results similar to those of probe 1 were observed when probe 2 was used for in vivo tumor imaging, which further proved the generality of the enhancing ability of the tumor-targeting probiotic. This strategy will hopefully guide the surgical resection of tumors via monitoring intense NTR activity. It may spur the use of tumor-targeting probiotic and enzyme-activated fluorescent probes for the processes of tumor diagnosis and image-guided surgery.
Collapse
Affiliation(s)
- Tianjiao Meng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Wenbo Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Mengyue Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China
| |
Collapse
|
25
|
Gao W, Hu H, Dai L, He M, Yuan H, Zhang H, Liao J, Wen B, Li Y, Palmisano M, Traore MDM, Zhou S, Sun D. Structure‒tissue exposure/selectivity relationship (STR) correlates with clinical efficacy/safety. Acta Pharm Sin B 2022; 12:2462-2478. [PMID: 35646532 PMCID: PMC9136610 DOI: 10.1016/j.apsb.2022.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/23/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022] Open
Abstract
Drug optimization, which improves drug potency/specificity by structure‒activity relationship (SAR) and drug-like properties, is rigorously performed to select drug candidates for clinical trials. However, the current drug optimization may overlook the structure‒tissue exposure/selectivity-relationship (STR) in disease-targeted tissues vs. normal tissues, which may mislead the drug candidate selection and impact the balance of clinical efficacy/toxicity. In this study, we investigated the STR in correlation with observed clinical efficacy/toxicity using seven selective estrogen receptor modulators (SERMs) that have similar structures, same molecular target, and similar/different pharmacokinetics. The results showed that drug's plasma exposure was not correlated with drug's exposures in the target tissues (tumor, fat pad, bone, uterus), while tissue exposure/selectivity of SERMs was correlated with clinical efficacy/safety. Slight structure modifications of four SERMs did not change drug's plasma exposure but altered drug's tissue exposure/selectivity. Seven SERMs with high protein binding showed higher accumulation in tumors compared to surrounding normal tissues, which is likely due to tumor EPR effect of protein-bound drugs. These suggest that STR alters drug's tissue exposure/selectivity in disease-targeted tissues vs. normal tissues impacting clinical efficacy/toxicity. Drug optimization needs to balance the SAR and STR in selecting drug candidate for clinical trial to improve success of clinical drug development.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lipeng Dai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miao He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huixia Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jinhui Liao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yan Li
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Mohamed Dit Mady Traore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Xia Z, Zhang C, Guo C, Song B, Hu W, Cui Y, Xue Y, Xia M, Xu D, Zhang S, Fang J. Nanoformulation of a carbon monoxide releasing molecule protects against cyclosporin A-induced nephrotoxicity and renal fibrosis via the suppression of the NLRP3 inflammasome mediated TGF-β/Smad pathway. Acta Biomater 2022; 144:42-53. [PMID: 35304324 DOI: 10.1016/j.actbio.2022.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
Cyclosporin A (CsA) induced nephrotoxicity i.e., renal fibrosis is a critical clinical problem in renal transplant patients, in which chronic inflammatory response is the major cause. Previously, we developed a nano-drug delivery system for carbon monoxide (CO), a multi-functional gaseous molecule with a potent anti-inflammatory effect, i.e., SMA/CORM2, which showed therapeutic potential in several inflammatory disease models. Accordingly, in this study, we explored the potential and usefulness of SMA/CORM2 on CsA induced renal fibrosis. When mice were exposed to CsA for 4 weeks, severe injuries in the kidney as revealed by decreased kidney function and histological examination, and activation of NLRP3 inflammasome, as well as renal fibrosis along with the upregulation of transforming growth factor β (TGFβ)/Smad signaling molecule were observed, whereas SMA/CORM2 (1 mg/kg) treatment remarkably ameliorated the inflammatory injury and fibrosis in the kidney. CO is the major effector molecule of SMA/CORM2 which significantly suppressed the activation of NLRP3 inflammasome, and induced the downregulation of TGFβ/Smad signaling. Inhibition of NLRP3 inflammasome by its inhibitor MCC950 also similarly decreased TGFβ/Smad expression and subsequently improved kidney injury and renal fibrosis, suggesting SMA/CORM2 induced suppression of TGFβ/Smad signaling and renal signaling via an NLRP3 inflammasome-dependent pathway. Compared to native CORM2, SMA/CORM2 exhibited better therapeutic/preventive effects owing to its superior water-solubility and bioavailability. These findings strongly indicated the applicability of SMA/CORM2 as an enhanced permeability and retention (EPR) effect-based nanomedicine for CsA induced renal fibrosis as well as other inflammatory diseases. STATEMENT OF SIGNIFICANCE: Carbon monoxide (CO) is an important gaseous signaling molecule that plays a crucial role in the maintenance of homeostasis. Because of its versatile functions, it exhibits the potential as the target molecule for many diseases, including inflammatory diseases and cancer. The development of stable and disease-targeted delivery systems of CO is thus of interest and importance. Previously we developed a nano micellar CO donor SMA/CORM2 which shows superior bioavailability and therapeutic potential in many inflammatory disease models. We reported here, SMA/CORM2, through controlled release of CO, greatly ameliorated CsA-induced renal fibrosis via suppressing the NLRP3 inflammasome mediated TGF-β/Smad pathway. These findings suggest a new anti-inflammatory mechanism of CO, which also provides a new approach for controlling CsA-induced nephrotoxicity.
Collapse
|
27
|
Fan M, Li M, Wang X, Liao Y, Wang H, Rao J, Yang Y, Wang Q. Injectable Thermosensitive Iodine-Loaded Starch-g-poly(N-isopropylacrylamide) Hydrogel for Cancer Photothermal Therapy and Anti-Infection. Macromol Rapid Commun 2022; 43:e2200203. [PMID: 35477942 DOI: 10.1002/marc.202200203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/23/2022] [Indexed: 11/10/2022]
Abstract
Although photothermal therapy (PTT) can effectively eliminate tumors, the normal tissues near tumors are inevitably damaged by heat and infected by bacteria, which greatly limits the therapeutic effect. In this work, an injectable thermosensitive hydrogel based on iodine-loaded starch-g-poly(N-isopropylacrylamide) (PNSI) is developed to overcome this problem. FTIR, 1 H NMR and UV-Vis spectra confirm the graft copolymerization of poly(N-isopropylacrylamide) with starch and the formation of "iodine-starch" complex. TEM images show PNSI polymer self-assembles into regular spherical nanogel with a size of ∼50 nm. The concentrated nanogel dispersion is a sol at room temperature and transforms to hydrogel at body temperature. Under NIR laser irradiation for 10 mins, the ΔT of the nanogel dispersion approachs about 20°C with excellent thermal stability and high cytotoxicity due to the photothermal effect of the "iodine-starch" complex. After intratumor injection, this injectable hydrogel efficiently inhibites the tumor growth using 808 nm laser irradiation. Furthermore, it can also suppress S. aureus infection in the wound post PTT due to the release of iodine, which promotes wound healing. Therefore, this injectable thermosensitive "iodine-starch" composite hydrogel with advantages of good biocompatible and easy preparation possesses potential application for tumor photothermal therapy and anti-bacterial infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Man Fan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengyao Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiao Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yonggui Liao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingyi Rao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yajiang Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
28
|
Hashida M. Advocation and advancements of EPR effect theory in drug delivery science: A commentary. J Control Release 2022; 346:355-357. [PMID: 35483640 DOI: 10.1016/j.jconrel.2022.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
To honor the contributions of Professor Hiroshi Maeda to the progress of targeted drug delivery research, a brief review of enhanced permeability and retention (EPR) effect theory proposed by him as the physiology-based principal mechanism of intra-tumoral accumulation of large molecules and small particles is presented. Under historical and practical backgrounds in developments of various drug delivery systems including macromolecular conjugates, the concept of EPR effect was advocated in mid1980s and has cultivated new cancer chemotherapeutic modalities until recently. Namely, nanoplatforms such as polymer conjugates, liposomes, polymeric micelles, and nanoparticles have been studied as a promising fusion area for nanotechnology and medicine. Modulation of EPR effect by chemical and/or mechanical approaches to achieve tumor vascular and tissue modification would further lead to sophistication of cancer chemotherapy employing nanomedicines.
Collapse
Affiliation(s)
- Mitsuru Hashida
- Institute for Integrated Cell-Materia Sciences and Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
29
|
Vetter VC, Wagner E. Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. J Control Release 2022; 346:110-135. [PMID: 35436520 DOI: 10.1016/j.jconrel.2022.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The current medical reality of cancer gene therapy is reflected by more than ten approved products on the global market, including oncolytic and other viral vectors and CAR T-cells as ex vivo gene-modified cell therapeutics. The development of synthetic antitumoral nucleic acid therapeutics has been proceeding at a lower but steady pace, fueled by a plethora of alternative nucleic acid platforms (from various antisense oligonucleotides, siRNA, microRNA, lncRNA, sgRNA, to larger mRNA and DNA) and several classes of physical and chemical delivery technologies. This review summarizes the challenges and strategies for tumor-targeted nucleic acid delivery. Focusing primarily on polyplexes (polycation complexes) as nanocarriers, delivery options across multiple barriers into tumor cells are illustrated.
Collapse
Affiliation(s)
- Victoria C Vetter
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität, Munich 81377, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich 81377, Germany.
| |
Collapse
|
30
|
Du L, He H, Xiao Z, Xiao H, An Y, Zhong H, Lin M, Meng X, Han S, Shuai X. GSH-Responsive Metal-Organic Framework for Intratumoral Release of NO and IDO Inhibitor to Enhance Antitumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107732. [PMID: 35218310 DOI: 10.1002/smll.202107732] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Immunotherapy brings great benefits for tumor therapy in clinical treatments but encounters the severe challenge of low response rate mainly because of the immunosuppressive tumor microenvironment. Multifunctional nanoplatforms integrating effective drug delivery and medical imaging offer tremendous potential for cancer treatment, which may play a critical role in combinational immunotherapy to overcome the immunosuppressive microenvironment for efficient tumor therapy. Here, a nanodrug (BMS-SNAP-MOF) is prepared using glutathione (GSH)-sensitive metal-organic framework (MOF) to encapsulate an immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO) inhibitor BMS-986205, and the nitric oxide (NO) donor s-nitrosothiol groups. The high T1 relaxivity allows magnetic resonance imaging to monitor nanodrug distribution in vivo. After the nanodrug accumulation in tumor tissue via the EPR effect and subsequent internalization into tumor cells, the enriched GSH therein triggers cascade reactions with MOF, which disassembles the nanodrug to rapidly release the IDO-inhibitory BMS-986205 and produces abundant NO. Consequently, the IDO inhibitor and NO synergistically modulate the immunosuppressive tumor microenvironment with increase CD8+ T cells and reduce Treg cells to result in highly effective immunotherapy. In an animal study, treatment using this theranostic nanodrug achieves obvious regressions of both primary and distant 4T1 tumors, highlighting its application potential in advanced tumor immunotherapy.
Collapse
Affiliation(s)
- Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haozhe He
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Department of pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zecong Xiao
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yongcheng An
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Huihai Zhong
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Minzhao Lin
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaochun Meng
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
31
|
Treatment with Polyethylene Glycol-Conjugated Fungal D-Amino Acid Oxidase Reduces Lung Inflammation in a Mouse Model of Chronic Granulomatous Disease. Inflammation 2022; 45:1668-1679. [PMID: 35211862 PMCID: PMC9197883 DOI: 10.1007/s10753-022-01650-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/10/2021] [Accepted: 02/14/2022] [Indexed: 11/22/2022]
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency wherein phagocytes are unable to produce reactive oxygen species (ROS) owing to a defect in the nicotinamide adenine dinucleotide phosphate oxidase (NADPH) complex. Patients with CGD experience bacterial and fungal infections and excessive inflammatory disorders. Bone marrow transplantation and gene therapy are theoretically curative; however, residual pathogenic components cause inflammation and/or organic damage in patients. Moreover, antibiotic treatments may not help in preventing excessive inflammation due to the residual presence of fungal cell wall β-glucan. Thus, better treatment strategies against CGD are urgently required. Polyethylene glycol–conjugated recombinant porcine d-amino acid oxidase (PEG-pDAO) supplies ROS to defective NADPH oxidase in neutrophils of patients with CGD, following which the neutrophils regain bactericidal activity in vitro. In this study, we employed an in vivo nonviable Candida albicans (nCA)–induced lung inflammation model of gp91-phox knockout CGD mice and supplied novel PEG conjugates of Fusarium spp. d-amino acid oxidase (PEG-fDAO), as it exhibits higher enzyme activity than PEG-pDAO. The body weight, lung weight, and lung pathology were evaluated using three experimental strategies with the in vivo lung inflammation model to test the efficacy of the ROS-generating enzyme replacement therapy with PEG-fDAO. The lung weight and pathological findings suggest the condition was ameliorated by administration PEG-fDAO, followed by intraperitoneal injection of d-phenylalanine or d-proline. Although a more precise protocol is essential, these data reveal the targeted delivery of PEG-fDAO to the nCA-induced inflammation site and show that PEG-fDAO can be used to treat inflammation in CGD in vivo.
Collapse
|
32
|
Huang B, Wang L, Tang K, Chen S, Xu Y, Liao H, Niu C. IR780 Based Sonotherapeutic Nanoparticles to Combat Multidrug-Resistant Bacterial Infections. Front Chem 2022; 10:840598. [PMID: 35141201 PMCID: PMC8818736 DOI: 10.3389/fchem.2022.840598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Multidrug-resistant (MDR) bacterial strains have emerged and weakened the therapeutic effects of antibacterial drugs. Sonodynamic therapy (SDT) takes advantage of noninvasiveness and deep tissue-penetrating features and has been rejuvenated to combat MDR bacteria and their biofilm-associated infections. To improve the efficacy of antibacterial SDT, we first developed IR780-based PLGA nanoparticles as sonosensitizers for high-frequency ultrasound (US)-monitored antibacterial SDT of MRSA myositis by therapeutic low-frequency US. In this study, the developed shell-core-structured IR780@PLGA nanoparticles were designed with a polymer shell PLGA with the sonosensitizer IR780 loaded on. High-frequency diagnostic US was introduced to monitor the sonotherapeutic progression of bacterial myositis by therapeutic low-frequency US. Importantly, the in vitro and in vivo results confirmed that IR780@PLGA nanoparticles combined with US irradiation possess high efficiency for antibacterial therapy. This approach provides a simple and efficient strategy to monitor and combat MDR bacterial infection.
Collapse
Affiliation(s)
- Biying Huang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Kui Tang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Xu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiqin Liao
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Guo C, Zhang C, Xia Z, Song B, Hu W, Cui Y, Xue Y, Xia M, Xu D, Zhang S, Fang J. Nano-designed CO donor ameliorates bleomycin-induced pulmonary fibrosis via macrophage manipulation. J Control Release 2021; 341:566-577. [PMID: 34864115 DOI: 10.1016/j.jconrel.2021.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible interstitial pulmonary disease due to chronic inflammatory responses. The prognosis of IPF is very poor, however, the therapeutic options are very limited. Previously we developed a polymeric micellar drug delivery system of carbon monoxide (CO) that is a pivotal anti-inflammatory gaseous molecule, i.e., SMA/CORM2, which exhibited therapeutic potentials against dextran sulfate sodium (DSS)-induced mouse colitis and acetaminophen (APAP) induced liver injury. Along this line, here we investigate the applicability of SMA/CORM2 on IPF using a bleomycin (BLM)-induced pulmonary fibrosis model. Severe inflammation and the consequent pulmonary fibrosis were triggered by BLM, whereas SMA/CORM2 treatment remarkably suppressed the inflammation progression and ameliorated the formation of fibrosis. CO is the effector molecule of SMA/CORM2, which exerted the therapeutic/protective effect mostly through suppressing the reprogramming of anti-inflammatory macrophages as revealed by the decreased expressions of CD206 and arginase-1 that were remarkably upregulated by BLM exposure. The suppression of macrophage polarization accompanied the downregulated hypoxia-inducible factor-1α (HIF-1α) and its target molecule heme oxygenase-1 (HO-1), suggesting a HIF-1α/HO-1 pathway for modulating macrophage reprogramming. As the downstream event of anti-inflammatory macrophage polarization, the alveolar epithelial to mesenchymal transition that is the major source of myofibroblast, the hallmark of IPF, was significantly suppressed by SMA/CORM2 via a TGF-β/Smad2/3 pathway. Compared to native CORM2 of equivalent dose, SMA/CROM2 exhibited a much better protective effect indicating its superior bioavailability as an enhanced permeability and retention (EPR) effect-based nanomedicine. We thus anticipate the application of SMA/CORM2 as a therapeutic candidate for IPF as well as other inflammatory diseases and disorders.
Collapse
Affiliation(s)
- Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Zhengmei Xia
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Bingdong Song
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Weirong Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Yingying Cui
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Yanni Xue
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230022, China; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, China
| | - Mizhen Xia
- School of Life Science, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Shichen Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230022, China; MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, China; School of Public Health and Health Management, Anhui Medical College, No. 632 Furong Road, Hefei 230601, China.
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China; Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan.
| |
Collapse
|
34
|
Sun X, Chen K, Liu Y, Zhang G, Shi M, Shi P, Zhang S. Metal-organic framework combined with CaO 2 nanoparticles for enhanced and targeted photodynamic therapy. NANOSCALE ADVANCES 2021; 3:6669-6677. [PMID: 36132652 PMCID: PMC9418691 DOI: 10.1039/d1na00610j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/04/2021] [Indexed: 05/28/2023]
Abstract
Photodynamic therapy (PDT) has been rapidly developed as an effective therapeutic approach in clinical settings. However, hypoxia seriously limits the effectiveness of PDT. Here, we report a porphyrin-based metal-organic framework combined with hyaluronate-modified CaO2 nanoparticles (PCN-224-CaO2-HA) to target and enhance PDT efficacy. CaO2 reacts with H2O or weak acid to produce O2, overcoming the hypoxia problem. Hyaluronate protects CaO2 and specifically targets the CD44 receptor, which is highly expressed on tumor cell membranes, performing targeted therapy. After PDT treatment in vitro, the survival rates of 4T1 and MCF-7 tumor cells were 14.58% and 22.45%, respectively. The fluorescence imaging showed that PCN-224-CaO2-HA effectively aggregated in the tumor after 12 h of its intravenous injection into tumor-bearing mice. PCN-224-CaO2-HA exhibited efficacious tumor growth inhibition via enhanced PDT. Overall, this nanosystem providing in situ oxygen production was successfully used for targeted PDT with a significantly enhanced therapeutic efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Xinran Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| | - Kaixiu Chen
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| | - Yingyan Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| | - Guoda Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| | - Min Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University Linyi 276000 Shandong P. R. China
| |
Collapse
|
35
|
Su R, Zhang Y, Zhang J, Wang H, Luo Y, Chan HF, Tao Y, Chen Z, Li M. Nanomedicine to advance the treatment of bacteria-induced acute lung injury. J Mater Chem B 2021; 9:9100-9115. [PMID: 34672317 DOI: 10.1039/d1tb01770e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteria-induced acute lung injury (ALI) is associated with a high mortality rate due to the lack of an effective treatment. Patients often rely on supportive care such as low tidal volume ventilation to alleviate the symptoms. Nanomedicine has recently received much attention owing to its premium benefits of delivering drugs in a sustainable and controllable manner while minimizing the potential side effects. It can effectively improve the prognosis of bacteria-induced ALI through targeted delivery of drugs, regulation of multiple inflammatory pathways, and combating antibiotic resistance. Hence, in this review, we first discuss the pathogenesis of ALI and its potential therapeutics. In particular, the state-of-the-art nanomedicines for the treatment of bacteria-induced ALI are highlighted, including their administration routes, in vivo distribution, and clearance. Furthermore, the available bacteria-induced ALI animal models are also summarized. In the end, future perspectives of nanomedicine for ALI treatment are proposed.
Collapse
Affiliation(s)
- Ruonan Su
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yu Zhang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca 14853, USA
| | - Jiabin Zhang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haixia Wang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Tao
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhuanggui Chen
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
36
|
Wu J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J Pers Med 2021; 11:jpm11080771. [PMID: 34442415 PMCID: PMC8402171 DOI: 10.3390/jpm11080771] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/10/2023] Open
Abstract
Chemotherapy for human solid tumors in clinical practice is far from satisfactory. Despite the discovery and synthesis of hundreds of thousands of anticancer compounds targeting various crucial units in cancer cell proliferation and metabolism, the fundamental problem is the lack of targeting delivery of these compounds selectively into solid tumor tissue to maintain an effective concentration level for a certain length of time for drug-tumor interaction to execute anticancer activities. The enhanced permeability and retention effect (EPR effect) describes a universal pathophysiological phenomenon and mechanism in which macromolecular compounds such as albumin and other polymer-conjugated drugs beyond certain sizes (above 40 kDa) can progressively accumulate in the tumor vascularized area and thus achieve targeting delivery and retention of anticancer compounds into solid tumor tissue. Targeting therapy via the EPR effect in clinical practice is not always successful since the strength of the EPR effect varies depending on the type and location of tumors, status of blood perfusion in tumors, and the physical-chemical properties of macromolecular anticancer agents. This review highlights the significance of the concept and mechanism of the EPR effect and discusses methods for better utilizing the EPR effect in developing smarter macromolecular nanomedicine to achieve a satisfactory outcome in clinical applications.
Collapse
Affiliation(s)
- Jun Wu
- Center for Comparative Medicine, Beckman Research Institute of the City of Hope, 1500 East Duarte Rd, Duarte, CA 91010, USA
| |
Collapse
|
37
|
Dobrowolski JC, Dudek WM, Karpińska G, Baraniak A. Substituent Effect in the Cation Radicals of Monosubstituted Benzenes. Int J Mol Sci 2021; 22:6936. [PMID: 34203254 PMCID: PMC8269098 DOI: 10.3390/ijms22136936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/30/2023] Open
Abstract
In 30 monosubstituted benzene cation radicals, studied at the ωB97XD/aug-cc-pVTZ level, the phenyl rings usually adopt a compressed form, but a differently compressed form-equivalent to an elongated one-may coexist. The computational and literature ionization potentials are well correlated. The geometrical and magnetic aromaticity, estimated using HOMA and NICS indices, show the systems to be structurally aromatic but magnetically antiaromatic or only weakly aromatic. The partial charge is split between the substituent and ring and varies the most at C(ipso). In the ring, the spin is 70%, concentrated equally at the C(ipso) and C(p) atoms. The sEDA(D) and pEDA(D) descriptors of the substituent effect in cation radicals, respectively, were determined. In cation radicals, the substituent effect on the σ-electron system is like that in the ground state. The effect on the π-electron systems is long-range, and its propagation in the radical quinone-like ring is unlike that in the neutral molecules. The pEDA(D) descriptor correlates well with the partial spin at C(ipso) and C(p) and weakly with the HOMA(D) index. The correlation of the spin at the ring π-electron system and the pEDA(D) descriptor shows that the electron charge supplied to the ring π-electron system and the spin flow oppositely.
Collapse
Affiliation(s)
- Jan Cz. Dobrowolski
- National Medicines Institute, 00-725 Warsaw, Poland; (G.K.); (A.B.)
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Wojciech M. Dudek
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | | | - Anna Baraniak
- National Medicines Institute, 00-725 Warsaw, Poland; (G.K.); (A.B.)
| |
Collapse
|
38
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front Chem 2021; 9:691697. [PMID: 34178948 PMCID: PMC8223074 DOI: 10.3389/fchem.2021.691697] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) mostly relies on the generation of singlet oxygen, via the excitation of a photosensitizer, so that target tumor cells can be destroyed. PDT can be applied in the settings of several malignant diseases. In fact, the earliest preclinical applications date back to 1900’s. Dougherty reported the treatment of skin tumors by PDT in 1978. Several further studies around 1980 demonstrated the effectiveness of PDT. Thus, the technique has attracted the attention of numerous researchers since then. Hematoporphyrin derivative received the FDA approval as a clinical application of PDT in 1995. We have indeed witnessed a considerable progress in the field over the last century. Given the fact that PDT has a favorable adverse event profile and can enhance anti-tumor immune responses as well as demonstrating minimally invasive characteristics, it is disappointing that PDT is not broadly utilized in the clinical setting for the treatment of malignant and/or non-malignant diseases. Several issues still hinder the development of PDT, such as those related with light, tissue oxygenation and inherent properties of the photosensitizers. Various photosensitizers have been designed/synthesized in order to overcome the limitations. In this Review, we provide a general overview of the mechanisms of action in terms of PDT in cancer, including the effects on immune system and vasculature as well as mechanisms related with tumor cell destruction. We will also briefly mention the application of PDT for non-malignant diseases. The current limitations of PDT utilization in cancer will be reviewed, since identifying problems associated with design/synthesis of photosensitizers as well as application of light and tissue oxygenation might pave the way for more effective PDT approaches. Furthermore, novel promising approaches to improve outcome in PDT such as selectivity, bioengineering, subcellular/organelle targeting, etc. will also be discussed in detail, since the potential of pioneering and exceptional approaches that aim to overcome the limitations and reveal the full potential of PDT in terms of clinical translation are undoubtedly exciting. A better understanding of novel concepts in the field (e.g. enhanced, two-stage, fractional PDT) will most likely prove to be very useful for pursuing and improving effective PDT strategies.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
39
|
Islam W, Kimura S, Islam R, Harada A, Ono K, Fang J, Niidome T, Sawa T, Maeda H. EPR-Effect Enhancers Strongly Potentiate Tumor-Targeted Delivery of Nanomedicines to Advanced Cancers: Further Extension to Enhancement of the Therapeutic Effect. J Pers Med 2021; 11:jpm11060487. [PMID: 34071552 PMCID: PMC8229906 DOI: 10.3390/jpm11060487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
For more than three decades, enhanced permeability and retention (EPR)-effect-based nanomedicines have received considerable attention for tumor-selective treatment of solid tumors. However, treatment of advanced cancers remains a huge challenge in clinical situations because of occluded or embolized tumor blood vessels, which lead to so-called heterogeneity of the EPR effect. We previously developed a method to restore impaired blood flow in blood vessels by using nitric oxide donors and other agents called EPR-effect enhancers. Here, we show that two novel EPR-effect enhancers—isosorbide dinitrate (ISDN, Nitrol®) and sildenafil citrate—strongly potentiated delivery of three macromolecular drugs to tumors: a complex of poly(styrene-co-maleic acid) (SMA) and cisplatin, named Smaplatin® (chemotherapy); poly(N-(2-hydroxypropyl)methacrylamide) polymer-conjugated zinc protoporphyrin (photodynamic therapy and imaging); and SMA glucosamine-conjugated boric acid complex (boron neutron capture therapy). We tested these nanodrugs in mice with advanced C26 tumors. When these nanomedicines were administered together with ISDN or sildenafil, tumor delivery and thus positive therapeutic results increased two- to four-fold in tumors with diameters of 15 mm or more. These results confirmed the rationale for using EPR-effect enhancers to restore tumor blood flow. In conclusion, all EPR-effect enhancers tested showed great potential for application in cancer therapy.
Collapse
Affiliation(s)
- Waliul Islam
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (W.I.); (S.K.); (K.O.); (T.S.); (H.M.)
- BioDynamics Research Foundation, Kumamoto 862-0954, Japan
| | - Shintaro Kimura
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (W.I.); (S.K.); (K.O.); (T.S.); (H.M.)
- StateArt Inc., Tokyo 103-0012, Japan
| | - Rayhanul Islam
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan;
| | - Ayaka Harada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; (A.H.); (T.N.)
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (W.I.); (S.K.); (K.O.); (T.S.); (H.M.)
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan;
- Correspondence:
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; (A.H.); (T.N.)
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (W.I.); (S.K.); (K.O.); (T.S.); (H.M.)
| | - Hiroshi Maeda
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (W.I.); (S.K.); (K.O.); (T.S.); (H.M.)
- BioDynamics Research Foundation, Kumamoto 862-0954, Japan
- Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
40
|
Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines. Acta Biomater 2021; 126:372-383. [PMID: 33774199 DOI: 10.1016/j.actbio.2021.03.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023]
Abstract
Intralipid, a clinically used lipid emulsion, was reportedly utilized as one strategy to suppress off-target delivery of anticancer nanomedicines; Intralipid also effectively improved drug delivery to tumors and produced better therapeutic effects. However, the mechanisms involved-the why and how-in Intralipid's facilitation of delivery of nanomedicines to tumors have not yet been reported in detail. In this study, we investigated Intralipid and discovered the beneficial effects of Intralipid pretreatment when using three anticancer nanomedicines, including the clinically approved drug doxorubicin (Doxil). Intralipid pretreatment induced a 40% reduction in liver uptake of a polymeric nanoprobe used in photodynamic therapy as well as a 1.5-fold-increased nanomedicine accumulation in tumors. This increased accumulation consequently led to significantly better therapeutic effects, and this finding was validated by using Doxil. As an interesting result, Intralipid pretreatment significantly prolonged the plasma half-life of nanomedicines in normal healthy mice but not in tumor-bearing mice, which suggests that tumors become an alternative route of nanomedicine delivery when liver delivery is suppressed. Also, we found markedly increased tumor blood flow, as measured by fluorescence angiography, and significantly lower blood viscosity after Intralipid pretreatment. All our results together indicate that Intralipid treatment not only suppressed off-target nanomedicine delivery by the reticuloendothelial system, but more important, it enhanced nanomedicine delivery to tumors by improving tumor blood flow, which is key to satisfactory drug delivery via the enhanced permeability and retention effect. Significantly better therapeutic outcomes were thus achieved by the strategy of combining utilization of nanomedicines and Intralipid pretreatment. STATEMENT OF SIGNIFICANCE: Off-target delivery to organs such as the liver and obstructed tumor blood flow as is often seen in advanced cancers are major barriers to the therapeutic efficacy of anticancer nanomedicines. Intralipid has been shown effective for suppressing nanomedicine accumulation in the liver, resulting in improved anticancer effects. Unraveling the mechanisms involved in this process will be greatly helpful for the clinical application of anticancer nanomedicines. We reported here that Intralipid could also significantly increase tumor delivery of nanomedicine, which is beneficial for improving tumor blood flow and lowering blood viscosity. To our knowledge, this is the first study to investigate the role of Intralipid in this regard. This knowledge provides a solid rationale for the use of Intralipid in combination with anticancer nanomedicines.
Collapse
|
41
|
Xu Y, Liu J, Liu Z, Chen G, Li X, Ren H. Damaging Tumor Vessels with an Ultrasound-Triggered NO Release Nanosystem to Enhance Drug Accumulation and T Cells Infiltration. Int J Nanomedicine 2021; 16:2597-2613. [PMID: 33833514 PMCID: PMC8021257 DOI: 10.2147/ijn.s295445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Limited by tumor vascular barriers, restricted intratumoural T cell infiltration and nanoparticles accumulation remain major bottlenecks for anticancer therapy. Platelets are now known to maintain tumor vascular integrity. Therefore, inhibition of tumor-associated platelets may be an effective method to increase T cell infiltration and drug accumulation at tumor sites. Herein, we designed an ultrasound-responsive nitric oxide (NO) release nanosystem, SNO-HSA-PTX, which can release NO in response to ultrasound (US) irradiation, thereby inhibiting platelet function and opening the tumor vascular barrier, promoting drug accumulation and T cell infiltration. METHODS We evaluated the ability of SNO-HSA-PTX to release NO in response to US irradiation. We also tested the effect of SNO-HSA-PTX on platelet function. Plenty of studies including cytotoxicity, pharmacokinetics study, biodistribution, blood perfusion, T cell infiltration, in vivo antitumor efficacy and safety assessment were conducted to investigate the antitumor effect of SNO-HSA-PTX. RESULTS SNO-HSA-PTX with US irradiation inhibited tumor-associated platelets activation and induced openings in the tumor vascular barriers, which promoted the accumulation of SNO-HSA-PTX nanoparticles to the tumor sites. Meanwhile, the damaged vascular barriers allowed oxygen-carrying hemoglobin to infiltrate tumor regions, alleviating hypoxia of the tumor microenvironment. In addition, the intratumoral T cell infiltration was augmented, together with chemotherapy and NO therapy, which greatly inhibited tumor growth. DISCUSSION Our research designed a simple strategy to open the vascular barrier by inhibiting the tumor-associated platelets, which provide new ideas for anti-tumor treatment.
Collapse
Affiliation(s)
- Yan Xu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiwei Liu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhangya Liu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Guoguang Chen
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
42
|
Maeda H. The 35th Anniversary of the Discovery of EPR Effect: A New Wave of Nanomedicines for Tumor-Targeted Drug Delivery-Personal Remarks and Future Prospects. J Pers Med 2021; 11:jpm11030229. [PMID: 33810037 PMCID: PMC8004895 DOI: 10.3390/jpm11030229] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
This Special Issue on the enhanced permeability and retention (EPR) effect commemorates the 35th anniversary of its discovery, the original 1986 Matsumura and Maeda finding being published in Cancer Research as a new concept in cancer chemotherapy. My review here describes the history and heterogeneity of the EPR effect, which involves defective tumor blood vessels and blood flow. We reported that restoring obstructed tumor blood flow overcomes impaired drug delivery, leading to improved EPR effects. I also discuss gaps between small animal cancers used in experimental models and large clinical cancers in humans, which usually involve heterogeneous EPR effects, vascular abnormalities in multiple necrotic foci, and tumor emboli. Here, I emphasize arterial infusion of oily formulations of nanodrugs into tumor-feeding arteries, which is the most tumor-selective drug delivery method, with tumor/blood ratios of 100-fold. This method is literally the most personalized medicine because arterial infusions differ for each patient, and drug doses infused depend on tumor size and anatomy in each patient. Future developments in EPR effect-based treatment will range from chemotherapy to photodynamic therapy, boron neutron capture therapy, and therapies for free radical diseases. This review focuses on our own work, which stimulated numerous scientists to perform research in nanotechnology and drug delivery systems, thereby spawning a new cancer treatment era.
Collapse
Affiliation(s)
- Hiroshi Maeda
- BioDynamics Research Foundation, Kumamoto 862-0954, Japan;
- Department of Microbiology, Kumamoto University School of Medicine, Kumamoto 862-0954, Japan
- Tohoku University, Sendai 980-8572, Japan
- Osaka University Medical School, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Moses AS, Demessie AA, Taratula O, Korzun T, Slayden OD, Taratula O. Nanomedicines for Endometriosis: Lessons Learned from Cancer Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004975. [PMID: 33491876 PMCID: PMC7928207 DOI: 10.1002/smll.202004975] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/03/2020] [Indexed: 05/02/2023]
Abstract
Endometriosis is an incurable gynecological disease characterized by the abnormal growth of endometrium-like tissue, characteristic of the uterine lining, outside of the uterine cavity. Millions of people with endometriosis suffer from pelvic pain and infertility. This review aims to discuss whether nanomedicines that are promising therapeutic approaches for various diseases have the potential to create a paradigm shift in endometriosis management. For the first time, the available reports and achievements in the field of endometriosis nanomedicine are critically evaluated, and a summary of how nanoparticle-based systems can improve endometriosis treatment and diagnosis is provided. Parallels between cancer and endometriosis are also drawn to understand whether some fundamental principles of the well-established cancer nanomedicine field can be adopted for the development of novel nanoparticle-based strategies for endometriosis. This review provides the state of the art of endometriosis nanomedicine and perspective for researchers aiming to realize and exploit the full potential of nanoparticles for treatment and imaging of the disorder.
Collapse
Affiliation(s)
- Abraham S Moses
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Ananiya A Demessie
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Olena Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Tetiana Korzun
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Oleh Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| |
Collapse
|
44
|
Islam R, Maeda H, Fang J. Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. Expert Opin Drug Deliv 2021; 19:199-212. [PMID: 33430661 DOI: 10.1080/17425247.2021.1874916] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The enhanced permeability and retention (EPR) effect serves as the foundation of anticancer nanomedicine design. EPR effect-based drug delivery is an effective strategy for most solid tumors. However, the degree of efficacy depends on the pathophysiological conditions of tumors, drug formulations, and other factors. AREAS COVERED Vascular mediators including nitric oxide, bradykinin , and prostaglandins are vital for facilitating and maintaining EPR effect dynamics. Progression to large, advanced cancers may induce activated blood coagulation cascades, which lead to thrombus formation in tumor vasculature. Rapidly growing tumors cause obstructed or suppressed blood flow in tumor vasculature related to embolism or occluded blood vessels. The resulting limited tumor blood flow leads to less drug delivered to tumors, i.e. no or poor EPR effect. High stromal content also suppresses vascular permeability and drug diffusion. Restoring obstructed tumor blood flow and improving tumor vascular permeability via vascular mediators will improve drug delivery and the EPR effect. Physicochemical features of nanomedicines also influence therapeutic outcomes and are vital for the EPR effect. EXPERT OPINION The tumor microenvironment, especially tumor blood flow, is critical for a potent EPR effect. A rational strategy for circumventing EPR effect barriers must include restoring tumor blood flow.
Collapse
Affiliation(s)
- Rayhanul Islam
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Hiroshi Maeda
- BioDynamics Research Foundation, Kumamoto, Japan.,Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Fang
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| |
Collapse
|
45
|
Saw WS, Anasamy T, Foo YY, Kwa YC, Kue CS, Yeong CH, Kiew LV, Lee HB, Chung LY. Delivery of Nanoconstructs in Cancer Therapy: Challenges and Therapeutic Opportunities. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen Shang Saw
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Theebaa Anasamy
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yiing Yee Foo
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yee Chu Kwa
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Chin Siang Kue
- Department of Diagnostic and Allied Health Sciences Faculty of Health and Life Sciences Management and Science University Shah Alam Selangor 40100 Malaysia
| | - Chai Hong Yeong
- School of Medicine Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Hong Boon Lee
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
- School of Biosciences Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
46
|
Fakhri KU, Sultan A, Mushtaque M, Hasan MR, Nafees S, Hafeez ZB, Zafaryab M, Rizwanullah M, Sharma D, Bano F, AlMalki WH, Ahmad FJ, Rizvi MMA. Obstructions in Nanoparticles Conveyance, Nano-Drug Retention, and EPR Effect in Cancer Therapies. HANDBOOK OF RESEARCH ON ADVANCEMENTS IN CANCER THERAPEUTICS 2021. [DOI: 10.4018/978-1-7998-6530-8.ch026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this chapter, the authors first review nano-devices that are mixtures of biologic molecules and synthetic polymers like nano-shells and nano-particles for the most encouraging applications for different cancer therapies. Nano-sized medications additionally spill especially into tumor tissue through penetrable tumor vessels and are then held in the tumor bed because of diminished lymphatic drainage. This procedure is known as the enhanced penetrability and retention (EPR) impact. Nonetheless, while the EPR impact is generally held to improve conveyance of nano-medications to tumors, it in certainty offers not exactly a 2-overlay increment in nano-drug conveyance contrasted with basic ordinary organs, bringing about medication concentration that is not adequate for restoring most malignant growths. In this chapter, the authors likewise review different obstructions for nano-sized medication conveyance and to make the conveyance of nano-sized medications to tumors progressively successful by expanding on the EPR impact..
Collapse
Affiliation(s)
| | | | | | | | | | | | - Md Zafaryab
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Md Rizwanullah
- School of Pharmaceutical Education and Research, Jamia Hamdard, India
| | - Deepti Sharma
- Institute of Nuclear Medicine and Allied Sciences, India
| | - Farhad Bano
- National Institute of Immunology, New Delhi, India
| | | | - Farhan Jalees Ahmad
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
47
|
Islam W, Matsumoto Y, Fang J, Harada A, Niidome T, Ono K, Tsutsuki H, Sawa T, Imamura T, Sakurai K, Fukumitsu N, Yamamoto H, Maeda H. Polymer-conjugated glucosamine complexed with boric acid shows tumor-selective accumulation and simultaneous inhibition of glycolysis. Biomaterials 2020; 269:120631. [PMID: 33450582 DOI: 10.1016/j.biomaterials.2020.120631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
We synthesized unique water-soluble synthetic-polymer, styrene-maleic acid copolymer (SMA) conjugated glucosamine (SG); which formed a stable complex with boric acid (BA). This complex had a mean particle size of 15 nm by light scattering, and single peak in gel permeation chromatography. The particles were taken up by tumor cells five times faster than free BA in vitro and liberated BA at acidic tumor pH (5-7). Liberated BA inhibited glycolysis and resulted in tumor suppression in vivo. Intravenously injected SGB-complex did bind with albumin, and plasma half-life was about 8 h in mice, and accumulated to tumor tissues about 10 times more than in normal organs. IC50 of SGB-complex for HeLa cells under pO2 of 6-9% was about 20 μg/ml (free BA equivalent), 150 times more potent than free BA. Neutron irradiation of human oral cancer cells with SGB-complex resulted in 16 times greater cell-killing than that without SGB-complex. In vivo antitumor effect was evaluated after neutron irradiation only once in SCC VII tumor bearing mice and significant tumor suppression was confirmed. These results indicate that SGB-complex is a unique multifunctional anticancer agent with much more potent activity under low pO2 conditions as in large advanced cancers.
Collapse
Affiliation(s)
- Waliul Islam
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; BioDynamics Research Foundation, Kumamoto, 862-0954, Japan
| | - Yoshitaka Matsumoto
- Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan and Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Japan
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Ayaka Harada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahisa Imamura
- Department of Nutritional Science, Shokei University and Department of Molecular Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, Kitakyushu, Japan
| | | | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan and Department of Molecular Pathology, Division of Health Sciences, And Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Maeda
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan and Department of Molecular Pathology, Division of Health Sciences, And Graduate School of Medicine, Osaka University, Osaka, Japan; BioDynamics Research Foundation, Kumamoto, 862-0954, Japan; Tohoku University, Sendai, Japan.
| |
Collapse
|
48
|
Liu Q, Zhang L, Ji X, Shin MC, Xie S, Pan B, Yu F, Zhao J, Yang VC. A self-assembly and stimuli-responsive fusion gelonin delivery system for tumor treatment. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Nguyen K, Nuß B, Mühlberger M, Unterweger H, Friedrich RP, Alexiou C, Janko C. Superparamagnetic Iron Oxide Nanoparticles Carrying Chemotherapeutics Improve Drug Efficacy in Monolayer and Spheroid Cell Culture by Enabling Active Accumulation. NANOMATERIALS 2020; 10:nano10081577. [PMID: 32796757 PMCID: PMC7466387 DOI: 10.3390/nano10081577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022]
Abstract
Cytotoxic and cytostatic chemotherapeutics act by attacking rapidly dividing tumor cells, predominantly affecting malignant tissue and to a certain degree preserving healthy cells. Nonetheless, severe side effects are caused as quickly proliferating healthy cells such as hematopoietic precursors and mucous membranes are impaired as well. This limits the administered dose and eventually allows tumor cells to escape treatment. In order to increase intratumoral drug concentration and simultaneously reduce systemic side effects, nanoparticles have come into focus as drug carriers. The functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) with chemotherapeutics such as mitoxantrone (MTO) enables targeted drug transport by using magnetic forces. Here, we investigate SPIONs consisting of individual iron oxide cores of 10 nm in diameter and a total hydrodynamic diameter of 53 ± 0.8 nm as a transporting system for MTO. Comparing the killing efficacy in monolayer cell culture and multicellular tumor spheroids of HT-29 cells, we show that spheroids tolerate considerably higher doses of nanoparticle-loaded MTO. Therefore, dose predictions from conventional monolayer cell cultures are often misleading for in vivo applications. This was true for both soluble and nanoparticle-bound MTO. Using flow chambers mimicking in vivo blood flow, we furthermore demonstrate that SPIONs can magnetically accumulate MTO. We conclude that SPIONs can function as an effective delivery platform to increase local drug concentrations, thereby potentially overcoming chemotherapy resistance of cells.
Collapse
Affiliation(s)
- Khanh Nguyen
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Bianca Nuß
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
| | - Marina Mühlberger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
| | - Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.N.); (B.N.); (H.U.); (R.P.F.); (C.A.)
- Correspondence: ; Tel.: +49-9131-85-43944
| |
Collapse
|
50
|
Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv Drug Deliv Rev 2020; 157:142-160. [PMID: 32553783 DOI: 10.1016/j.addr.2020.06.005] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022]
Abstract
The enhanced permeability and retention (EPR) effect is a unique phenomenon of solid tumors that is related to their particular anatomical and pathophysiological characteristics, e.g. defective vascular architecture; large gaps between endothelial cells in blood vessels; abundant vascular mediators such as bradykinin, nitric oxide, carbon monoxide, and vascular endothelial growth factor; and impaired lymphatic recovery. These features lead to tumor tissues showing considerable extravasation of plasma components and nanomedicines. These data comprise the basic theory underlying the development of macromolecular agents or nanomedicines. The EPR effect is not necessarily valid for all solid tumors, because tumor blood flow and vascular permeability vary greatly. Tumor blood flow is frequently obstructed as tumor size increases, as often seen clinically; early stage, small tumors show a more uniform EPR effect, whereas advanced large tumor show heterogeneity in EPR effect. Accordingly, it would be very important to apply enhancers of EPR effect in clinical setting to make EPR effect more uniform. In this review, we discuss the EPR effect: its history, factors involved, and dynamics and heterogeneity. Strategies to overcome the EPR effect's heterogeneity may guarantee better therapeutic outcomes of drug delivery to advanced cancers.
Collapse
|