1
|
Bao S, Shen T, Chen C, Han J, Tajadura-Ortega V, Shabahang M, Du Z, Feizi T, Chai W, Li L. Orthogonal-Group-Controlled Site-Selective I-Branching of Poly-N-acetyllactosamine Chains Reveals Unique Binding Specificities of Proteins towards I-Antigens. Angew Chem Int Ed Engl 2025; 64:e202420676. [PMID: 39787097 DOI: 10.1002/anie.202420676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Poly-N-acetyllactosamine (poly-LacNAc) is ubiquitously expressed on cell surface glycoconjugates, serving as the backbone of complex glycans and an extended scaffold that presents diverse glycan epitopes. The branching of poly-LacNAc, where internal galactose (Gal) residues have β1-6 linked N-acetylglucosamine (GlcNAc) attached, forms the blood group I-antigen, which is closely associated with various physiological and pathological processes including cancer progression. However, the underlying mechanisms remain unclear as many of the I-antigen sequences are undefined and inaccessible. In this study, we developed a highly efficient orthogonal-group-controlled approach to access site-selectively I-branched poly-LacNAc chains. The approach relies on three orthogonal protecting groups, each of them "caps" one internal Gal residue of poly-LacNAc. These groups can be readily "decapped" by specific enzymes or chemical reduction to expose desired sites for GCNT2-catalyzed I-branching. This approach enabled the rapid preparation of a diverse library of 41 linear and branched poly-LacNAc glycans from a single precursor. Glycan microarray analysis using these complex glycans revealed unique recognitions of I-branches by lectins, anti-I mAbs, and galectins. Surprisingly, oxidized forms of linear poly-LacNAc strongly bound to several glycan-binding proteins (GBPs). These findings help to bridge the gap in recognition of I-branching and open new avenues for therapeutic development by targeting galectins.
Collapse
Affiliation(s)
- Shumin Bao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Tangliang Shen
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Congcong Chen
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Jinghua Han
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Virginia Tajadura-Ortega
- Glycosciences Laboratory, Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - MohammadHossein Shabahang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Zhenming Du
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Ten Feizi
- Glycosciences Laboratory, Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Wengang Chai
- Glycosciences Laboratory, Faculty of Medicine Imperial College London, London W12 0NN, United Kingdom
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, USA
| |
Collapse
|
2
|
Tobisawa Y, Nakane K, Koie T, Taniguchi T, Tomioka M, Tomioka-Inagawa R, Kawase K, Kawase M, Iinuma K. Low GCNT2/I-Branching Glycan Expression Is Associated with Bladder Cancer Aggressiveness. Biomedicines 2025; 13:682. [PMID: 40149658 PMCID: PMC11940493 DOI: 10.3390/biomedicines13030682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Abnormal glycan formation on the cancer cell surface plays a crucial role in regulating tumor functions in bladder cancer. In this study, we investigated the roles of glucosaminyl (N-acetyl) transferase 2 (GCNT2) in bladder cancer progression and immune evasion. GCNT2 synthesizes I-branched polylactosamine chains on cell surface glycoproteins. Understanding its functions will provide insights into tumor-immune interactions, facilitating the development of effective immunotherapeutic strategies. Methods: GCNT2 expression levels in bladder cancer cell lines and patient tumor samples were analyzed via quantitative polymerase chain reaction and immunohistochemistry. GCNT2 functions were assessed via overexpression and knockdown experiments. Its effect on natural killer (NK) cell-mediated cytotoxicity was evaluated via in vitro assay. Cytotoxic granule release from NK cells was measured via enzyme-linked immunosorbent assay. Results: GCNT2 expression was inversely correlated with bladder cancer aggressiveness in both cell lines and patient samples. Low GCNT2 levels were associated with advanced tumor stage and grade, suggesting the tumor-suppressive roles of GCNT2. Notably, GCNT2 overexpression enhanced the susceptibility of bladder cancer cells to NK cell-mediated killing, whereas its knockdown promoted immune evasion. GCNT2-overexpressing cells strongly induced the release of cytotoxic granules from NK cells, indicating enhanced immune recognition. Conclusions: Our findings suggest that aggressive bladder tumors evade NK cell immunity by decreasing the GCNT2 levels and that I-antigen glycans synthesized by GCNT2 are crucial for NK cell recognition by tumor cells. Our findings provide insights into the tumor-immune interactions in bladder cancer and GCNT2 and its associated pathways as potential targets for novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Yuki Tobisawa
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu 5011194, Japan
| | - Keita Nakane
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Takuya Koie
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Tomoki Taniguchi
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Masayuki Tomioka
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Risa Tomioka-Inagawa
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Kota Kawase
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Makoto Kawase
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| | - Koji Iinuma
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan; (Y.T.); (K.N.); (T.T.); (M.T.); (R.T.-I.); (K.K.); (M.K.); (K.I.)
| |
Collapse
|
3
|
Sanji AS, J M, Gurav MJ, Batra SK, Chachadi VB. Cancer snap-shots: Biochemistry and glycopathology of O-glycans: A review. Int J Biol Macromol 2024; 260:129318. [PMID: 38232866 DOI: 10.1016/j.ijbiomac.2024.129318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Cancer pathogenesis is strongly linked to the qualitative and quantitative alteration of the cell surface glycans, that are glycosidically linked to proteins and lipids. Glycans that are covalently linked to the polypeptide backbone of a protein through nitrogen or oxygen, are known as N-glycans or O-glycans, respectively. Although the role of glycans in the expression, physiology, and communication of cells is well documented, the function of these glycans in tumor biology is not fully elucidated. In this context, current review summarizes biosynthesis, modifications and pathological implications of O-glycans The review also highlights illustrative examples of cancer types modulated by aberrant O-glycosylation. Related O-glycans like Thomsen-nouveau (Tn), Thomsen-Friedenreich (TF), Lewisa/x, Lewisb/y, sialyl Lewisa/x and some other O-glycans are discussed in detail. Since, the overexpression of O-glycans are attributed to the aggressiveness and metastatic behavior of cancer cells, the current review attempts to understand the relation between metastasis and O-glycans.
Collapse
Affiliation(s)
- Ashwini S Sanji
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Manasa J
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Maruti J Gurav
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vishwanath B Chachadi
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India.
| |
Collapse
|
4
|
Vos GM, Wu Y, van der Woude R, de Vries RP, Boons GJ. Chemo-Enzymatic Synthesis of Isomeric I-branched Polylactosamines Using Traceless Blocking Groups. Chemistry 2024; 30:e202302877. [PMID: 37909475 DOI: 10.1002/chem.202302877] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Poly-N-acetyl lactosamines (polyLacNAc) are common structural motifs of N- and O-linked glycan, glycosphingolipids and human milk oligosaccharides. They can be branched by the addition of β1,6-linked N-acetyl-glucosamine (GlcNAc) moieties to internal galactoside (Gal) residues by the I-branching enzyme beta-1,6-N-acetylglucosaminyltransferase 2 (GCNT2). I-branching has been implicated in many biological processes and is also associated with various diseases such as cancer progression. Currently, there is a lack of methods that can install, in a regioselective manner, I-branches and allows the preparation of isomeric poly-LacNAc derivatives. Here, we described a chemo-enzymatic strategy that addresses this deficiency and is based on the enzymatic assembly of an oligo-LacNAc chain that at specific positions is modified by a GlcNTFA moiety. Replacement of the trifluoroacetyl (TFA) moiety by tert-butyloxycarbonyl (Boc) gives compounds in which the galactoside at the proximal site is blocked from modification by GCNT2. After elaboration of the antennae, the Boc group can be removed, and the resulting amine acetylated to give natural I-branched structures. It is also shown that fucosides can function as a traceless blocking group that can provide complementary I-branched structures from a single precursor. The methodology made it possible to synthesize a library of polyLacNAc chains having various topologies.
Collapse
Affiliation(s)
- Gaёl M Vos
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Yunfei Wu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA-30602, USA
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Chemistry Department, University of Georgia, Athens, GA-30602, USA
| |
Collapse
|
5
|
Clark KC, Wagner VA, Holl KL, Reho JJ, Tutaj M, Smith JR, Dwinell MR, Grobe JL, Kwitek AE. Body Composition and Metabolic Changes in a Lyon Hypertensive Congenic Rat and Identification of Ercc6l2 as a Positional Candidate Gene. Front Genet 2022; 13:903971. [PMID: 35812759 PMCID: PMC9263446 DOI: 10.3389/fgene.2022.903971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
Central obesity is genetically complex, and its exponential increase in the last decades have made it a critical public health issue. The Lyon Hypertensive (LH) rat is a well-characterized hypertensive model that also exhibits spontaneous and profound differences in body weight and adiposity, relative to its metabolically healthy control, the Lyon Normotensive (LN) rat. The mechanisms underlying the body weight differences between these strains are not well-understood, thus a congenic model (LH17LNa) was developed where a portion of the proximal arm of LN chromosome 17 is introgressed on the LH genomic background to assess the contribution of LN alleles on obesity features. Male and female LH17LNa rats were studied, but male congenics did not significantly differ from LH in this study. Female LH17LNa rats exhibited decreases in total body growth, as well as major alterations to their body composition and adiposity. The LH17LNa female rats also showed decreases in metabolic rate, and a reduction in food intake. The increased adiposity in the female LH17LNa rats was specific to abdominal white adipose tissue, and this phenomenon was further explained by significant hypertrophy in those adipocytes, with no evidence of adipocyte hyperplasia. Sequencing of the parental strains identified a novel frameshift mutation in the candidate gene Ercc6l2, which is involved in transcription-coupled DNA repair, and is implicated in premature aging. The discovery of the significance of Ercc6l2 in the context of female-specific adipocyte biology could represent a novel role of DNA repair failure syndromes in obesity pathogenesis.
Collapse
Affiliation(s)
- Karen C. Clark
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Valerie A. Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Katie L. Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Monika Tutaj
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer R. Smith
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, United States
- Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melinda R. Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, United States
- Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Anne E. Kwitek, ; Justin L. Grobe,
| | - Anne E. Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, United States
- Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Anne E. Kwitek, ; Justin L. Grobe,
| |
Collapse
|
6
|
Lee H, Cai F, Kelekar N, Velupally NK, Kim J. Targeting PGM3 as a Novel Therapeutic Strategy in KRAS/LKB1 Co-Mutant Lung Cancer. Cells 2022; 11:cells11010176. [PMID: 35011738 PMCID: PMC8750012 DOI: 10.3390/cells11010176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 01/11/2023] Open
Abstract
In non-small-cell lung cancer (NSCLC), concurrent mutations in the oncogene KRAS and tumor suppressor STK11 (also known as LKB1) confer an aggressive malignant phenotype, an unfavourability towards immunotherapy, and overall poor prognoses in patients. In a previous study, we showed that murine KRAS/LKB1 co-mutant tumors and human co-mutant cancer cells have an enhanced dependence on glutamine-fructose-6-phosphate transaminase 2 (GFPT2), a rate-limiting enzyme in the hexosamine biosynthesis pathway (HBP), which could be targeted to reduce survival of KRAS/LKB1 co-mutants. Here, we found that KRAS/LKB1 co-mutant cells also exhibit an increased dependence on N-acetylglucosamine-phosphate mutase 3 (PGM3), an enzyme downstream of GFPT2. Genetic or pharmacologic suppression of PGM3 reduced KRAS/LKB1 co-mutant tumor growth in both in vitro and in vivo settings. Our results define an additional metabolic vulnerability in KRAS/LKB1 co-mutant tumors to the HBP and provide a rationale for targeting PGM3 in this aggressive subtype of NSCLC.
Collapse
Affiliation(s)
- Hyunmin Lee
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; (H.L.); (N.K.); (N.K.V.)
| | - Feng Cai
- Children’s Medical Center Research Institute, UT-Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Neil Kelekar
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; (H.L.); (N.K.); (N.K.V.)
| | - Nipun K. Velupally
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; (H.L.); (N.K.); (N.K.V.)
| | - Jiyeon Kim
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; (H.L.); (N.K.); (N.K.V.)
- Correspondence:
| |
Collapse
|
7
|
Hu W, Zheng X, Liu J, Zhang M, Liang Y, Song M. MicroRNA MiR-130a-3p promotes gastric cancer by targeting Glucosaminyl N-acetyl transferase 4 (GCNT4) to regulate the TGF-β1/SMAD3 pathway. Bioengineered 2021; 12:11634-11647. [PMID: 34696660 PMCID: PMC8810009 DOI: 10.1080/21655979.2021.1995099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer is the third-leading cause of cancer-related deaths worldwide. Dysregulation of glucosaminyl (N-acetyl) transferase 4 (GCNT4) gene and miR-130a-3p gene has been reported in the development of gastric cancer. We elucidated the function of the miR-130a-3p-GCNT4 axis in gastric cancer. Reverse transcription quantitative polymerase-chain reaction measured miR-130a-3p and GCNT4 levels in gastric cancer tissues and cells. The interaction between miR-130a-3p and GCNT4 was assessed using luciferase and RNA pull-down assays. Biological roles of miR-130a-3p and GCNT4 were determined using cell proliferation, migration, and invasion assays in gastric cancer cells. In addition, the effect of miR-130a-3p on the tumor growth in vivo was investigated using tumor xenografts assay. Levels of total TGF-β1, phosphorylated SMAD3 (p-SMAD3), and SMAD3 were measured by using western blot. The results showed that miR-130a-3p levels were increased, while GCNT4 levels were reduced in gastric cancer tissues and cell lines. While miR-130a-3p mimics facilitated cellular proliferation, migration, and invasion in vitro, promoted tumor growth in vivo, and activated the TGF-β1/SMAD3 signaling pathway, overexpression of GCNT4 prevented the growth of gastric cancer cells and restrained the activation of the TGF-β1/SMAD3 pathway. Mechanistically, miR-130a-3p suppressed gastric cancer genesis by inhibiting GCNT4 expression and activating the TGF-β1/SMAD3 signaling pathway. Altogether, we proposed that targeting of GCNT4 and activation of the TGF-β1/SMAD3 signaling pathway by miR-130a-3p enhanced the growth of gastric cancer cells. This study provides important strategies for the selection of therapeutic targets for gastric cancer treatment involving miR-130a-3p/GCNT4/TGF-β1/SMAD3 axis.
Collapse
Affiliation(s)
- Wei Hu
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Xin Zheng
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Jun Liu
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Min Zhang
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Yan Liang
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Ming Song
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| |
Collapse
|
8
|
Hatakeyama S, Yoneyama T, Tobisawa Y, Yamamoto H, Ohyama C. Narrative review of urinary glycan biomarkers in prostate cancer. Transl Androl Urol 2021; 10:1850-1864. [PMID: 33968674 PMCID: PMC8100853 DOI: 10.21037/tau-20-964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. The application of the prostate-specific antigen (PSA) test has improved the diagnosis and treatment of PC. However, the PSA test has become associated with overdiagnosis and overtreatment. Therefore, there is an unmet need for novel diagnostic, prognostic, and predictive biomarkers of PC. Urinary glycoproteins and exosomes are a potential source of PC glycan biomarkers. Urinary glycan profiling can provide noninvasive monitoring of tumor heterogeneity and aggressiveness throughout a treatment course. However, urinary glycan profiling is not popular due to technical disadvantages, such as complicated structural analysis that requires specialized expertise. The technological development of glycan analysis is a rapidly advancing field. A lectin-based microarray can detect aberrant glycoproteins in urine, including PSA glycoforms and exosomes. Glycan enrichment beads can enrich the concentration of N-linked glycans specifically. Capillary electrophoresis, liquid chromatography-tandem mass spectrometry, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry can detect glycans directory. Many studies suggest potential of urinary glycoproteins, exosomes, and glycosyltransferases as a biomarker of PC. Although further technological challenges remain, urinary glycan analysis is one of the promising approaches for cancer biomarker discovery.
Collapse
Affiliation(s)
- Shingo Hatakeyama
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tohru Yoneyama
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hayato Yamamoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chikara Ohyama
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
9
|
Perez M, Chakraborty A, Lau LS, Mohammed NBB, Dimitroff CJ. Melanoma-associated glycosyltransferase GCNT2 as an emerging biomarker and therapeutic target. Br J Dermatol 2021; 185:294-301. [PMID: 33660254 DOI: 10.1111/bjd.19891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2021] [Indexed: 12/17/2022]
Abstract
In metastatic melanoma, with a dismal survival rate and propensity for treatment resistance and recurrence, it is critical to establish biomarkers that better predict treatment response and disease severity. The melanoma glycome, composed of complex carbohydrates termed glycans, is an under-investigated area of research, although it is gaining momentum in the cancer biomarker and therapeutics field. Novel findings suggest that glycans play a major role in influencing melanoma progression and could be exploited for prognosticating metastatic activity and/or as therapeutic targets. In this review, we discuss the role of aberrant glycosylation, particularly the specialized function of β1,6 N-acetylglucosaminyltransferase 2 (GCNT2), in melanoma pathogenesis and summarize mechanisms of GCNT2 regulation to illuminate its potential as a predictive marker and therapeutic target.
Collapse
Affiliation(s)
- M Perez
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - A Chakraborty
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - L S Lau
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - N B B Mohammed
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - C J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
10
|
Shen M, Liu S, Stoyanova T. The role of Trop2 in prostate cancer: an oncogene, biomarker, and therapeutic target. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:73-87. [PMID: 33816696 PMCID: PMC8012837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Prostate cancer remains the second leading cause of cancer-associated deaths amongst American men. Trop2, a cell surface glycoprotein, correlates with poor clinical outcome and is highly expressed in metastatic, treatment-resistant prostate cancer. High levels of Trop2 are prognostic for biochemical recurrence. Trop2 regulates tumor growth and metastatic ability of prostate cancer. Moreover, overexpression of Trop2 drives the transdifferentiation to neuroendocrine phenotype in prostate cancer. In addition, Trop2 is overexpressed across epithelial cancers and has emerged as a promising therapeutic target in various solid epithelial cancers. The FDA (Food and Drug Administration) recently approved the use of a Trop2-targeting ADC (antibody-drug conjugate), Sacituzumab Govitecan (IMMU-132), for metastatic, triple-negative breast cancer with at least two prior therapies. Here, we review the role of Trop2 in prostate tumorigenesis and its potential as a promising biomarker and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Michelle Shen
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University USA
| | - Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University USA
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University USA
| |
Collapse
|
11
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Wu YX, Lu HF, Lin YH, Chuang HY, Su SC, Liao YJ, Twu YC. Branched I antigen regulated cell susceptibility against natural killer cytotoxicity through its N-linked glycosylation and overall expression. Glycobiology 2021; 31:624-635. [PMID: 33403394 DOI: 10.1093/glycob/cwaa117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 11/14/2022] Open
Abstract
Cell surface glycosylation has been known as an important modification process that can be targeted and manipulated by malignant cells to escape from host immunosurveillance. We previously showed that the blood group branched I antigen on the leukemia cell surface can regulate the cell susceptibility against natural killer (NK) cell-mediated cytotoxicity through interfering target-NK interaction. In this work, we first identified N-linkage as the major glycosylation linkage type for branched I glycan formation on leukemia cells, and this linkage was responsible for cell sensitivity against therapeutic NK-92MI targeting. Secondly, by examining different leukemia cell surface death receptors, we showed death receptor Fas had highest expressions in both Raji and TF-1a cells. Mutations on two Fas extracellular N-linkage sites (118 and 136) for glycosylation impaired activation of Fas-mediated apoptosis during NK-92MI cytotoxicity. Last, we found that the surface I antigen expression levels enable leukemia cells to respond differently against NK-92MI targeting. In low I antigen expressing K-562 cell, reduction of I antigen presence greatly reduced leukemia cell susceptibility against NK-92MI targeting. But in other high I antigen expressing leukemia cells, similar reduction in I antigen expression did not affect cell susceptibility.
Collapse
Affiliation(s)
- Yu-Xuan Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, 45, Cheng-Hsin St., Taipei, 112, Taiwan.,Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, 510, Zhongzheng Rd., New Taipei City, 242, Taiwan
| | - Yen-Hsi Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan.,Department of Clinical Laboratory, Chung Shan Medical University Hospital, 110, Sec. 1, Jianguo N. Rd., Taichung City, 402, Taiwan
| | - Hui-Yu Chuang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, 222, Maijin Rd., Keelung City, 204, Taiwan.,Central Research Laboratory, Xiamen Chang Gung Hospital, 123, Xiafei Rd., Haicang District, Xiamen, China
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan
| |
Collapse
|
13
|
Sun H, Chang J, Ye M, Weng W, Zhang M, Ni S, Tan C, Huang D, Wang L, Du X, Xu MD, Sheng W. GCNT4 is Associated with Prognosis and Suppress Cell Proliferation in Gastric Cancer. Onco Targets Ther 2020; 13:8601-8613. [PMID: 32922038 PMCID: PMC7457769 DOI: 10.2147/ott.s248997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND GCNT4 is a member of the glucosaminyl (N-acetyl) transferases family that has been implicated in multiple human malignancies. However, the role of GCNT4 in gastric cancer (GC) is unknown. In this present study, we aimed to explore the role and clinicopathological correlation of GCNT4 in GC. MATERIALS AND METHODS We first evaluated the dysregulation of GCNT4 in The Cancer Genome Atlas (TCGA) and then we performed RT-qPCR and immunohistochemistry to validate the results in a cohort of in-house patients. The clinicopathological correlation and function of GCNT4 in GC were also analysed. RESULTS GCNT4 was found to be significantly downregulated in GC. In addition, GCNT4 expression correlated with tumour depth, nervous invasion and pathological tumor-node-metastasis (pTNM) stage. Moreover, lower GCNT4 levels conferred poor overall survival (OS) and disease-free survival (DFS) to GC patients. Multivariate Cox regression analysis revealed that GCNT4 protein expression is an independent prognostic factor for OS in patients with GC. Further functional experimental results revealed that overexpression of GCNT4 appears to halt GC cell proliferation and the cell cycle. CONCLUSION Altogether, these findings indicated that GCNT4 regulates the GC cell cycle and have important implications for the selection of therapeutic targets to prevent tumour proliferation.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Pathology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai200031, People’s Republic of China
| | - Jinjia Chang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai200032, People’s Republic of China
| | - Min Ye
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| | - Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| | - Shujuan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| | - Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| | - Mi-die Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| |
Collapse
|
14
|
Zhang W, Yang Z, Gao X, Wu Q. Advances in the discovery of novel biomarkers for cancer: spotlight on protein N-glycosylation. Biomark Med 2020; 14:1031-1045. [PMID: 32940073 DOI: 10.2217/bmm-2020-0185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Progress on glycosylation and tumor markers has not been extensively reported. Glycosylation plays an important part in post-translational modification. Previous research on glycosylation-modified biomarkers has lagged behind due to insufficient understanding of glycosylation-related regulations. However, some new methods and ideas illustrated in recent research may provide new inspirations in the field. This article aims to review current advances in revealing relationship between tumors and abnormal N-glycosylation and discuss leading-edge applications of N-glycosylation in developing novel tumor biomarkers.
Collapse
Affiliation(s)
- Wenyao Zhang
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Zhiping Yang
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Xiaoliang Gao
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| | - Qiong Wu
- State Key Laboratory of Cancer Biology & National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
- Department of Clinical Nutrition, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an 710032, China
| |
Collapse
|
15
|
I-branched carbohydrates as emerging effectors of malignant progression. Proc Natl Acad Sci U S A 2019; 116:13729-13737. [PMID: 31213534 DOI: 10.1073/pnas.1900268116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell surface carbohydrates, termed "glycans," are ubiquitous posttranslational effectors that can tune cancer progression. Often aberrantly displayed or found at atypical levels on cancer cells, glycans can impact essentially all progressive steps, from malignant transformation to metastases formation. Glycans are structural entities that can directly bind promalignant glycan-binding proteins and help elicit optimal receptor-ligand activity of growth factor receptors, integrins, integrin ligands, lectins, and other type-1 transmembrane proteins. Because glycans play an integral role in a cancer cell's malignant activity and are frequently uniquely expressed, preclinical studies on the suitability of glycans as anticancer therapeutic targets and their promise as biomarkers of disease progression continue to intensify. While sialylation and fucosylation have predominated the focus of cancer-associated glycan modifications, the emergence of blood group I antigens (or I-branched glycans) as key cell surface moieties capable of modulating cancer virulence has reenergized investigations into the role of the glycome in malignant progression. I-branched glycans catalyzed principally by the I-branching enzyme GCNT2 are now indicated in several malignancies. In this Perspective, the putative role of GCNT2/I-branching in cancer progression is discussed, including exciting insights on how I-branches can potentially antagonize the cancer-promoting activity of β-galactose-binding galectins.
Collapse
|
16
|
Scott E, Munkley J. Glycans as Biomarkers in Prostate Cancer. Int J Mol Sci 2019; 20:E1389. [PMID: 30893936 PMCID: PMC6470778 DOI: 10.3390/ijms20061389] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men, claiming over350,000 lives worldwide annually. Current diagnosis relies on prostate-specific antigen (PSA)testing, but this misses some aggressive tumours, and leads to the overtreatment of non-harmfuldisease. Hence, there is an urgent unmet clinical need to identify new diagnostic and prognosticbiomarkers. As prostate cancer is a heterogeneous and multifocal disease, it is likely that multiplebiomarkers will be needed to guide clinical decisions. Fluid-based biomarkers would be ideal, andattention is now turning to minimally invasive liquid biopsies, which enable the analysis oftumour components in patient blood or urine. Effective diagnostics using liquid biopsies willrequire a multifaceted approach, and a recent high-profile review discussed combining multipleanalytes, including changes to the tumour transcriptome, epigenome, proteome, and metabolome.However, the concentration on genomics-based paramaters for analysing liquid biopsies ispotentially missing a goldmine. Glycans have shown huge promise as disease biomarkers, anddata suggests that integrating biomarkers across multi-omic platforms (including changes to theglycome) can improve the stratification of patients with prostate cancer. A wide range ofalterations to glycans have been observed in prostate cancer, including changes to PSAglycosylation, increased sialylation and core fucosylation, increased O-GlcNacylation, theemergence of cryptic and branched N-glyans, and changes to galectins and proteoglycans. In thisreview, we discuss the huge potential to exploit glycans as diagnostic and prognostic biomarkersfor prostate cancer, and argue that the inclusion of glycans in a multi-analyte liquid biopsy test forprostate cancer will help maximise clinical utility.
Collapse
Affiliation(s)
- Emma Scott
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
17
|
Zou ZY, Liu J, Chang C, Li JJ, Luo J, Jin Y, Ma Z, Wang TH, Shao JL. Biliverdin administration regulates the microRNA-mRNA expressional network associated with neuroprotection in cerebral ischemia reperfusion injury in rats. Int J Mol Med 2019; 43:1356-1372. [PMID: 30664169 PMCID: PMC6365090 DOI: 10.3892/ijmm.2019.4064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Inflammatory response has an important role in the outcome of cerebral ischemia reperfusion injury (CIR). Biliverdin (BV) administration can relieve CIR in rats, but the mechanism remains unknown. The aim of the present study was to explore the expressional network of microRNA (miRNA)-mRNA in CIR rats following BV administration. A rat middle cerebral artery occlusion model with BV treatment was established. After neurobehavior was evaluated by neurological severity scores (NSS), miRNA and mRNA expressional profiles were analyzed by microarray technology from the cerebral cortex subjected to ischemia and BV administration. Then, bioinformatics prediction was used to screen the correlation between miRNA and mRNA, and 20 candidate miRNAs and 33 candidate mRNAs were verified by reverse transcription-quantitative polymerase chain reaction. Furthermore, the regulation relationship between ETS proto-oncogene 1 (Ets1) and miRNA204-5p was examined by luciferase assay. A total of 86 miRNAs were differentially expressed in the BV group compared with the other groups. A total of 10 miRNAs and 26 candidate genes were identified as a core 'microRNA-mRNA' regulatory network that was linked with the functional improvement of BV administration in CIR rats. Lastly, the luciferase assay results confirmed that miRNA204-5p directly targeted Ets1. The present findings suggest that BV administration may regulate multiple miRNAs and mRNAs to improve neurobehavior in CIR rats, by influencing cell proliferation, apoptosis, maintaining ATP homeostasis, and angiogenesis.
Collapse
Affiliation(s)
- Zhi-Yao Zou
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Jia Liu
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Cheng Chang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Jun-Jie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Jing Luo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Yuan Jin
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Zheng Ma
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Ting-Hua Wang
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Jian-Lin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
18
|
Peng F, He Q, Cheng C, Pan J. GCNT2 induces epithelial-mesenchymal transition and promotes migration and invasion in esophageal squamous cell carcinoma cells. Cell Biochem Funct 2018; 37:42-51. [DOI: 10.1002/cbf.3371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Fei Peng
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy; Jinan University; Guangzhou China
| | - Qi He
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy; Jinan University; Guangzhou China
| | - Chao Cheng
- Department of Thoracic Surgery; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Jingxuan Pan
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy; Jinan University; Guangzhou China
| |
Collapse
|
19
|
Tkac J, Bertok T, Hires M, Jane E, Lorencova L, Kasak P. Glycomics of prostate cancer: updates. Expert Rev Proteomics 2018; 16:65-76. [PMID: 30451032 DOI: 10.1080/14789450.2019.1549993] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Prostate cancer (PCa) is a life-threatening disease affecting millions of men. The current best PCa biomarker (level of prostate-specific antigen in serum) lacks specificity for PCa diagnostics and this is why novel PCa biomarkers in addition to the conventional ones based on biomolecules such as DNA, RNA and proteins need to be identified. Areas covered: This review details the potential of glycans-based biomarkers to become diagnostic, prognostic, predictive and therapeutic PCa biomarkers with a brief description of the innovative approaches applied to glycan analysis to date. Finally, the review covers the possibility to use exosomes as a rich source of glycans for future innovative and advanced diagnostics of PCa. The review covers updates in the field since 2016. Expert commentary: The summary provided in this review paper suggests that glycan-based biomarkers can offer high-assay accuracy not only for diagnostic purposes but also for monitoring/surveillance of the PCa disease.
Collapse
Affiliation(s)
- Jan Tkac
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Tomas Bertok
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Michal Hires
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia
| | - Eduard Jane
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia
| | - Lenka Lorencova
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Peter Kasak
- c Center for Advanced Materials , Qatar University , Doha , Qatar
| |
Collapse
|
20
|
Sweeney JG, Liang J, Antonopoulos A, Giovannone N, Kang S, Mondala TS, Head SR, King SL, Tani Y, Brackett D, Dell A, Murphy GF, Haslam SM, Widlund HR, Dimitroff CJ. Loss of GCNT2/I-branched glycans enhances melanoma growth and survival. Nat Commun 2018; 9:3368. [PMID: 30135430 PMCID: PMC6105653 DOI: 10.1038/s41467-018-05795-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer cells often display altered cell-surface glycans compared to their nontransformed counterparts. However, functional contributions of glycans to cancer initiation and progression remain poorly understood. Here, from expression-based analyses across cancer lineages, we found that melanomas exhibit significant transcriptional changes in glycosylation-related genes. This gene signature revealed that, compared to normal melanocytes, melanomas downregulate I-branching glycosyltransferase, GCNT2, leading to a loss of cell-surface I-branched glycans. We found that GCNT2 inversely correlated with clinical progression and that loss of GCNT2 increased melanoma xenograft growth, promoted colony formation, and enhanced cell survival. Conversely, overexpression of GCNT2 decreased melanoma xenograft growth, inhibited colony formation, and increased cell death. More focused analyses revealed reduced signaling responses of two representative glycoprotein families modified by GCNT2, insulin-like growth factor receptor and integrins. Overall, these studies reveal how subtle changes in glycan structure can regulate several malignancy-associated pathways and alter melanoma signaling, growth, and survival.
Collapse
Affiliation(s)
- Jenna Geddes Sweeney
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Jennifer Liang
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Aristotelis Antonopoulos
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - Nicholas Giovannone
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Shuli Kang
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Tony S. Mondala
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Steven R. Head
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Sandra L. King
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Yoshihiko Tani
- 0000 0004 1762 2623grid.410775.0Japanese Red Cross Kinki Block Blood Center, 7-5-17 Saito Asagi, Ibaraki-shi, Osaka 567-0085 Japan
| | - Danielle Brackett
- 0000 0004 0378 8294grid.62560.37Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Anne Dell
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - George F. Murphy
- 000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA ,0000 0004 0378 8294grid.62560.37Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Stuart M. Haslam
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - Hans R. Widlund
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Charles J. Dimitroff
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
21
|
Chao CC, Wu PH, Huang HC, Chung HY, Chou YC, Cai BH, Kannagi R. Downregulation of miR-199a/b-5p is associated with GCNT2 induction upon epithelial-mesenchymal transition in colon cancer. FEBS Lett 2017; 591:1902-1917. [PMID: 28542779 DOI: 10.1002/1873-3468.12685] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 11/08/2022]
Abstract
β-1,6-N-acetylglucosaminyltransferase 2 (GCNT2), which encodes a key glycosyltransferase for blood group I antigen synthesis, is induced upon epithelial-mesenchymal transition (EMT). Our results indicate that GCNT2 is upregulated upon EMT induced with epidermal growth factor and basic FGF in cultured human colon cancer cells. GCNT2 knockdown or overexpression decreases or increases, respectively, malignancy-related characteristics of colon cancer cells and I antigen levels. MiR-199a/b-5p is markedly downregulated upon EMT in colon cancer cells. Here, we find that miR-199a/b-5p consistently regulates GCNT2 expression in reporter assays and that it binds directly to the GCNT2 3' untranslated region intracellularly in RNA-induced silencing complex-trap assays. Overexpression of miR-199a/b-5p decreases GCNT2 expression and suppresses I antigen production. Based on these findings, we propose that miR-199a/b-5p regulates GCNT2 and I antigen expression in colon cancer cells undergoing EMT.
Collapse
Affiliation(s)
- Chia-Chun Chao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Han Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Hsiao-Yu Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,National RNAi Core Facility, Academia Sinica, Taipei, Taiwan
| | - Bi-He Cai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Reiji Kannagi
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
22
|
Lee YH, Liao YJ, Huang CH, Chang FL, Fan TH, Twu YC. Branched I antigens on leukemia cells enhanced sensitivity against natural killer-cell cytotoxicity through affecting the target-effector interaction. Transfusion 2017; 57:1040-1051. [PMID: 28337749 DOI: 10.1111/trf.13982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND The aberrant glycosylation on proteins and lipids has been implicated in malignant transformations for promoting the tumorigenesis, metastasis, and evasion from the host immunity. The I-branching β-1,6-N-acetylglucosaminyltransferase, converting the straight i to branched I histo-blood group antigens, reportedly could influence the migration, invasion, and metastasis of solid tumors. STUDY DESIGN AND METHODS We first chose the highly cytotoxic natural killer (NK)-92MI cells as effector against leukemia for this cell line has been used in several clinical trials. Fluorescence-activated cell sorting and nonradioactive cytotoxicity assay were performed to reexamine the role of NK-activating receptors, their corresponding ligands, and the tumor-associated carbohydrate antigens in this NK-92MI-leukemia in vitro system. The I role on cytotoxic mechanism was further studied especially on the effector-target interactions by cytotoxic analysis and conjugate formation assay. RESULTS We showed that expression levels of leukemia surface ligands for NK-activating receptors did not positively reflect susceptibility to NK-92MI. Instead, the expression of I antigen on the leukemia cells was found important in mediating the susceptibility to NK targeting by affecting the interaction with effector cells. Furthermore, susceptibility was shown to dramatically increase while overexpressing branched I antigens on the I- cells. By both conjugate and cytotoxicity assay, we revealed that the presence of I antigen on leukemia cells enhanced the interaction with NK-92MI cells, increasing susceptibility to cell-mediated lysis. CONCLUSION In our system, branched I antigens on the leukemia were involved in the immunosurveillance mediated by NK cells specifically through affecting the effector-target interaction.
Collapse
Affiliation(s)
- Yen-Hua Lee
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology
| | - Chin-Han Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Ling Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Hsi Fan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
23
|
Mikami J, Tobisawa Y, Yoneyama T, Hatakeyama S, Mori K, Hashimoto Y, Koie T, Ohyama C, Fukuda M. I-branching N-acetylglucosaminyltransferase regulates prostate cancer invasiveness by enhancing α5β1 integrin signaling. Cancer Sci 2016; 107:359-68. [PMID: 26678556 PMCID: PMC4814258 DOI: 10.1111/cas.12859] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/29/2015] [Accepted: 12/12/2015] [Indexed: 01/20/2023] Open
Abstract
Cell surface carbohydrates are important for cell migration and invasion of prostate cancer (PCa). Accordingly, the I‐branching N‐acetylglucosaminyltransferase (GCNT2) converts linear i‐antigen to I‐branching glycan, and its expression is associated with breast cancer progression. In the present study, we identified relationships between GCNT2 expression and clinicopathological parameters in patients with PCa. Paraffin‐embedded PCa specimens were immunohistochemically tested for GCNT2 expression, and the roles of GCNT2 in PCa progression were investigated using cell lines with high GCNT2 expression and low GCNT2 expression. GCNT2‐positive cells were significantly lesser in organ‐confined disease than in that with extra‐capsular extensions, and GCNT2‐negative tumors were associated with significantly better prostate‐specific antigen‐free survival compared with GCNT2‐positive tumors. Subsequent functional studies revealed that knockdown of GCNT2 expression in PCa cell lines significantly inhibited cell migration and invasion. GCNT2 regulated the expression of cell surface I‐antigen on the O‐glycan and glycolipid. Moreover, I‐antigen‐bearing glycolipids were subject to α5β1 integrin–fibronectin mediated protein kinase B phosphorylation. In conclusion, GCNT2 expression is closely associated with invasive potential of PCa.
Collapse
Affiliation(s)
- Jotaro Mikami
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tohru Yoneyama
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuyuki Mori
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuhiro Hashimoto
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Koie
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Minoru Fukuda
- Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Sanford Burnham Prebys Medical Discovery Institute, Tumor Microenvironment and Metastasis Program, NCI-Designated Cancer Center, La Jolla, California, USA
| |
Collapse
|