1
|
Shin SY, Chen J, Milman Krentsis I, Reisner Y, Abrencillo R, Hussain R, Wu D, Karmouty-Quintana H. From Epithelium to Therapy: Transitional Cells in Lung Fibrosis. Am J Respir Cell Mol Biol 2025; 72:472-483. [PMID: 39642382 PMCID: PMC12051923 DOI: 10.1165/rcmb.2024-0372tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024] Open
Abstract
Patients with idiopathic pulmonary fibrosis and lung fibrosis secondary to infections such as influenza A and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have limited treatment options outside of supportive therapy and lung transplantation. Multiple lung stem cell populations have been implicated in the pathogenesis of lung fibrosis, and more progenitor cell populations continue to be discovered and characterized. In this review, we summarize the functions and differentiation pathways of various cells that constitute the lung epithelium. We then focus on two subpopulations of KRT5+ or KRT8+ transitional cells that both originate from alveolar type II cells but experience different cell fates and play important roles in lung regeneration and repair. We address these transitional cells' potential role in fibrosis and bronchiolization of the alveoli, as they are correlated to aggregate near fibrotic foci in both in vivo models and in human fibrotic lung disease. We conclude by discussing recent advances in cell and organoid therapy to replace aberrant transitional cells and treat lung fibrosis. Namely, we focus on strategies to minimize immune clearance of transplanted cells and to optimize engraftment by transplanting cells precultured as three-dimensional organoids.
Collapse
Affiliation(s)
- Sarah Y. Shin
- Department of Biochemistry and Molecular Biology and
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, UTHealth Houston, Houston, Texas
| | - Jichao Chen
- Department of Pediatrics, Cincinnati Children’s Hospital, Cincinnati, Ohio
| | - Irit Milman Krentsis
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Yair Reisner
- Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Rodeo Abrencillo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, Houston, Texas
| | - Rahat Hussain
- Center for Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Center at Houston, Houston, Texas
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, UTHealth Houston, Houston, Texas
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, Texas; and
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology and
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, Houston, Texas
| |
Collapse
|
2
|
Jiang Y, Ye D, Zhou Y. An integrated analysis of scRNA-seq and RNA-seq data revealed metastasis-related regulators as prognostic indicators in lung adenocarcinoma. J Thorac Dis 2025; 17:2473-2491. [PMID: 40400936 PMCID: PMC12090110 DOI: 10.21037/jtd-2025-482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/16/2025] [Indexed: 05/23/2025]
Abstract
Background The incidence and mortality rates of lung cancer are exceptionally high. Many patients are diagnosed with early stage lung cancer but experience rapid recurrence post-surgery. Many research studies have shown that the unfavorable prognosis of patients may be associated with micro-metastasis in the lymph nodes. Our research aimed to develop a nomogram to predict the prognosis of lung adenocarcinoma (LUAD). Methods Single-cell RNA sequencing (scRNA-seq) data were analyzed to identify 11 cell clusters. Patterns of incoming and outgoing signals were identified across the entire cell population. A weighted gene co-expression network analysis (WGCNA) was conducted to uncover critical genes in LUAD. The intersecting marker genes were used to construct the prognostic model. Results scRNA-seq data were analyzed to identify 19 cell clusters. We identified 3,464 marker genes from the scRNA-seq dataset, 1,994 differentially expressed genes from the bulk RNA sequencing (RNA-seq) dataset, and 1,863 genes associated with a key module identified by the WGCNA. After performing the intersection, univariate Cox, and least absolute shrinkage and selection operator analyses, a prognostic model was established based on the expression levels of 13 signature genes. Subsequent functional experiments confirmed the role of selected regulated genes. Conclusions Through the integration of scRNA-seq data and bulk RNA-seq data, we developed an innovative model to predict the prognosis of patients. The risk score was found to be a significant independent predictor and clinical-pathological features of LUAD.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Thoracic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danrong Ye
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Ma H, Srivastava S, Ho SWT, Xu C, Lian BSX, Ong X, Tay ST, Sheng T, Lum HYJ, Abdul Ghani SAB, Chu Y, Huang KK, Goh YT, Lee M, Hagihara T, Ng CSY, Tan ALK, Zhang Y, Ding Z, Zhu F, Ng MSW, Joseph CRC, Chen H, Li Z, Zhao JJ, Rha SY, Teh M, Yeong J, Yong WP, So JBY, Sundar R, Tan P. Spatially Resolved Tumor Ecosystems and Cell States in Gastric Adenocarcinoma Progression and Evolution. Cancer Discov 2025; 15:767-792. [PMID: 39774838 PMCID: PMC11962405 DOI: 10.1158/2159-8290.cd-24-0605] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/17/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
SIGNIFICANCE Integration of spatial transcriptomic (GeoMx Digital Spatial Profiler) and single-cell RNA sequencing data from multiple gastric cancers identifies spatially resolved expression-based intratumoral heterogeneity, associated with distinct immune microenvironments. We uncovered two separate evolutionary trajectories associated with specific molecular subtypes, clinical prognoses, stromal neighborhoods, and genetic drivers. Tumor-stroma interfaces emerged as a unique state of tumor ecology.
Collapse
Affiliation(s)
- Haoran Ma
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Supriya Srivastava
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shamaine Wei Ting Ho
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chang Xu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Xuewen Ong
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Su Ting Tay
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Taotao Sheng
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | | | | | - Yunqiang Chu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Kie Kyon Huang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yeek Teck Goh
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Minghui Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Takeshi Hagihara
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Clara Shi Ya Ng
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Angie Lay Keng Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yanrong Zhang
- Department of Information Systems and Analytics, School of Computing, National University of Singapore, Singapore, Singapore
| | - Zichen Ding
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michelle Shu Wen Ng
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Craig Ryan Cecil Joseph
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hui Chen
- MGI Tech Singapore Pte. Ltd., Singapore, Singapore
| | - Zhen Li
- MGI Tech Singapore Pte. Ltd., Singapore, Singapore
| | - Joseph J. Zhao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Sun Young Rha
- Yonsei Cancer Center, Yonsei University Health System, Seoul, Republic of Korea
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ming Teh
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joe Yeong
- Department of Pathology, National University Hospital, Singapore, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Peng Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Jimmy Bok-Yan So
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raghav Sundar
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
- Singhealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Breideband L, Wächtershäuser KN, Sarkar R, Puspathasan M, Stelzer EH, Pampaloni F. Gravitational forces and matrix stiffness modulate the invasiveness of breast cancer cells in bioprinted spheroids. Mater Today Bio 2025; 31:101640. [PMID: 40124331 PMCID: PMC11930500 DOI: 10.1016/j.mtbio.2025.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/29/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
The progression of breast cancer is influenced by the stiffness of the extracellular matrix (ECM), which becomes stiffer as cancer advances due to increased collagen IV and laminin secretion by cancer-associated fibroblasts. Intriguingly, breast cancer cells cultivated in two-dimensions exhibit a less aggressive behavior when exposed to weightlessness, or microgravity conditions. This study aims to elucidate the interplay between matrix stiffness and microgravity on breast cancer progression. For this purpose, three-dimensional spheroids of breast cancer cell lines (MCF-7 and MDA-MB-231) were formed. These spheroids were subsequently bioprinted in hydrogels of varying stiffness, obtained by the mixing of gelatin methacrylate and poly(ethylene) glycol diacrylate mixed at different ratios. The constructs were printed with a custom stereolithography (SLA) bioprinter converted from a low-cost, commercially available 3D printer. These bioprinted structures, encapsulating breast cancer spheroids, were then placed in a clinostat (microgravity simulation device) for a duration of seven days. Comparative analyses were conducted between objects cultured under microgravity and standard earth gravity conditions. Protein expression was characterized through fluorescent microscopy, while gene expression of MCF-7 constructs was analyzed via RNA sequencing. Remarkably, the influence of a stiffer ECM on the protein and gene expression levels of breast cancer cells could be modulated and sometimes even reversed in microgravity conditions. The study's findings hold implications for refining therapeutic strategies for advanced breast cancer stages - an array of genes involved in reversing aggressive or even metastatic behavior might lead to the discovery of new compounds that could be used in a clinical setting.
Collapse
Affiliation(s)
- Louise Breideband
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Kaja Nicole Wächtershäuser
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Ryan Sarkar
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Melosha Puspathasan
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Ernst H.K. Stelzer
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| |
Collapse
|
5
|
Yang S, Zhang X, Li X, Li H. Crip2 affects vascular development by fine-tuning endothelial cell aggregation and proliferation. Cell Mol Life Sci 2025; 82:110. [PMID: 40074973 PMCID: PMC11904032 DOI: 10.1007/s00018-025-05624-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Endothelial cell adhesion and migration are crucial to various biological processes, including vascular development. The identification of factors that modulate vascular development through these cell functions has emerged as a prominent focus in cardiovascular research. Crip2 is known to play a crucial role in cardiac development, yet its involvement in vascular development and the underlying mechanism remains elusive. In this study, we revealed that Crip2 is expressed predominantly in the vascular system, particularly in the posterior cardinal vein and caudal vein plexus intersegmental vein. Upon Crip2 loss, the posterior cardinal vein plexus and caudal vein plexus are hypoplastic, and endothelial cells exhibit aberrant aggregation. In human umbilical vein endothelial cells (HUVECs), CRIP2 interacts with the cytoskeleton proteins KRT8 and VIM. The absence of CRIP2 negatively regulates their expression, thereby fine-tuning cytoskeleton formation, resulting in a hyperadhesive phenotype. Moreover, CRIP2 deficiency perturbs the VEGFA/CDC42 signaling pathway, which in turn diminishes the migrating capacity of HUVECs. Furthermore, the loss of CRIP2 impairs cell proliferation by affecting its interaction with SRF through PDE10A/cAMP and PDGF/JAK/STAT/SRF signaling. Collectively, our findings delineate a crucial role for CRIP2 in controlling the migration, adhesion and proliferation of endothelial cells, thereby contributing to vascular development in zebrafish. These insights may provide a deeper understanding of the etiology of cardiovascular disorders.
Collapse
Affiliation(s)
- Shuaiqi Yang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiangmin Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xianpeng Li
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hongyan Li
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Ocean University of China, Room 301, Darwin Building, 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
6
|
Tang W, Ma X. Identification of Causal Plasma Proteins in Hepatocellular Carcinoma via Two-Sample Mendelian Randomization and Integrative Transcriptomic‒Proteomic Analysis. CANCER RESEARCH COMMUNICATIONS 2025; 5:433-443. [PMID: 39991825 PMCID: PMC11897958 DOI: 10.1158/2767-9764.crc-24-0553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
SIGNIFICANCE In this study, we identified several causal proteins in HCC using UK Biobank Pharma Proteomics Project proteomic data via two-sample MR. We performed colocalization and sensitivity analyses, utilized single-cell RNA sequencing data for validation, and discovered potential drugs through molecular docking.
Collapse
Affiliation(s)
- Weihao Tang
- College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, Xi’an, China
| |
Collapse
|
7
|
Zou M, Qiu L, Wu W, Liu H, Xiao H, Liu J. Challenging Conventional Perceptions of Oncogenes and Tumor Suppressor Genes: A Comprehensive Analysis of Gene Expression Patterns in Cancer. Genes Chromosomes Cancer 2025; 64:e70030. [PMID: 39936880 DOI: 10.1002/gcc.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/11/2024] [Accepted: 01/25/2025] [Indexed: 02/13/2025] Open
Abstract
Identifying genes involved in cancer is crucial for understanding the underlying molecular mechanisms of the disease and developing effective treatment strategies. Differential expression analysis (DEA) is the predominant method used to identify cancer-related genes. This approach involves comparing gene expression levels between different samples, such as cancerous and non-cancerous tissues, to identify genes that are significantly upregulated or downregulated in cancer. DEA is based on the commonly believed assumption that genes upregulated in cancerous tissues have the potential to function as oncogenes. Their expression levels often correlate with cancer advancement and unfavorable prognosis, whereas downregulated genes display the opposite correlation. However, contrary to the prevailing belief, our analysis utilizing The Cancer Genome Atlas (TCGA) databases revealed that the upregulated or downregulated genes in cancer do not always align with cancer progression or prognosis. These findings emphasize the need for alternative approaches for identifying cancer-related genes that may be more accurate and effective. To address this need, we compared the effectiveness of machine learning (ML) methods with that of traditional DEA in the identification of cancer-related genes. ML algorithms have the advantage of being able to analyze large-scale genomic data and identify complex patterns that may go unnoticed by traditional methods. Our results demonstrated that ML methods significantly outperformed DEA in the screening of cancer-related genes.
Collapse
Affiliation(s)
- Mingyuan Zou
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, People's Republic of China
- Medical School, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Li Qiu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, People's Republic of China
- Medical School, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wentao Wu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, People's Republic of China
- Medical School, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Hui Liu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, People's Republic of China
- Medical School, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Han Xiao
- Department of Clinical Laboratory, Zhuhai, People's Republic of China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, People's Republic of China
- Medical School, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
Abdelazeem KNM, Nguyen D, Corbo S, Darragh LB, Matsumoto MW, Van Court B, Neupert B, Yu J, Olimpo NA, Osborne DG, Gadwa J, Ross RB, Nguyen A, Bhatia S, Kapoor M, Friedman RS, Jacobelli J, Saviola AJ, Knitz MW, Pasquale EB, Karam SD. Manipulating the EphB4-ephrinB2 axis to reduce metastasis in HNSCC. Oncogene 2025; 44:130-146. [PMID: 39489818 PMCID: PMC11725500 DOI: 10.1038/s41388-024-03208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The EphB4-ephrinB2 signaling axis has been heavily implicated in metastasis across numerous cancer types. Our emerging understanding of the dichotomous roles that EphB4 and ephrinB2 play in head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to rational drug design. We find that EphB4 knockdown in cancer cells enhances metastasis in preclinical HNSCC models by augmenting immunosuppressive cells like T regulatory cells (Tregs) within the tumor microenvironment. EphB4 inhibition in cancer cells also amplifies their ability to metastasize through increased expression of genes associated with hallmark pathways of metastasis along with classical and non-classical epithelial-mesenchymal transition. In contrast, vascular ephrinB2 knockout coupled with radiation therapy (RT) enhances anti-tumor immunity, reduces Treg accumulation into the tumor, and decreases metastasis. Notably, targeting the EphB4-ephrinB2 signaling axis with the engineered ligands ephrinB2-Fc-His and Fc-TNYL-RAW-GS reduces local tumor growth and distant metastasis in a preclinical model of HNSCC. Our data suggests that targeted inhibition of vascular ephrinB2 while avoiding inhibition of EphB4 in cancer cells could be a promising strategy to mitigate HNSCC metastasis.
Collapse
Affiliation(s)
- Khalid N M Abdelazeem
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mike W Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Justin Yu
- Department of Otolaryngology - Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas A Olimpo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Douglas Grant Osborne
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard B Ross
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network, and University of Toronto, Toronto, ON, Canada
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Zhang X, Liu C, Cao Y, Liu L, Sun F, Hou L. RRS1 knockdown inhibits the proliferation of neuroblastoma cell via PI3K/Akt/NF-κB pathway. Pediatr Res 2025; 97:202-212. [PMID: 35523884 DOI: 10.1038/s41390-022-02073-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/12/2022] [Accepted: 02/27/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND RRS1 plays an important role in regulating ribosome biogenesis. Recently, RRS1 has emerged as an oncoprotein involved in tumorigenicity of some cancers. However its role in neuroblastoma remains unknown. METHODS RRS1 expression was detected in pediatric neuroblastoma patients' tissues and cell lines. The effects of RRS1 knockdown on proliferation, apoptosis, and cell cycle were evaluated in neuroblastoma cell lines. RRS1-related survival pathway was analyzed by co-immunoprecipitation (Co-IP), mass spectrometry, reverse transcription-quantitative real-time PCR (RT-qPCR), and western blot. Protein-protein interaction (PPI) network was constructed using Cytoscape software and the STRING databases. RESULTS Increased RRS1 level was found in neuroblastoma cases (35.6%) and cell lines. High RRS1 expression levels were associated with poor prognosis. RRS1 knockdown inhibited cell proliferation, induced apoptosis, and caused cell cycle arrest in SK-N-AS and SH-SY5Y cells. Co-IP and mass spectrometry analysis showed that RRS1 affects PI3K/Akt and nuclear factor κB (NF-κB) pathways. RT-qPCR and western blot results revealed that RRS1 knockdown inhibited the PI3K/Akt/NF-κB pathway through dephosphorylation of key proteins. In PPI network, AKT, PI3K, and P65 connected RRS1 with differentially expressed proteins more closely. CONCLUSIONS This study suggests RRS1 knockdown may inhibit neuroblastoma cell proliferation by the PI3K/Akt/NF-κB pathway. Therefore, RRS1 may be a potential target for neuroblastoma treatment. IMPACT RRS1 is involved in the progression of neuroblastoma. Knockdown of RRS1 contributes to inhibit the survival of neuroblastoma cells. RRS1 is associated with the PI3K/Akt/NF-κB signaling pathway in neuroblastoma cells. RRS1 may be a promising target for neuroblastoma therapy.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
- Qingdao Blood Center, Qingdao, Shandong Province, China
| | - Cun Liu
- Department of Laboratory, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yi Cao
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Li Liu
- Qingdao Blood Center, Qingdao, Shandong Province, China
| | - Fusheng Sun
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, Shandong Province, China.
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
10
|
Gu Z, Zou L, Pan X, Yu Y, Liu Y, Zhang Z, Liu J, Mao S, Zhang J, Guo C, Li W, Geng J, Zhang W, Yao X, Shen B. The role and mechanism of NAT10-mediated ac4C modification in tumor development and progression. MedComm (Beijing) 2024; 5:e70026. [PMID: 39640362 PMCID: PMC11617596 DOI: 10.1002/mco2.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
RNA modification has emerged as a crucial area of research in epigenetics, significantly influencing tumor biology by regulating RNA metabolism. N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification, the sole known acetylation in eukaryotic RNA, influences cancer pathogenesis and progression. NAT10 is the only writer of ac4C and catalyzes acetyl transfer on targeted RNA, and ac4C helps to improve the stability and translational efficiency of ac4C-modified RNA. NAT10 is highly expressed and associated with poor prognosis in pan-cancers. Based on its molecular mechanism and biological functions, ac4C is a central factor in tumorigenesis, tumor progression, drug resistance, and tumor immune escape. Despite the increasing focus on ac4C, the specific regulatory mechanisms of ac4C in cancer remain elusive. The present review thoroughly analyzes the current knowledge on NAT10-mediated ac4C modification in cancer, highlighting its broad regulatory influence on targeted gene expression and tumor biology. This review also summarizes the limitations and perspectives of current research on NAT10 and ac4C in cancer, to identify new therapeutic targets and advance cancer treatment strategies.
Collapse
Affiliation(s)
- Zhuoran Gu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Libin Zou
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Xinjian Pan
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Yang Yu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Yongqiang Liu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Zhijin Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Ji Liu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Shiyu Mao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Junfeng Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Changcheng Guo
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Wei Li
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Jiang Geng
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Wentao Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Xudong Yao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Bing Shen
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of MedicineTongi UniversityShanahaiChina
| |
Collapse
|
11
|
Gao S, Huang J, Zhao R, He H, Zhang J, Wen X. Comprehensive analysis of multiple regulated cell death risk signatures in lung adenocarcinoma. Heliyon 2024; 10:e38641. [PMID: 39398028 PMCID: PMC11471212 DOI: 10.1016/j.heliyon.2024.e38641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Background Regulated cell death (RCD) has considerable impact on tumor progress and sensitivity of treatment. Lung adenocarcinoma (LUAD) show a high resistance for conventional radiotherapies and chemotherapies. Currently, regulation of cancer cell death has been emerging as a new promising therapeutic avenue for LUAD patients. However, the crosstalk in each pattern RCD is unclear. Methods We integrated collected the hub-genes of 12 RCD subroutines and compressively analyzed these hub-genes synergistic effect in LUAD. The characters of RCD genes expression and prognosis were developed in The Cancer Genome Atlas (TCGA)-LUAD data. We developed and validated an RCD risk model based on TCGA and GSE70294 data set, respectively. Functional annotation and tumor immunotherapy based on the risk model were also investigated. Results 28 RCD-related genes and two LUAD molecular cluster were identified. Survival analysis revealed that the prognosis in high-risk group was worser than those in low-risk group. Functional enrichment analysis indicated that the RCD risk model correlated with immune responses. Further analysis indicated that the high-risk group in RCD risk model exhibited an immunosuppressive microenvironment and a lowly immunotherapy responder ratio. Conclusions We present an RCD risk model which have a promising ability in predicting LUAD prognosis and immunotherapy response.
Collapse
Affiliation(s)
| | | | - Rui Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Haiqi He
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jia Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaopeng Wen
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
12
|
Li Z, Zhang B, Chan JJ, Tabatabaeian H, Tong QY, Chew XH, Fan X, Driguez P, Chan C, Cheong F, Wang S, Siew BE, Tan IJW, Lee KY, Lieske B, Cheong WK, Kappei D, Tan KK, Gao X, Tay Y. An isoform-resolution transcriptomic atlas of colorectal cancer from long-read single-cell sequencing. CELL GENOMICS 2024; 4:100641. [PMID: 39216476 PMCID: PMC11480860 DOI: 10.1016/j.xgen.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer deaths globally. In recent years, short-read single-cell RNA sequencing (scRNA-seq) has been instrumental in deciphering tumor heterogeneities. However, these studies only enable gene-level quantification but neglect alterations in transcript structures arising from alternative end processing or splicing. In this study, we integrated short- and long-read scRNA-seq of CRC samples to build an isoform-resolution CRC transcriptomic atlas. We identified 394 dysregulated transcript structures in tumor epithelial cells, including 299 resulting from various combinations of splicing events. Second, we characterized genes and isoforms associated with epithelial lineages and subpopulations exhibiting distinct prognoses. Among 31,935 isoforms with novel junctions, 330 were supported by The Cancer Genome Atlas RNA-seq and mass spectrometry data. Finally, we built an algorithm that integrated novel peptides derived from open reading frames of recurrent tumor-specific transcripts with mass spectrometry data and identified recurring neoepitopes that may aid the development of cancer vaccines.
Collapse
Affiliation(s)
- Zhongxiao Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bin Zhang
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Qing Yun Tong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiaonan Fan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Patrick Driguez
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Charlene Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Faith Cheong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shi Wang
- Department of Pathology, National University Health System, Singapore 119228, Singapore
| | - Bei En Siew
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ian Jse-Wei Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Kai-Yin Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Bettina Lieske
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Wai-Kit Cheong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
13
|
Li C, Hu J, Jiang X, Tan H, Mao Y. Identification and validation of an immune-derived multiple programmed cell death index for predicting clinical outcomes, molecular subtyping, and drug sensitivity in lung adenocarcinoma. Clin Transl Oncol 2024; 26:2274-2295. [PMID: 38563847 DOI: 10.1007/s12094-024-03439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Comprehensive cross-interaction of multiple programmed cell death (PCD) patterns in the patients with lung adenocarcinoma (LUAD) have not yet been thoroughly investigated. METHODS Here, we collected 19 different PCD patterns, including 1911 PCD-related genes, and developed an immune-derived multiple programmed cell death index (MPCDI) based on machine learning methods. RESULTS Using the median MPCDI scores, we categorized the LUAD patients into two groups: low-MPCDI and high-MPCDI. Our analysis of the TCGA-LUAD training cohort and three external GEO cohorts (GSE37745, GSE30219, and GSE68465) revealed that patients with high-MPCDI experienced a more unfavorable prognosis, whereas those with low-MPCDI had a better prognosis. Furthermore, the results of both univariate and multivariate Cox regression analyses further confirmed that MPCDI serves as a novel independent risk factor. By combining clinical characteristics with the MPCDI, we constructed a nomogram that provides an accurate and reliable quantitative tool for personalized clinical management of LUAD patients. The findings obtained from the analysis of C-index and the decision curve revealed that the nomogram outperformed various clinical variables in terms of net clinical benefit. Encouragingly, the low-MPCDI patients are more sensitive to commonly used chemotherapy drugs, which suggests that MPCDI scores have a guiding role in chemotherapy for LUAD patients. CONCLUSION Therefore, MPCDI can be used as a novel clinical diagnostic classifier, providing valuable insights into the clinical management and clinical decision-making for LUAD patients.
Collapse
Affiliation(s)
- Chunhong Li
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.
| | - Jiahua Hu
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Xiling Jiang
- School of Medical Laboratory Medicine, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Haiyin Tan
- School of Medical Laboratory Medicine, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Yiming Mao
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215028, China.
| |
Collapse
|
14
|
Li K, Hong Y, Yu Y, Xie Z, Lv D, Wang C, Xie T, Chen H, Chen Z, Zeng J, Zhao S. NAT10 Promotes Prostate Cancer Growth and Metastasis by Acetylating mRNAs of HMGA1 and KRT8. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310131. [PMID: 38922788 PMCID: PMC11348116 DOI: 10.1002/advs.202310131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/22/2024] [Indexed: 06/28/2024]
Abstract
N4-acetylcytidine (ac4C) is essential for the development and migration of tumor cells. According to earlier research, N-acetyltransferase 10 (NAT10) can increase messenger RNAs (mRNAs) stability by catalyzing the synthesis of ac4C. However, little is known about NAT10 expression and its role in the acetylation modifications in prostate cancer (PCa). Thus, the biological function of NAT10 in PCa is investigated in this study. Compared to paraneoplastic tissues, the expression of NAT10 is significantly higher in PCa. The NAT10 expression is strongly correlated with the pathological grade, clinical stage, Gleason score, T-stage, and N-stage of PCa. NAT10 has the ability to advance the cell cycle and the epithelial-mesenchymal transition (EMT), both of which raise the malignancy of tumor cells. Mechanistically, NAT10 enhance the stability of high mobility group AT-hook 1 (HMGA1) by acetylating its mRNA, thereby promoting cell cycle progression to improve cell proliferation. In addition, NAT10 improve the stability of Keratin 8 (KRT8) by acetylating its mRNA, which promotes the progression of EMT to improve cell migration. This findings provide a potential prognostic or therapeutic target for PCa.
Collapse
Affiliation(s)
- Kang‐Jing Li
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Department of UrologyAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People's HospitalQingyuan511518China
| | - Yaying Hong
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yu‐Zhong Yu
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Zhiyue Xie
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Dao‐Jun Lv
- Department of UrologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Chong Wang
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Tao Xie
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional MoleculesCollege of Food and DrugLuoyang Normal UniversityLuoyangHenan471934P. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Jianwen Zeng
- Department of UrologyAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People's HospitalQingyuan511518China
| | - Shan‐Chao Zhao
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Department of UrologyThe Fifth Affiliated HospitalSouthern Medical UniversityGuangzhou510900China
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhou510500China
| |
Collapse
|
15
|
Abdelazeem KN, Nguyen D, Corbo S, Darragh LB, Matsumoto MW, Court BV, Neupert B, Yu J, Olimpo NA, Osborne DG, Gadwa J, Ross RB, Nguyen A, Bhatia S, Kapoor M, Friedman RS, Jacobelli J, Saviola AJ, Knitz MW, Pasquale EB, Karam SD. Manipulating the EphB4-ephrinB2 axis to reduce metastasis in HNSCC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604518. [PMID: 39091728 PMCID: PMC11291065 DOI: 10.1101/2024.07.21.604518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The EphB4-ephrinB2 signaling axis has been heavily implicated in metastasis across numerous cancer types. Our emerging understanding of the dichotomous roles that EphB4 and ephrinB2 play in head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to rational drug design. We find that EphB4 knockdown in cancer cells enhances metastasis in preclinical HNSCC models by augmenting immunosuppressive cells like T regulatory cells (Tregs) within the tumor microenvironment. EphB4 inhibition in cancer cells also amplifies their ability to metastasize through increased expression of genes associated with epithelial mesenchymal transition and hallmark pathways of metastasis. In contrast, vascular ephrinB2 knockout coupled with radiation therapy (RT) enhances anti-tumor immunity, reduces Treg accumulation into the tumor, and decreases metastasis. Notably, targeting the EphB4-ephrinB2 signaling axis with the engineered EphB4 ligands EFNB2-Fc-His and Fc-TNYL-RAW-GS reduces local tumor growth and distant metastasis in a preclinical model of HNSCC. Our data suggest that targeted inhibition of vascular ephrinB2 while avoiding inhibition of EphB4 in cancer cells could be a promising strategy to mitigate HNSCC metastasis.
Collapse
Affiliation(s)
- Khalid N.M. Abdelazeem
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B. Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mike W. Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Justin Yu
- Department of Otolaryngology - Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas A. Olimpo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Douglas Grant Osborne
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard B. Ross
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Rachel S. Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Michael W. Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Elena B. Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
16
|
Dong C, Zhao L, Liu X, Dang L, Zhang X. Single-cell analysis reveals landscape of endometrial cancer response to estrogen and identification of early diagnostic markers. PLoS One 2024; 19:e0301128. [PMID: 38517922 PMCID: PMC10959392 DOI: 10.1371/journal.pone.0301128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/08/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND The development of endometrial cancer (EC) is closely related to the abnormal activation of the estrogen signaling pathway. Effective diagnostic markers are important for the early detection and treatment of EC. METHOD We downloaded single-cell RNA sequencing (scRNA-seq) and spatial transcriptome (ST) data of EC from public databases. Enrichment scores were calculated for EC cell subpopulations using the "AddModuleScore" function and the AUCell package, respectively. Six predictive models were constructed, including logistic regression (LR), Gaussian naive Bayes (GaussianNB), k-nearest neighbor (KNN), support vector machine (SVM), extreme gradient boosting (XGB), and neural network (NK). Subsequently, receiver-operating characteristics with areas under the curves (AUCs) were used to assess the robustness of the predictive model. RESULT We classified EC cell coaggregation into six cell clusters, of which the epithelial, fibroblast and endothelial cell clusters had higher estrogen signaling pathway activity. We founded the epithelial cell subtype Epi cluster1, the fibroblast cell subtype Fib cluster3, and the endothelial cell subtype Endo cluster3 all showed early activation levels of estrogen response. Based on EC cell subtypes, estrogen-responsive early genes, and genes encoding Stage I and para-cancer differentially expressed proteins in EC patients, a total of 24 early diagnostic markers were identified. The AUCs values of all six classifiers were higher than 0.95, which indicates that the early diagnostic markers we screened have superior robustness across different classification algorithms. CONCLUSION Our study elucidates the potential biological mechanism of EC response to estrogen at single-cell resolution, which provides a new direction for early diagnosis of EC.
Collapse
Affiliation(s)
- Chunli Dong
- Department of Anesthesiology and Operation, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liyan Zhao
- Department of Anesthesiology and Operation, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiongtao Liu
- Department of Anesthesiology and Operation, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ling Dang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xin Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
17
|
Huang S, Tong W, Yang B, Ma L, Zhang J, Wang C, Xu L, Mei J. KRT80 Promotes Lung Adenocarcinoma Progression and Serves as a Substrate for VCP. J Cancer 2024; 15:2229-2244. [PMID: 38495507 PMCID: PMC10937267 DOI: 10.7150/jca.91753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/05/2024] [Indexed: 03/19/2024] Open
Abstract
Background: Keratin 80(KRT80) encodes a type II intermediate filament protein, known for maintaining cell integrity of cells and its involvement in the tumorigenesis and progression of various cancers. However, comprehensive research on its relevance to lung adenocarcinoma remains limited. Methods: In this study, we utilized multiple databases to investigate the transcriptional expression of KRT80 and its correlation with clinicopathological features. A range of assays, including the Cell Counting Kit 8 assay, colony formation assay, cell migration assay, and flow cytometry, were employed to elucidate the impact of KRT80 on the malignant behavior of lung adenocarcinoma. Immunoprecipitation and mass spectrometry were also used to identify putative genes interacting with KRT80. Results: The expression of KRT80 was elevated in lung adenocarcinoma and patients with high levels of KRT80 expression had poor clinical outcomes. Silencing KRT80 suppressed cell viability, and migration, while overexpression had the opposite effect. In addition, Immunoprecipitation and mass spectrometry revealed an interaction between KRT80 and valosin-containing protein (VCP), with VCP knockdown reducing the stability of KRT80 protein. Overexpression of KRT80 mitigated the inhibitory effect of VCP knockdown to some extent. Conclusion: Our findings collectively suggest that KRT80 is a promising diagnostic and prognostic indicator for lung adenocarcinoma. Additionally, the interaction between KRT80 and VCP plays a crucial role in the progression of lung adenocarcinoma, which implies that KRT80 is a promising therapeutic target.
Collapse
Affiliation(s)
- Shanhua Huang
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weilai Tong
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bowen Yang
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Ma
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiaming Zhang
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chunliang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Linlin Xu
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jinhong Mei
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Molecular Pathology, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Yang Z, Li H, Dong T, Li G, Chen D, Li S, Wang Y, Pan Y, Lu T, Yang G, Zhang G, Cheng P, Wang X. Comprehensive analysis of resistance mechanisms to EGFR-TKIs and establishment and validation of prognostic model. J Cancer Res Clin Oncol 2023; 149:13773-13792. [PMID: 37532906 DOI: 10.1007/s00432-023-05129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are the first-line therapy for patients with lung adenocarcinoma (LUAD) harboring activating EGFR mutations. However, the emergence of drug resistance to EGFR-TKIs remains a critical obstacle for successful treatment and is associated with poor patient outcomes. The overarching objective of this study is to apply bioinformatics tools to gain insights into the mechanisms underlying resistance to EGFR-TKIs and develop a robust predictive model. METHODS The genes associated with gefitinib resistance in the LUAD cell Gene Expression Omnibus (GEO) database were identified using gene chip expression data. Functional enrichment analysis, gene set enrichment analysis (GSEA), and immune infiltration analysis were performed to comprehensively explore the mechanism of gefitinib resistance. Furthermore, a GRRG_score was constructed by integrating genes related to LUAD prognosis from The Cancer Genome Atlas (TCGA) database with the screened Gefitinib Resistant Related differentially expressed genes (GRRDEGs) using the Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression analyses. Furthermore, we conducted an in-depth analysis of the tumor microenvironment (TME) features and their association with immune infiltration between different GRRG_score groups. A prognostic model for LUAD was developed based on the GRRG_score and validated. The HPA database was used to validate protein expression. The CTR-DB database was utilized to validate the results of drug therapy prediction based on the relevant genes. RESULTS A total of 110 differentially expression genes were identified. Pathway enrichment analysis of DEGs showed that the differentially expressed genes were mainly enriched in Mucin type O-glycan biosynthesis, Cytokine-cytokine receptor interaction, Sphingolipid metabolism. Gene set enrichment analysis showed that biological processes strongly correlated with gefitinib resistance were cell proliferation and immune-related pathways, EPITHELIAL_MESENCHYMAL_TRANSITION, APICAL_SURFACE, and APICAL_JUNCTION were highly expressed in the drug-resistant group; KRAS_SIGNALING_DN, HYPOXIA, and HEDGEHOG_SIGNALING were highly expressed in the drug-resistant group. The GRRG_score was constructed based on the expression levels of 13 genes, including HSPA2, ATP8B3, SPOCK1, EIF6, NUP62CL, BCAR3, PCSK9, NT5E, FLNC, KRT8, FSCN1, ANGPTL4, and ID1. We further screened and validated two key genes, namely, NUP62CL and KRT8, which exhibited predictive value for both prognosis and drug resistance. CONCLUSIONS Our study identified several novel GRRDEGs and provided insight into the underlying mechanisms of gefitinib resistance in LUAD. Our results have implications for developing more effective treatment strategies and prognostic models for LUAD patients.
Collapse
Affiliation(s)
- Zhengzheng Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Haiming Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Tongjing Dong
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Guangda Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Dong Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Shujiao Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuancan Pan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Taicheng Lu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Guowang Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ganlin Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Peiyu Cheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Xiaomin Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Shah S, Cook KW, Symonds P, Weißer J, Skinner A, Al Omari A, Paston SJ, Pike I, Durrant LG, Brentville VA. Vaccination with post-translational modified, homocitrullinated peptides induces CD8 T-cell responses that mediate antitumor immunity. J Immunother Cancer 2023; 11:e006966. [PMID: 37857526 PMCID: PMC10603355 DOI: 10.1136/jitc-2023-006966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Post-translational modification of proteins has the potential to alter the ability of T cells to recognize major histocompatibility complex (MHC) class -I and class-II restricted antigens, thereby resulting in altered immune responses. One such modification is carbamylation (homocitrullination) that results in the formation of homocitrulline (Hcit) residues in a non-enzymatic reaction of cyanate with the lysine residues in the polypeptide chain. Homocitrullination occurs in the tumor microenvironment and CD4-mediated immune responses to Hcit epitopes can target stressed tumor cells and provide a potent antitumor response in mouse models. METHODS Homocitrullinated peptides were identified and assessed in vitro for HLA-A2 binding and in vivo in human leukocyte antigen (HLA) transgenic mouse models for immunogenicity. CD8 responses were assessed in vitro for cytotoxicity and in vivo tumor therapy. Human tumor samples were analyzed by targeted mass spectrometry for presence of homocitrullinated peptides. RESULTS Homocitrullinated peptides from aldolase and cytokeratin were identified, that stimulated CD8-mediated responses in vivo. Modified peptides showed enhanced binding to HLA-A2 compared with the native sequences and immunization of HLA-A2 transgenic mice generated high avidity modification specific CD8 responses that killed peptide expressing target cells. Importantly, in vivo the homocitrullinated aldolase specific response was associated with efficient CD8 dependent antitumor therapy of the aggressive murine B16 tumor model indicating that this epitope is naturally presented in the tumor. In addition, the homocitrullinated aldolase epitope was also detected in human tumor samples. CONCLUSION This is the first evidence that homocitrullinated peptides can be processed and presented via MHC-I and targeted for tumor therapy. Thus, Hcit-specific CD8 T-cell responses have potential in the development of future anticancer therapy.
Collapse
Affiliation(s)
| | | | | | - Juliane Weißer
- Proteome Science R&D GmbH und Co, Frankfurt am Main, Hessen, Germany
| | | | | | | | - Ian Pike
- Proteome Science R&D GmbH und Co, Frankfurt am Main, Hessen, Germany
| | - Lindy G Durrant
- Scancell Ltd, Nottingham, UK
- University of Nottingham, Nottingham, UK
| | | |
Collapse
|
20
|
Swain AK, Pandey P, Sera R, Yadav P. Single-cell transcriptome analysis identifies novel biomarkers involved in major liver cancer subtypes. Funct Integr Genomics 2023; 23:235. [PMID: 37438675 DOI: 10.1007/s10142-023-01156-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the two aggressive subtypes of liver cancer (LC). Immense cellular heterogeneity and cross-talk between cancer and healthy cells make it challenging to treat these cancer subtypes. To address these challenges, the study aims to systematically characterize the tumor heterogeneity of LC subtypes using single-cell RNA sequencing (scRNA-seq) datasets. The study combined 51,927 single cells from HCC, ICC, and healthy scRNA-seq datasets. After integrating the datasets, cell groups with similar gene expression patterns are clustered and cluster annotation has been performed based on gene markers. Cell-cell communication analysis (CCA) was implemented to understand the cross-talk between various cell types. Further, differential gene expression analysis and enrichment analysis were carried out to identify unique molecular drivers associated with HCC and ICC. Our analysis identified T cells, hepatocytes, epithelial cells, and monocyte as the major cell types present in the tumor microenvironment. Among them, abundance of natural killer (NK) cells in HCC, epithelial cells, and hepatocytes in ICC was detected. CCA revealed key interaction between T cells to NK cells in HCC and smooth muscle cells to epithelial cells in the ICC. Additionally, SOX4 and DTHD1 are the top differentially expressed genes (DEGs) in HCC, while keratin and CCL4 are in ICC. Enrichment analysis of DEGs reveals major upregulated genes in HCC affect protein folding mechanism and in ICC alter pathways involved in cell adhesion. The findings suggest potential targets for the development of novel therapeutic strategies for the treatment of these two aggressive subtypes of LC.
Collapse
Affiliation(s)
- Asish Kumar Swain
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Prashant Pandey
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Riddhi Sera
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Pankaj Yadav
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India.
- School of Artificial Intelligence and Data Science, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India.
| |
Collapse
|
21
|
Wang S, Xu L, Zhu K, Zhu H, Zhang D, Wang C, Wang Q. Developing and validating a survival prediction model based on blood exosomal ceRNA network in patients with PAAD. BMC Med Genomics 2022; 15:260. [PMID: 36522691 PMCID: PMC9753297 DOI: 10.1186/s12920-022-01409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Among the most lethal cancers, pancreatic adenocarcinoma (PAAD) is an essential component of digestive system malignancies that still lacks effective diagnosis and treatment methods. As exosomes and competing endogenous RNA (ceRNA) regulatory networks in tumors go deeper, we expect to construct a ceRNA regulatory network derived from blood exosomes of PAAD patients by bioinformatics methods and develop a survival prediction model based on it. METHODS Blood exosome sequencing data of PAAD patients and normal controls were downloaded from the exoRbase database, and the expression profiles of exosomal mRNA, lncRNA, and circRNA were differentially analyzed by R. The related mRNA, circRNA, lncRNA, and their corresponding miRNA prediction data were imported into Cytoscape software to visualize the ceRNA network. Then, we conducted GO and KEGG enrichment analysis of mRNA in the ceRNA network. Genes that express differently in pancreatic cancer tissues compared with normal tissues and associate with survival (P < 0.05) were determined as Hub genes by GEPIA. We identified optimal prognosis-related differentially expressed mRNAs (DEmRNAs) and generated a risk score model by performing univariate and multivariate Cox regression analyses. RESULTS 205 DEmRNAs, 118 differentially expressed lncRNAs (DElncRNAs), and 98 differentially expressed circRNAs (DEcircRNAs) were screened out. We constructed the ceRNA network, and a total of 26 mRNA nodes, 7 lncRNA nodes, 6 circRNA nodes, and 16 miRNA nodes were identified. KEGG enrichment analysis showed that the DEmRNAs in the regulatory network were mainly enriched in Human papillomavirus infection, PI3K-Akt signaling pathway, Osteoclast differentiation, and ECM-receptor interaction. Next, six hub genes (S100A14, KRT8, KRT19, MAL2, MYO5B, PSCA) were determined through GEPIA. They all showed significantly increased expression in cancer tissues compared with control groups, and their high expression pointed to adverse survival. Two optimal prognostic-related DEmRNAs, MYO5B (HR = 1.41, P < 0.05) and PSCA (HR = 1.10, P < 0.05) were included to construct the survival prediction model. CONCLUSION In this study, we successfully constructed a ceRNA regulatory network in blood exosomes from PAAD patients and developed a two-gene survival prediction model that provided new targets which shall aid in diagnosing and treating PAAD.
Collapse
Affiliation(s)
- Shanshan Wang
- grid.440642.00000 0004 0644 5481Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong City, 226001 Jiangsu Province China
| | - Lijun Xu
- grid.440642.00000 0004 0644 5481Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong City, 226001 Jiangsu Province China
| | - Kangle Zhu
- grid.260483.b0000 0000 9530 8833Department of Medicine, Xinglin college, Nantong University, Nantong City, Jiangsu Province China
| | - Huixia Zhu
- grid.260483.b0000 0000 9530 8833Medical School of Nantong University, Nantong City, 226001 China
| | - Dan Zhang
- grid.440642.00000 0004 0644 5481Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong City, 226001 Jiangsu Province China
| | - Chongyu Wang
- grid.260483.b0000 0000 9530 8833Department of Medicine, Xinglin college, Nantong University, Nantong City, Jiangsu Province China
| | - Qingqing Wang
- grid.440642.00000 0004 0644 5481Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong City, 226001 Jiangsu Province China
| |
Collapse
|
22
|
Xu C, Jin X, Wei S, Wang P, Luo M, Xu Z, Yang W, Cai Y, Xiao L, Lin X, Liu H, Cheng R, Pang F, Chen R, Su X, Hu Y, Wang G, Jiang Q. DeepST: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Res 2022; 50:e131. [PMID: 36250636 PMCID: PMC9825193 DOI: 10.1093/nar/gkac901] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 01/29/2023] Open
Abstract
Recent advances in spatial transcriptomics (ST) have brought unprecedented opportunities to understand tissue organization and function in spatial context. However, it is still challenging to precisely dissect spatial domains with similar gene expression and histology in situ. Here, we present DeepST, an accurate and universal deep learning framework to identify spatial domains, which performs better than the existing state-of-the-art methods on benchmarking datasets of the human dorsolateral prefrontal cortex. Further testing on a breast cancer ST dataset, we showed that DeepST can dissect spatial domains in cancer tissue at a finer scale. Moreover, DeepST can achieve not only effective batch integration of ST data generated from multiple batches or different technologies, but also expandable capabilities for processing other spatial omics data. Together, our results demonstrate that DeepST has the exceptional capacity for identifying spatial domains, making it a desirable tool to gain novel insights from ST studies.
Collapse
Affiliation(s)
- Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Songren Wei
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangdong 523335, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Wenyi Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Yideng Cai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Lixing Xiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Xiaoyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Hongxin Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Fenglan Pang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Rui Chen
- Department of Forensic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Xi Su
- ChinaFoshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Guohua Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| |
Collapse
|
23
|
Identification and Analysis of Senescence-Related Genes in Head and Neck Squamous Cell Carcinoma by a Comprehensive Bioinformatics Approach. Mediators Inflamm 2022; 2022:4007469. [PMID: 36299414 PMCID: PMC9592240 DOI: 10.1155/2022/4007469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/10/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer is the sixth most frequent cancer all over the world, with the majority of subtypes of head and neck squamous cell carcinoma (HNSCC). Cellular senescence-associated genes have been confirmed to play a critical role in cancer and have the potential to be prognostic biomarkers for cancer. Clinical information of HNSCC samples and expression data were acquired from public databases. Expression profiles of genes related to cellular senescence were used to identify molecular subtypes by consensus clustering. To screen differentially expressed genes (DEGs) between different subtypes, differential analysis was performed. We used the univariate Cox regression to identify prognostic DEGs and performed least absolute shrinkage and selection operator (LASSO) to optimize and construct a prognostic model. CIBERSORT, ESTIMATE, and TIDE tools were applied to estimate immune characteristics. Four molecular subtypes were established based on cellular senescence-associated genes. Differential prognosis was observed among different subtypes with C4 having the longest overall survival and C1 having the worst prognosis. C4 subtype also showed the highest immune infiltration. We screened a total of eight cellular senescence prognosis-related genes and established a cellular senescence-related signature score (CSRS.Score) that could stratify samples into high-CSRS.Score and low-CSRS.Score groups. The high-CSRS.Score group had worse prognosis, lower immune infiltration, and lower response to immunotherapy. We further improved the prognostic model and survival prediction by combining CSRS.Score with clinicopathological features using a decision tree model, which had high predictive accuracy and survival prediction. This study demonstrated an important role of cellular senescence in HNSCC. The identified eight cellular senescence-associated genes have the potential to provide ideas for adjuvant treatment and personalized treatment of HNSCC patients.
Collapse
|
24
|
Hendricks SA, King JL, Duncan CL, Vickers W, Hohenlohe PA, Davis BW. Genomic Assessment of Cancer Susceptibility in the Threatened Catalina Island Fox ( Urocyon littoralis catalinae). Genes (Basel) 2022; 13:1496. [PMID: 36011407 PMCID: PMC9408614 DOI: 10.3390/genes13081496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 12/12/2022] Open
Abstract
Small effective population sizes raise the probability of extinction by increasing the frequency of potentially deleterious alleles and reducing fitness. However, the extent to which cancers play a role in the fitness reduction of genetically depauperate wildlife populations is unknown. Santa Catalina island foxes (Urocyon littoralis catalinae) sampled in 2007-2008 have a high prevalence of ceruminous gland tumors, which was not detected in the population prior to a recent bottleneck caused by a canine distemper epidemic. The disease appears to be associated with inflammation from chronic ear mite (Otodectes) infections and secondary elevated levels of Staphyloccus pseudointermedius bacterial infections. However, no other environmental factors to date have been found to be associated with elevated cancer risk in this population. Here, we used whole genome sequencing of the case and control individuals from two islands to identify candidate loci associated with cancer based on genetic divergence, nucleotide diversity, allele frequency spectrum, and runs of homozygosity. We identified several candidate loci based on genomic signatures and putative gene functions, suggesting that cancer susceptibility in this population may be polygenic. Due to the efforts of a recovery program and weak fitness effects of late-onset disease, the population size has increased, which may allow selection to be more effective in removing these presumably slightly deleterious alleles. Long-term monitoring of the disease alleles, as well as overall genetic diversity, will provide crucial information for the long-term persistence of this threatened population.
Collapse
Affiliation(s)
- Sarah A. Hendricks
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Julie L. King
- Catalina Island Conservancy, P.O. Box 2739, Avalon, CA 90704, USA
| | - Calvin L. Duncan
- Catalina Island Conservancy, P.O. Box 2739, Avalon, CA 90704, USA
| | - Winston Vickers
- Institute for Wildlife Studies, Arcata, CA 95521, USA
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Paul A. Hohenlohe
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX 77840, USA
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX 77840, USA
| |
Collapse
|
25
|
Keratin 8 Is an Inflammation-Induced and Prognosis-Related Marker for Pancreatic Adenocarcinoma. DISEASE MARKERS 2022; 2022:8159537. [PMID: 35958278 PMCID: PMC9359862 DOI: 10.1155/2022/8159537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the highest-grade malignancies in the world. More effective biomarkers and treatment plans are necessary to improve the diagnosis rate and clinical outcome. The oncogenesis of PDAC is influenced by several factors, including chronic pancreatitis (CP). Keratin 8 (KRT8) is an important member of the keratin protein family and plays a role in regulating the cellular response to stress stimuli and mediating inflammatory reactions. However, the role of KRT8 in pancreatitis and PDAC is still poorly understood. Here we assessed the differentially expressed genes (DEGs) by bioinformatic methods with expression profiles available online for a caerulein-induced mouse model and human PDAC tissue. The prognostic value was evaluated by Kaplan–Meier analysis and Cox regression analysis. The diagnostic value was evaluated by Receiver Operating Characteristic analysis (ROC). The function of the genes was predicted by protein-protein interaction analysis, correlation analysis, and GO analysis. The conclusion was further validated in rat pancreatitis model, human tissue, and PDAC cell lines, including immunohistochemical staining (IHC), CCK-8 assay, wound healing assay, and flow cytometry. KRT8 was found to be upregulated in murine pancreatitis tissue, human CP tissue, and human PDAC tissue. High expression of KRT8 had a negative impact on the prognosis of PDAC patients. KRT8 was predicted to be involved in the regulation of the migration and viability of PDAC cells, which was validated in PDAC cell lines. Knockdown of KRT8 impaired the migration and proliferation and induced apoptosis in PDAC cell lines. In conclusion, keratin 8 is an inflammation-induced molecule and could serve as a diagnostic and prognostic marker for PDAC patients. More studies are needed for further validation from the perspective of precision and individualized medicine.
Collapse
|
26
|
Luo Y, Deng X, Que J, Li Z, Xie W, Dai G, Chen L, Wang H. Cell Trajectory-Related Genes of Lung Adenocarcinoma Predict Tumor Immune Microenvironment and Prognosis of Patients. Front Oncol 2022; 12:911401. [PMID: 35924143 PMCID: PMC9339705 DOI: 10.3389/fonc.2022.911401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/23/2022] [Indexed: 01/21/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer which typically exhibits a diverse progression trajectory. Our study sought to explore the cell differentiation trajectory of LUAD and its clinical relevance. Methods Utilizing a single-cell RNA-sequencing dataset (GSE117570), we identified LUAD cells of distinct differential status along with differentiation-related genes (DRGs). DRGs were applied to the analysis of bulk-tissue RNA-sequencing dataset (GSE72094) to classify tumors into different subtypes, whose clinical relevance was further analyzed. DRGs were also applied to gene co-expression network analysis (WGCNA) using another bulk-tissue RNA-sequencing dataset (TCGA-LUAD). Genes from modules that demonstrated a significant correlation with clinical traits and were differentially expressed between normal tissue and tumors were identified. Among these, genes with significant prognostic relevance were used for the development of a prognostic nomogram, which was tested on TCGA-LUAD dataset and validated in GSE72094. Finally, CCK-8, EdU, cell apoptosis, cell colony formation, and Transwell assays were used to verify the functions of the identified genes. Results Four clusters of cells with distinct differentiation status were characterized, whose DRGs were predominantly correlated with pathways of immune regulation. Based on DRGs, tumors could be clustered into four subtypes associated with distinct immune microenvironment and clinical outcomes. DRGs were categorized into four modules. A total of nine DRGs (SFTPB, WFDC2, HLA-DPA1, TIMP1, MS4A7, HLA-DQA1, VCAN, KRT8, and FABP5) with most significant survival-predicting power were integrated to develop a prognostic model, which outperformed the traditional parameters in predicting clinical outcomes. Finally, we verified that knockdown of WFDC2 inhibited proliferation, migration, and invasion but promoted the apoptosis of A549 cells in vitro. Conclusion The cellular composition and cellular differentiation status of tumor mass can predict the clinical outcomes of LUAD patients. It also plays an important role in shaping the tumor immune microenvironment.
Collapse
Affiliation(s)
- Yu Luo
- Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Xiaheng Deng
- Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Jun Que
- Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Weiping Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Guanqun Dai
- Department of General Practice, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
- *Correspondence: Liang Chen, ; Hong Wang, ;
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
- *Correspondence: Liang Chen, ; Hong Wang, ;
| |
Collapse
|
27
|
Zhang F, Wang G, Yan W, Jiang H. MiR-4268 suppresses gastric cancer genesis through inhibiting keratin 80. Cell Cycle 2022; 21:2051-2064. [PMID: 35748914 DOI: 10.1080/15384101.2022.2085351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Gastric cancer (GC) affects a large proportion of cancer patients worldwide, and the prediction of potential biomarkers can greatly improve its diagnosis and treatment. Here, miR-4268 and keratin 80 (KRT80) expression in GC tissues and cell lines was determined. The effect of downregulating miR-4268 and interfering with KRT80 expression on the viability, proliferation, apoptosis, and migration of GC cells were evaluated. The interaction between miR-4268 and KRT80 was studied using luciferase reporter and RNA pull-down assays. The western blot, CCK-8, BrdU, caspase-3 activity, Transwell assays were performed for the functional characterization. In GC tissues and cells, KRT80 expression was found to be significantly higher, while that of miR-4268 was significantly lower than the respective expressions in normal tissues and cells. Interference with KRT80 expression inhibited the viability, proliferation, and migration of GC cells and facilitated cell apoptosis in vitro. We further demonstrated that miR-4268 targeted KRT80 and negatively regulated its expression, and miR-4268 inhibitor alleviated the inhibitory effects of KRT80 downregulation on GC cell growth. Finally, miR-4268 may function as tumor suppressor through inhibiting PI3K/AKT/JNK pathways by targeting KRT80 in GC. Collectively, our present results indicate that the miR-4268/KRT80 axis acts as a potential therapeutic target for patients with GC.AbbreviationsGastric cancer (GC); MicroRNAs (miRNAs); Keratin 80 (KRT80); differentially expressed genes (DEGs); chemoradiotherapy (CRT); negative nonsense sequence (NC); radioimmunoprecipitation assay (RIPA); polyvinylidene fluoride (PVDF).
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gastroenterology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Guoxian Wang
- Department of Radiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenjuan Yan
- Department of Gastroenterology, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Hongmei Jiang
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University (Optics Valley Area), Wuhan, Hubei, China
| |
Collapse
|
28
|
Chen H, Chen X, Pan B, Zheng C, Hong L, Han W. KRT8 Serves as a Novel Biomarker for LUAD and Promotes Metastasis and EMT via NF-κB Signaling. Front Oncol 2022; 12:875146. [PMID: 35664775 PMCID: PMC9160746 DOI: 10.3389/fonc.2022.875146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Keratin 8 (KRT8) is the major component of the intermediate filament cytoskeleton and aberrant expression in multiple tumors. However, the role of KRT8 in lung adenocarcinoma (LUAD) remains unclear. In the present study, KRT8 expression was found to be upregulated along with prognosis and metastasis in LUAD. Kaplan-Meier analysis presented that the 5-year OS and DSS rates were significantly better among patients with low KRT8 expression compared to those with high expression. Correlation analysis showed that KRT8 expression was significantly associated with gender (P = 0.027), advanced T stage (P = 0.001), advanced N stage (P = 0.048), and advanced pathologic stage (P = 0.025). Univariate Cox analysis demonstrated that KRT8 was a predictor of OS [hazard ratio (HR) = 1.526; 95% confidence interval (CI) 1.141-2.040; P = 0.004] and DSS (HR = 1.625; 95% CI 1.123-2.353; P = 0.010) in the TCGA database. Importantly, downregulation of KRT8 obviously suppressed cell proliferation, cell migration, invasion, and EMT as well as induced cell apoptosis. KRT8 knockdown significantly inhibited NF-κB signaling, suggesting a potential mechanism. Overall, our results indicated that KRT8 could regulate lung carcinogenesis and may serve as a potential target for antineoplastic therapies.
Collapse
Affiliation(s)
- Hao Chen
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobin Chen
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Pan
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chutian Zheng
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangjie Hong
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Weili Han
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Yoon S, Windoffer R, Kozyrina AN, Piskova T, Di Russo J, Leube RE. Combining Image Restoration and Traction Force Microscopy to Study Extracellular Matrix-Dependent Keratin Filament Network Plasticity. Front Cell Dev Biol 2022; 10:901038. [PMID: 35646906 PMCID: PMC9131083 DOI: 10.3389/fcell.2022.901038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
Keratin intermediate filaments are dynamic cytoskeletal components that are responsible for tuning the mechanical properties of epithelial tissues. Although it is known that keratin filaments (KFs) are able to sense and respond to changes in the physicochemical properties of the local niche, a direct correlation of the dynamic three-dimensional network structure at the single filament level with the microenvironment has not been possible. Using conventional approaches, we find that keratin flow rates are dependent on extracellular matrix (ECM) composition but are unable to resolve KF network organization at the single filament level in relation to force patterns. We therefore developed a novel method that combines a machine learning-based image restoration technique and traction force microscopy to decipher the fine details of KF network properties in living cells grown on defined ECM patterns. Our approach utilizes Content-Aware Image Restoration (CARE) to enhance the temporal resolution of confocal fluorescence microscopy by at least five fold while preserving the spatial resolution required for accurate extraction of KF network structure at the single KF/KF bundle level. The restored images are used to segment the KF network, allowing numerical analyses of its local properties. We show that these tools can be used to study the impact of ECM composition and local mechanical perturbations on KF network properties and corresponding traction force patterns in size-controlled keratinocyte assemblies. We were thus able to detect increased curvature but not length of KFs on laminin-322 versus fibronectin. Photoablation of single cells in microprinted circular quadruplets revealed surprisingly little but still significant changes in KF segment length and curvature that were paralleled by an overall reduction in traction forces without affecting global network orientation in the modified cell groups irrespective of the ECM coating. Single cell analyses furthermore revealed differential responses to the photoablation that were less pronounced on laminin-332 than on fibronectin. The obtained results illustrate the feasibility of combining multiple techniques for multimodal monitoring and thereby provide, for the first time, a direct comparison between the changes in KF network organization at the single filament level and local force distribution in defined paradigms.
Collapse
Affiliation(s)
- Sungjun Yoon
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Aleksandra N Kozyrina
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany
| | - Teodora Piskova
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany
| | - Jacopo Di Russo
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials Forckenbeckstr, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
30
|
Korbut E, Krukowska K, Magierowski M. Barrett's Metaplasia Progression towards Esophageal Adenocarcinoma: An Attempt to Select a Panel of Molecular Sensors and to Reflect Clinical Alterations by Experimental Models. Int J Mol Sci 2022; 23:3312. [PMID: 35328735 PMCID: PMC8955539 DOI: 10.3390/ijms23063312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
The molecular processes that predispose the development of Barrett's esophagus (BE) towards esophageal adenocarcinoma (EAC) induced by gastrointestinal reflux disease (GERD) are still under investigation. In this study, based on a scientific literature screening and an analysis of clinical datasets, we selected a panel of 20 genes covering BE- and EAC-specific molecular markers (FZD5, IFNGR1, IL1A, IL1B, IL1R1, IL1RN, KRT4, KRT8, KRT15, KRT18, NFKBIL1, PTGS1, PTGS2, SOCS3, SOX4, SOX9, SOX15, TIMP1, TMEM2, TNFRSF10B). Furthermore, we aimed to reflect these alterations within an experimental and translational in vitro model of BE to EAC progression. We performed a comparison between expression profiles in GSE clinical databases with an in vitro model of GERD involving a BE cell line (BAR-T) and EAC cell lines (OE33 and OE19). Molecular responses of cells treated with acidified bile mixture (BM) at concentration of 100 and 250 μM for 30 min per day were evaluated. We also determined a basal mRNA expression within untreated, wild type cell lines on subsequent stages of BE and EAC development. We observed that an appropriately optimized in vitro model based on the combination of BAR-T, OE33 and OE19 cell lines reflects in 65% and more the clinical molecular alterations observed during BE and EAC development. We also confirmed previous observations that exposure to BM (GERD in vitro) activated carcinogenesis in non-dysplastic cells, inducing molecular alternations in the advanced stages of BE. We conclude that it is possible to induce, to a high extent, the molecular profile observed clinically within appropriately and carefully optimized experimental models, triggering EAC development. This experimental scheme and molecular marker panel might be implemented in further research, e.g., aiming to develop and evaluate novel compounds and prodrugs targeting GERD as well as BE and EAC prevention and treatment.
Collapse
Affiliation(s)
| | | | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland; (E.K.); (K.K.)
| |
Collapse
|
31
|
El-Masry OS, Alshwareb AA, Alnasser FH, al mishaal SG, Alsamman KM. Whole-transcriptome bioinformatics revealed HTRA3, KRT8, KRT17, and RHEX as novel targets in acute myeloid leukaemia. J Taibah Univ Med Sci 2022; 17:897-903. [PMID: 36050959 PMCID: PMC9396045 DOI: 10.1016/j.jtumed.2021.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 12/08/2022] Open
Abstract
Acute myeloid leukaemia (AML) is characterised by heterogeneous genomic signatures that vary among different patient groups. Hence, the current study aims to conduct a whole transcriptome analysis of a female patient with AML and a family history of the disease at the time of diagnosis. Genetic profiling has a useful impact on clinical management and treatment success of the disease as the complex genetic landscape of AML and differential responses to treatment might indicate inadequate therapeutic targeting. A 37 year old female patient with AML was admitted to the hospital complaining of general fatigue arthralgia and chest pain. AML diagnosis was confirmed by complete blood count and blood smears before being confirmed by cytogenetic analysis. Herein, we conducted whole-transcriptome sequencing analysis to assess differential gene expression profiles in patients and healthy control subjects. In addition, single nucleotide polymorphism/insertion-deletion analyses (SNP/INDEL) were performed to investigate gene variants in the present case. The results revealed a remarkable differential gene expression profile in AML compared to the corresponding control at the time of diagnosis, indicating that HTRA3, KRT8, KRT17, and RHEX are potential novel therapeutic targets. Additionally, a number of novel gene variants were also reported in the current study, as concluded from the SNP/INDEL analysis, which might be associated with disease risk assessment and probably affect prognosis. These genes and their new variants might be worth reporting to the scientific community for further exploration of AML.
Collapse
|
32
|
Zhai YY, Li QZ, Chen YL, Zhang LQ. Identification of Key Histone Modifications and Hub Genes for Colorectal Cancer Metastasis. Curr Bioinform 2022. [DOI: 10.2174/1574893616999210805164414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Epithelial-Mesenchymal Transition (EMT) and its reverse Mesenchymal-
Epithelial Transition (MET) are essential for tumor cells metastasis. However, the effect of epigenetic
modifications on this transition is unclear.
Objective:
We aimed to explore the key histone modifications and hub genes of EMT/MET during Colorectal
Cancer (CRC) metastasis.
Method:
The differentially expressed genes and differentially histone modified genes were identified.
Based on the histone modification features, the up- and down-regulated genes were predicted by Random
Forest algorithm. Through protein-protein interaction network and Cytoscape analysis, the hub
genes with histone modification changes were selected. GO, KEGG and survival analyses were performed
to confirm the importance of the hub genes.
Results:
It was found that H3K79me3 plays an important role in EMT/MET. And the 200-300bp and
400-500bp downstream of TSS may be the key regulatory regions of H3K79me3. Moreover, we found
that the expression of the hub genes was down-regulated in EMT and then up-regulated in MET. And
the changes of the hub genes expression were consistent with the changes of H3K79me3 signal in the
specific regions of the genome. Finally, the hub genes KRT8 and KRT18 were involved in the metastasis
process and were significantly related to the survival time.
Conclusion:
H3K79me3 may be crucial for EMT/MET, and the hub genes KRT8 and KRT18 may be
the key genes in this process.
Collapse
Affiliation(s)
- Yuan-Yuan Zhai
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot
010021, China
| | - Qian-Zhong Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner
Mongolia University, Hohhot 010070, China
| | - Ying-Li Chen
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot
010021, China
| | - Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot
010021, China
| |
Collapse
|
33
|
Shin JY, Lee J, Park J, Kim M, Chung H, Byeon SH. Association of Keratin 8 Level in Aqueous Humor With Outcomes of Intravitreal Ranibizumab Treatment for Neovascular Age-Related Macular Degeneration. Transl Vis Sci Technol 2022; 11:26. [PMID: 35040914 PMCID: PMC8764207 DOI: 10.1167/tvst.11.1.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose To investigate keratin 8 (KRT8) level in the aqueous humor (AH) of patients with neovascular age-related macular degeneration (nAMD) and elucidate its association with intravitreal ranibizumab (IVR) treatment outcomes. Methods This prospective study involved 58 eyes of treatment-naïve nAMD patients treated with three IVR doses monthly and whose AH samples were collected at baseline and two months after the initial treatment. KRT8 level was determined using the enzyme-linked immunosorbent assay and compared with that of the control group, which comprised patients who underwent cataract surgery during the same period. The nAMD-affected eyes were classified into responder (dry) and poor responder (persistent fluid) groups, according to optical coherence tomography (OCT) findings at month three. Additionally, associations between the KRT8 level and IVR treatment outcomes were analyzed. Results The baseline KRT8 level was significantly higher in the AMD group than in the control group. In the AMD group, responders demonstrated significant differences between the KRT8 level at the baseline and month two, whereas poor responders exhibited no significant change. Regression analysis revealed that a higher KRT8 level at month two was significantly associated with persistent fluid upon OCT at months three and six. Conclusions Monitoring aqueous KRT8 level may facilitate early determination of the therapeutic effects of IVR in nAMD patients and reflect the conditions of retinal pigment epithelium during the disease course. Translational Relevance Monitoring aqueous KRT8 may aid early determination of therapeutic effects of IVR in neovascular AMD patients and reflect the health conditions of retinal pigment epithelium.
Collapse
Affiliation(s)
- Joo Youn Shin
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jonghyun Lee
- Department of Ophthalmology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Jinkyu Park
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kim
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyewon Chung
- Department of Ophthalmology, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Suk Ho Byeon
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
34
|
Yu W, Ma Y, Hou W, Wang F, Cheng W, Qiu F, Wu P, Zhang G. Identification of Immune-Related lncRNA Prognostic Signature and Molecular Subtypes for Glioblastoma. Front Immunol 2021; 12:706936. [PMID: 34899682 PMCID: PMC8657607 DOI: 10.3389/fimmu.2021.706936] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is extensively genetically and transcriptionally heterogeneous, which poses challenges for classification and management. Long noncoding RNAs (lncRNAs) play a critical role in the development and progression of GBM, especially in tumor-associated immune processes. Therefore, it is necessary to develop an immune-related lncRNAs (irlncRNAs) signature. Methods Univariate and multivariate Cox regression analyses were utilized to construct a prognostic model. GBM-specific CeRNA and PPI network was constructed to predict lncRNAs targets and evaluate the interactions of immune mRNAs translated proteins. GO and KEGG pathway analyses were used to show the biological functions and pathways of CeRNA network-related immunity genes. Consensus Cluster Plus analysis was used for GBM gene clustering. Then, we evaluated GBM subtype-specific prognostic values, clinical characteristics, genes and pathways, immune infiltration access single cell RNA-seq data, and chemotherapeutics efficacy. The hub genes were finally validated. Results A total of 17 prognostically related irlncRNAs were screened to build a prognostic model signature based on six key irlncRNAs. Based on GBM-specific CeRNAs and enrichment analysis, PLAU was predicted as a target of lncRNA-H19 and mainly enriched in the malignant related pathways. GBM subtype-A displayed the most favorable prognosis, high proportion of genes (IDH1, ATRX, and EGFR) mutation, chemoradiotherapy, and low risk and was characterized by low expression of four high-risk lncRNAs (H19, HOTAIRM1, AGAP2-AS1, and AC002456.1) and one mRNA KRT8. GSs with poor survival were mainly infiltrated by mesenchymal stem cells (MSCs) and astrocyte, and were more sensitive to gefitinib and roscovitine. Among GSs, three hub genes KRT8, NGFR, and TCEA3, were screened and validated to potentially play feasible oncogenic roles in GBM. Conclusion Construction of lncRNAs risk model and identification of GBM subtypes based on 17 irlncRNAs, which suggesting that irlncRNAs had the promising potential for clinical immunotherapy of GBM.
Collapse
Affiliation(s)
- Wanli Yu
- Department of Neurosurgery, Gaoxin Hospital of The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanan Ma
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenbin Hou
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wan Cheng
- The Laboratory of Artificial Intelligence and Bigdata in Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Qiu
- Oncology Department, Gaoxin Hospital of The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, China.,Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China.,Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, China
| | - Guohua Zhang
- Central Laboratory, Gaoxin Hospital of The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
35
|
Zhang K, Liang Y, Zhang W, Zeng N, Tang S, Tian R. KRT81 Knockdown Inhibits Malignant Progression of Melanoma Through Regulating Interleukin-8. DNA Cell Biol 2021; 40:1290-1297. [PMID: 34591651 DOI: 10.1089/dna.2021.0317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
KRT81 is involved in carcinogenesis and progression of many types of human cancers. However, little is known about the role of KRT81 in melanoma. In this study, we identified that KRT81 expression is upregulated in melanoma tissues compared with corresponding adjacent nontumor tissues. Overexpression of KRT81 was also found in human melanoma cell lines. Cell functional studies have shown that KRT81 knockdown could inhibit proliferation, colony formation, migration, invasion, and promote apoptosis of A375 cells. Consistently, in vivo tumorigenesis experiments showed that KRT81 knockdown significantly suppressed the growth of xenograft tumors. Moreover, KRT81 knockdown increased the chemosensitivity of A375 cells to DDP. Mechanical exploration revealed that KRT81 knockdown mediated the downregulation of inflammatory cytokine interleukin-8 (IL-8). In conclusion, these findings indicate that downregulation of KRT81 could inhibit progression of melanoma by regulating IL-8. Therefore, KRT81 represents a potential therapeutic target for melanoma therapy.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Yan Liang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Ning Zeng
- Department of Nephrology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Ruoxi Tian
- School of Basic Medicine, Tianjin Medical University, Tianjin, P.R. China
| |
Collapse
|
36
|
Masso-Silva JA, Moshensky A, Shin J, Olay J, Nilaad S, Advani I, Bojanowski CM, Crotty S, Li WT, Ongkeko WM, Singla S, Crotty Alexander LE. Chronic E-Cigarette Aerosol Inhalation Alters the Immune State of the Lungs and Increases ACE2 Expression, Raising Concern for Altered Response and Susceptibility to SARS-CoV-2. Front Physiol 2021; 12:649604. [PMID: 34122126 PMCID: PMC8194307 DOI: 10.3389/fphys.2021.649604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Conventional smoking is known to both increase susceptibility to infection and drive inflammation within the lungs. Recently, smokers have been found to be at higher risk of developing severe forms of coronavirus disease 2019 (COVID-19). E-cigarette aerosol inhalation (vaping) has been associated with several inflammatory lung disorders, including the recent e-cigarette or vaping product use-associated lung injury (EVALI) epidemic, and recent studies have suggested that vaping alters host susceptibility to pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To assess the impact of vaping on lung inflammatory pathways, including the angiotensin-converting enzyme 2 (ACE2) receptor known to be involved in SARS-CoV-2 infection, mice were exposed to e-cigarette aerosols for 60 min daily for 1-6 months and underwent gene expression analysis. Hierarchical clustering revealed extensive gene expression changes occurred in the lungs of both inbred C57BL/6 mice and outbred CD1 mice, with 2,933 gene expression changes in C57BL/6 mice, and 2,818 gene expression changes in CD1 mice (>abs 1.25-fold change). Particularly, large reductions in IgA and CD4 were identified, indicating impairment of host responses to pathogens via reductions in immunoglobulins and CD4 T cells. CD177, facmr, tlr9, fcgr1, and ccr2 were also reduced, consistent with diminished host defenses via decreased neutrophils and/or monocytes in the lungs. Gene set enrichment (GSE) plots demonstrated upregulation of gene expression related to cell activation specifically in neutrophils. As neutrophils are a potential driver of acute lung injury in COVID-19, increased neutrophil activation in the lungs suggests that vapers are at higher risk of developing more severe forms of COVID-19. The receptor through which SARS-CoV-2 infects host cells, ACE2, was found to have moderate upregulation in mice exposed to unflavored vape pens, and further upregulation (six-fold) with JUUL mint aerosol exposure. No changes were found in mice exposed to unflavored Mod device-generated aerosols. These findings suggest that specific vaping devices and components of e-liquids have an effect on ACE2 expression, thus potentially increasing susceptibility to SARS-CoV-2. In addition, exposure to e-cigarette aerosols both with and without nicotine led to alterations in eicosanoid lipid profiles within the BAL. These data demonstrate that chronic, daily inhalation of e-cigarette aerosols fundamentally alters the inflammatory and immune state of the lungs. Thus, e-cigarette vapers may be at higher risk of developing infections and inflammatory disorders of the lungs.
Collapse
Affiliation(s)
- Jorge A. Masso-Silva
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| | - Alexander Moshensky
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| | - John Shin
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| | - Jarod Olay
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| | - Sedtavut Nilaad
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| | - Ira Advani
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| | - Christine M. Bojanowski
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
- Division of Pulmonary Critical Care, Department of Medicine, Tulane University, New Orleans, LA, United States
| | - Shane Crotty
- Department of Medicine, La Jolla Institute of Allergy and Immunology, La Jolla, CA, United States
| | - Wei Tse Li
- Department of Otolaryngology-Head and Neck Surgery, UCSD, La Jolla, CA, United States
| | - Weg M. Ongkeko
- Department of Otolaryngology-Head and Neck Surgery, UCSD, La Jolla, CA, United States
| | - Sunit Singla
- Division of Pulmonary Critical Care, Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Laura E. Crotty Alexander
- Pulmonary Critical Care Section, VA San Diego Healthcare System, La Jolla, CA, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego (UCSD), La Jolla, La Jolla, CA, United States
| |
Collapse
|
37
|
KRT8 and KRT19, associated with EMT, are hypomethylated and overexpressed in lung adenocarcinoma and link to unfavorable prognosis. Biosci Rep 2021; 40:225236. [PMID: 32519739 PMCID: PMC7335829 DOI: 10.1042/bsr20193468] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer. To date, the prognosis of patients with LUAD remains dismal. Methods: Three datasets were downloaded from the GEO database. Differentially expressed genes (DEGs) were obtained. FunRich was used to perform pathway enrichment analysis. Protein–protein interaction (PPI) networks were established and hub genes were obtained by Cytoscape software. GEPIA was utilized to conduct correlation and survival analysis. Upstream miRNAs of DEGs were predicted via miRNet database, and methylation status of promoters of DEGs was determined through UALCAN database. Results: A total of 375 DEGs, including 105 and 270 up-regulated and down-regulated genes in LUAD, were commonly appeared in three datasets. These DEGs were significantly enriched in mesenchymal-to-epithelial transition (MET) and epithelial-to-mesenchymal transition (EMT). About 8 up-regulated and 5 down-regulated DEGs were commonly appeared in EMT/MET-related gene set and the top 50 hub gene set. Among the 13 genes, increased expression of KRT8 and KRT19 indicated unfavorable prognosis whereas high expression of DCN and CXCL12 suggested favorable prognosis in LUAD. Correlation analysis showed that KRT8 (DCN) expression was linked to KRT19 (CXCL12) expression. Further analysis displayed that KRT8 and KRT19 could jointly forecast poor prognosis in LUAD. About 42 and 2 potential miRNAs were predicted to target KRT8 and KRT19, respectively. Moreover, methylation level analysis demonstrated that KRT8 and KRT19 were significantly hypomethylated in LUAD compared with normal controls. Conclusions: All these findings suggest that KRT8 and KRT19 are hypomethylated and overexpressed in LUAD and associated with unfavorable prognosis.
Collapse
|
38
|
Zhang J, Zhang F, Fan J, Feng B. TGIF1 Knockdown Inhibits the Proliferation and Invasion of Gastric Cancer via AKT Signaling Pathway. Cancer Manag Res 2021; 13:2603-2612. [PMID: 33776478 PMCID: PMC7987261 DOI: 10.2147/cmar.s254348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/19/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction Gastric cancer is a kind of cancer with high mortality. TGIF1, as a transcription inhibitor, can inhibit the transcription of specific genes. The purpose of this study was to investigate the role of TGIF1 in gastric cancer by knocking down TGIF1. Methods The expression of TGIF1 was detected by qPCR and Western blotting; CCK8 assay, colony formation assay, transwell, and wound-healing assay were used to evaluate the proliferation, migration, and invasion of gastric cancer cells; cell apoptosis was analyzed by flow cytometry and Hoechst-PI double staining; cell cycle was detected by flow cytometry. Gelatinase experiment was performed to detect the expression level of MMP-2; apoptosis related proteins and AKT singling pathway were assessed by Western blotting. Results Knockdown of TGIF1 inhibited the proliferation, migration, and invasion of gastric cancer cells and promoted apoptosis. TGIF1 knockdown down-regulated the expression levels of MMP-2, Bcl2, CyclinD1, and p-Akt, and up-regulated the expression levels of Bax and Caspase3. These data suggested that knockdown of TGIF1 inhibited the development of gastric cancer via AKT signaling pathway. Conclusion TGIF1 knockdown inhibited the proliferation, migration, and invasion and promoted apoptosis of gastric cancer cells via the AKT signaling pathway, suggesting that TGIF1 is considered a potential inhibitor in gastric cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Pharmacy Department, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei 050026, People's Republic of China
| | - Feiyan Zhang
- Department of Outpatient Operating Room, Heze Municipal Hospital, Heze City, Shandong Province, 274000, People's Republic of China
| | - Jiye Fan
- Department of Pharmaceutical Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei 050026, People's Republic of China.,College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Bin Feng
- Department of Gastrointestinal Surgery, Heze Municipal Hospital, Heze City, 274000 Shandong Province, People's Republic of China
| |
Collapse
|
39
|
Ryan SL, Dave KA, Beard S, Gyimesi M, McTaggart M, Sahin KB, Molloy C, Gandhi NS, Boittier E, O'Leary CG, Shah ET, Bolderson E, Baird AM, Richard DJ, O'Byrne KJ, Adams MN. Identification of Proteins Deregulated by Platinum-Based Chemotherapy as Novel Biomarkers and Therapeutic Targets in Non-Small Cell Lung Cancer. Front Oncol 2021; 11:615967. [PMID: 33777753 PMCID: PMC7991912 DOI: 10.3389/fonc.2021.615967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Platinum-based chemotherapy remains the cornerstone of treatment for most people with non-small cell lung cancer (NSCLC), either as adjuvant therapy in combination with a second cytotoxic agent or in combination with immunotherapy. Resistance to therapy, either in the form of primary refractory disease or evolutionary resistance, remains a significant issue in the treatment of NSCLC. Hence, predictive biomarkers and novel combinational strategies are required to improve the effectiveness and durability of treatment response 6for people with NSCLC. The aim of this study was to identify novel biomarkers and/or druggable proteins from deregulated protein networks within non-oncogene driven disease that are involved in the cellular response to cisplatin. Following exposure of NSCLC cells to cisplatin, in vitro quantitative mass spectrometry was applied to identify altered protein response networks. A total of 65 proteins were significantly deregulated following cisplatin exposure. These proteins were assessed to determine if they are druggable targets using novel machine learning approaches and to identify whether these proteins might serve as prognosticators of platinum therapy. Our data demonstrate novel candidates and drug-like molecules warranting further investigation to improve response to platinum agents in NSCLC.
Collapse
Affiliation(s)
- Sarah-Louise Ryan
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Keyur A Dave
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Sam Beard
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Martina Gyimesi
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Matthew McTaggart
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Katherine B Sahin
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Christopher Molloy
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Neha S Gandhi
- Faculty of Science and Engineering, School of Chemistry and Physics, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Eric Boittier
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Connor G O'Leary
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia.,Cancer Services, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Esha T Shah
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Emma Bolderson
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Anne-Marie Baird
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Derek J Richard
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Kenneth J O'Byrne
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia.,Cancer Services, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin, Ireland
| | - Mark N Adams
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| |
Collapse
|
40
|
Liu Y, Xia J, Zhou Y, Shao S. High expression of NDRG3 correlates with poor prognosis in gastric cancer patients. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2021; 113:524-528. [PMID: 33562989 DOI: 10.17235/reed.2021.7723/2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION N-myc downstream-regulated gene 3 (NDRG3) is an important member of the NDRG family and is linked with malignant tumors. However, the relationship between NDRG3 and gastric cancer (GC) is vague. MATERIAL AND METHODS Western blot, qRT-PCR and immunohistochemistry (IHC) detected the expression of NDRG3 in GC cell lines and GC tissues; public databases were used to analyze NDRG3 in GC patients and the association with EBV infection. RESULTS NDRG3 was up-regulated in GC cell lines and tissues. IHC data suggested that NDRG3 was correlated with histologic grade (p = 0.006) and is associated with patient survival. DISCUSSION thus, NDRG3 may be a novel predictor of GC prognosis.
Collapse
Affiliation(s)
- Yun Liu
- Digestuve Diseases, The Affiliated People's Hospital. Jiangsu University
| | | | - Yong Zhou
- Digestive Diseases, The Affiliated People's Hospital. Jiangsu University, China
| | | |
Collapse
|
41
|
Yang Y, Zhou J, He P, Wu H. The Role of Keratin-8 and Keratin-18 Polymorphisms and Protein Levels in the Occurrence and Progression of Vocal Leukoplakia. ORL J Otorhinolaryngol Relat Spec 2021; 83:65-74. [PMID: 33472210 DOI: 10.1159/000511447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study aimed to evaluate the association between the single-nucleotide polymorphism (SNP) and tissue protein level of keratin-8/18 and the occurrence and progression of vocal leukoplakia. METHODS The case-control study enrolled 158 patients with vocal leukoplakia, 326 patients with laryngeal squamous cell carcinoma (LSCC), and 268 healthy controls, which were tested for genotype analysis with keratin-8 and keratin-18 gene polymorphisms using pyrosequencing. The tissue protein expression levels of keratin-8 and keratin-18 were evaluated using immunohistochemistry. RESULTS The keratin-8 SNP RS1907671 showed an obvious increased risk for vocal leukoplakia (OR 1.56, p = 0.002), while the other SNPs (RS2035875, RS2035878, RS4300473) were tested as protective factors for vocal leukoplakia and LSCC (OR <1, p < 0.05). In keratin-18 SNP test, both RS2070876 and RS2638526 polymorphisms demonstrated decreased risks for vocal leukoplakia and LSCC (OR <1, p < 0.05). The protein levels of keratin-8 and keratin-18 in vocal leukoplakia group were significantly higher than those of the LSCC group (p < 0.05). CONCLUSIONS Keratin-8 and keratin-18 polymorphisms and protein levels are associated with the occurrence and progression of vocal leukoplakia.
Collapse
Affiliation(s)
- Yue Yang
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Peijie He
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Haitao Wu
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China, .,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China,
| |
Collapse
|
42
|
Yu DCW, Wu FC, Wu CE, Chow LP, Ho HN, Chen HF. Human pluripotent stem cell-derived DDX4 and KRT-8 positive cells participate in ovarian follicle-like structure formation. iScience 2020; 24:102003. [PMID: 33490911 PMCID: PMC7811146 DOI: 10.1016/j.isci.2020.102003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/21/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding the mechanisms of human pluripotent stem cells (hPSCs) specification, development and differentiation to gametes are useful for elucidating the causes of infertility and potential treatment. This study aims to examine whether hPSCs can be induced to DDX4 extracellularly expressing primordial germ cell-like cells (DDX4ec PGCLCs) and further into ovarian follicle stage in a combined in vitro and in vivo model. The transcriptional signatures show that these DDX4ec PGCLCs are characteristic of PGCs and express ovarian folliculogenesis markers. We also verify that keratin (KRT)-8 is highly expressed in the DDX4ec PGCLCs and plays a crucial role in germ cell migration. By co-culturing DDX4ec PGCLCs with human granulosa cells (GCs), these cells are further induced into ovarian follicle-like structures in a xenograft mice model. This approach can in the future design practical strategies for treating germ cell-associated issues of infertility. hPSC-derived DDX4 PGCLCs participate ovarian follicle-like structure formation Human granulosa cells as a niche environment are participating folliculogenesis Keratin 8 plays an essential role in primordial germ cell migration
Collapse
Affiliation(s)
- Danny C W Yu
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Immunotherapy, Fujian Medical University, Fujian, China.,Aging and Disease Prevention Research Center, and Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Fang-Chun Wu
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Eng Wu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fu Chen
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
43
|
The Overexpression of Keratin 23 Promotes Migration of Ovarian Cancer via Epithelial-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8218735. [PMID: 33204716 PMCID: PMC7652601 DOI: 10.1155/2020/8218735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023]
Abstract
Background Keratin 23 (KRT23) is a new member of the KRT gene family and known to be involved in the development and migration of various types of tumors. However, the role of KRT23 in ovarian cancer (OC) remains unclear. This study is aimed at investigating the function of KRT23 in OC. Methods The expression of KRT23 in normal ovarian and OC tissues was determined using the Oncomine database and immunohistochemical staining. Reverse transcription quantitative polymerase chain reaction assay was used to analyze the expression of KRT23 in normal ovarian epithelial cell lines and OC cell lines. Small interfering RNA (siRNA), wound healing assay, and transwell assay were conducted to detect the effects of KRT23 on OC cell migration and invasion. Further mechanistic studies were verified by the Gene Expression Profiling Interactive Analysis platform, Western blotting, and immunofluorescence staining. Results KRT23 was highly expressed in OC tissues and cell lines. High KRT23 expression could regulate OC cell migration and invasion, and the reduction of KRT23 by siRNA inhibited the migration and invasion of OC cells in vitro. Furthermore, KRT23 mediated epithelial-mesenchymal transition (EMT) by regulating p-Smad2/3 levels in the TGF-β/Smad signaling pathway. Conclusions These results demonstrate that KRT23 plays an important role in OC migration via EMT by regulating the TGF-β/Smad signaling pathway.
Collapse
|
44
|
Rudman-Melnick V, Adam M, Potter A, Chokshi SM, Ma Q, Drake KA, Schuh MP, Kofron JM, Devarajan P, Potter SS. Single-Cell Profiling of AKI in a Murine Model Reveals Novel Transcriptional Signatures, Profibrotic Phenotype, and Epithelial-to-Stromal Crosstalk. J Am Soc Nephrol 2020; 31:2793-2814. [PMID: 33115917 DOI: 10.1681/asn.2020010052] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Current management of AKI, a potentially fatal disorder that can also initiate or exacerbate CKD, is merely supportive. Therefore, deeper understanding of the molecular pathways perturbed in AKI is needed to identify targets with potential to lead to improved treatment. METHODS We performed single-cell RNA sequencing (scRNA-seq) with the clinically relevant unilateral ischemia-reperfusion murine model of AKI at days 1, 2, 4, 7, 11, and 14 after AKI onset. Using real-time quantitative PCR, immunofluorescence, Western blotting, and both chromogenic and single-molecule in situ hybridizations, we validated AKI signatures in multiple experiments. RESULTS Our findings show the time course of changing gene expression patterns for multiple AKI stages and all renal cell types. We observed elevated expression of crucial injury response factors-including kidney injury molecule-1 (Kim1), lipocalin 2 (Lcn2), and keratin 8 (Krt8)-and of several novel genes (Ahnak, Sh3bgrl3, and Col18a1) not previously examined in kidney pathologies. AKI induced proximal tubule dedifferentiation, with a pronounced nephrogenic signature represented by Sox4 and Cd24a. Moreover, AKI caused the formation of "mixed-identity cells" (expressing markers of different renal cell types) that are normally seen only during early kidney development. The injured tubules acquired a proinflammatory and profibrotic phenotype; moreover, AKI dramatically modified ligand-receptor crosstalk, with potential pathologic epithelial-to-stromal interactions. Advancing age in AKI onset was associated with maladaptive response and kidney fibrosis. CONCLUSIONS The scRNA-seq, comprehensive, cell-specific profiles provide a valuable resource for examining molecular pathways that are perturbed in AKI. The results fully define AKI-associated dedifferentiation programs, potential pathologic ligand-receptor crosstalk, novel genes, and the improved injury response in younger mice, and highlight potential targets of kidney injury.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Andrew Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Saagar M Chokshi
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Keri A Drake
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Meredith P Schuh
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - J Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| |
Collapse
|
45
|
Huang X, Liu F, Jiang Z, Guan H, Jia Q. CREB1 Suppresses Transcription of microRNA-186 to Promote Growth, Invasion and Epithelial-Mesenchymal Transition of Gastric Cancer Cells Through the KRT8/HIF-1α Axis. Cancer Manag Res 2020; 12:9097-9111. [PMID: 33061604 PMCID: PMC7526476 DOI: 10.2147/cmar.s265187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background The cAMP response element-binding protein 1 (CREB1) was initiated as a potential target for cancer treatment. This research was conducted to probe the effect of CREB1 in the progression of gastric cancer (GC) and the molecules involved. Materials and Methods CREB1 expression in GC tissues and cell lines (AGS and MKN-45) as well as that in normal tissues and in gastric mucosa cell line (GES-1) was detected. The correlation between CREB1 expression and prognosis of GC patients was determined. Artificial silencing of CREB1 was introduced to evaluate its effect on biological behaviors of GC cells. The target microRNA (miRNA) of CREB1 and the target mRNA of miR-186 were predicted and validated. Altered expression of miR-186, KRT8 and HIF-1α was introduced to confirm their functions in GC progression. Results CREB1 was abundantly expressed in GC tissues and cells and linked to dismal prognosis in patients. Silencing of CREB1 or upregulation of miR-186 suppressed the malignant behaviors such as growth, epithelial-mesenchymal transition (EMT) and invasion of GC cells, while artificial overexpression of KRT8 led to reversed trends. KRT8 was a target mRNA of miR-186, and CREB1 transcriptionally suppressed miR-186 expression to further up-regulate KRT8. KRT8 was also found to increase HIF-1α expression. Upregulation of HIF-1α was found to block the suppressing role of CREB1 silencing in GC cell malignancy. Conclusion This study evidenced that silencing of CREB1 inhibits growth, invasion, EMT and resistance to apoptosis of GC cells involving the upregulation of miR-186 and the following downregulation of KRT8 and HIF-1α.
Collapse
Affiliation(s)
- Xue Huang
- Department of Gastroenterology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537100, Guangxi, People's Republic of China
| | - Fujian Liu
- Department of Gastroenterology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537100, Guangxi, People's Republic of China
| | - Zhiyong Jiang
- Department of Gastroenterology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537100, Guangxi, People's Republic of China
| | - Hang Guan
- Department of Gastroenterology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537100, Guangxi, People's Republic of China
| | - Qiuhong Jia
- Department of Gastroenterology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537100, Guangxi, People's Republic of China
| |
Collapse
|
46
|
Gastric cancer in proximal site exerts poorer survival outcome with divergent genetic features than distal site. Comput Biol Chem 2020; 88:107360. [PMID: 32841839 DOI: 10.1016/j.compbiolchem.2020.107360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/05/2020] [Accepted: 08/13/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Anatomical subsites always harbor specific biological features in carcinogenesis. The divergent prognosis of proximal gastric cancer (PGC) and distal gastric cancer (DGC) has been reported. The current study aimed to comprehensively interpret anatomic subsite-specific genomic profiles, which may improve the effectiveness of personalized management. METHODS Survival and genomic data from the online Surveillance, Epidemiology, and End Results (SEER) and The Cancer Genome Atlas (TCGA) databases were queried for prognostic and genetic analysis, respectively. Propensity score matching (PSM) analysis was performed to balance patient epidemiological factors. Differentially expressed genes (DEGs) were analyzed using the DESeq algorithm. Functional enrichment was performed by the clusterProfiler package. The protein-protein interaction network of DEGs was predicted by the online STRING database. RESULTS A total of 3,955 patient pairs were assembled by PSM in SEER data with even background characteristics. Prognostic analysis indicated worse overall survival of PGC than DGC (17 vs 20 months, p = 0.0002). Genetic analysis of TCGA database identified 280 DEGs, 90 of which were upregulated in the DGC group and the remaining 190 were upregulated in the PGC group. Functional enrichment analysis indicated that kallikrein serine protease activity, ion channel (Na+/Cl-) activity, and cytoskeleton constituent might be attributed to the poor prognosis observed in PGC. Furthermore, alcohol, retinol, and lipoprotein metabolism were the features for DGC malignancy. CONCLUSION The current study first demonstrated that PGC exerts poorer survival outcome than DGC based on the SEER database. Further bioinformatic investigation depicts the specific genetic features for PGC and DGC, which may generate differences in tumor malignancy. Our findings provide promising genetic targets for future specific and individualized gastric cancer therapy.
Collapse
|
47
|
Yuan S, Wang P, Zhou X, Xu J, Lu S, Chen Y, Zhang Y. Differential proteomics mass spectrometry of melanosis coli. Am J Transl Res 2020; 12:3133-3148. [PMID: 32774690 PMCID: PMC7407713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
This study aims to reveal the biological relevancy between melanosis coli (MC) with colon cancer by analyzing the proteomics differences of tissues of melanosis coli, colon cancer, and normal ones to probe into the causes and development mechanisms of MC from the perspective of biomolecules. Fourteen differential protein spots were found in the study after using two-dimensional gel electrophoresis (2-DE) and bio-mass spectrometry (MALDI-TOF/TOF-MS). Specifically, six and eight differential protein spots in the melanosis coli tissues were detected, respectively, compared with the normal tissues and colon cancer tissues. Eight kinds of proteins, including keratin 8 (KRT8), keratin 18 (KRT18), fibrinogen beta chain isoform 2 preproprotein (FGB), catalase (CAT), 26s protease regulatory subunit 10b (PSMC6), isoform 1 of tropomyosin alpha-4 chain (TPM4), carbonic anhydrase 1 (CA1), isoform of prelammin-A/C (LMNA), were retrieved through the mass spectral database, which could be deemed as associated proteins of MC and colon cancer. The different expressions in the disease tissues indicate that these proteins may be connected with the carcinogenesis of MC as well as the malignant proliferation, development, differentiation, and diffusion of cancer cells.
Collapse
Affiliation(s)
- Siqi Yuan
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang 471003, Henan, China
| | - Ping Wang
- Department of Public Health, School of Medicine, Henan University of Science and TechnologyLuoyang 471003, Henan, China
| | - Xin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang 471003, Henan, China
| | - Jinjin Xu
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang 471003, Henan, China
| | - Shenao Lu
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang 471003, Henan, China
| | - Yan Chen
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang 471003, Henan, China
| | - Yingjian Zhang
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang 471003, Henan, China
| |
Collapse
|
48
|
Keratin intermediate filaments: intermediaries of epithelial cell migration. Essays Biochem 2020; 63:521-533. [PMID: 31652439 DOI: 10.1042/ebc20190017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Migration of epithelial cells is fundamental to multiple developmental processes, epithelial tissue morphogenesis and maintenance, wound healing and metastasis. While migrating epithelial cells utilize the basic acto-myosin based machinery as do other non-epithelial cells, they are distinguished by their copious keratin intermediate filament (KF) cytoskeleton, which comprises differentially expressed members of two large multigene families and presents highly complex patterns of post-translational modification. We will discuss how the unique mechanophysical and biochemical properties conferred by the different keratin isotypes and their modifications serve as finely tunable modulators of epithelial cell migration. We will furthermore argue that KFs together with their associated desmosomal cell-cell junctions and hemidesmosomal cell-extracellular matrix (ECM) adhesions serve as important counterbalances to the contractile acto-myosin apparatus either allowing and optimizing directed cell migration or preventing it. The differential keratin expression in leaders and followers of collectively migrating epithelial cell sheets provides a compelling example of isotype-specific keratin functions. Taken together, we conclude that the expression levels and specific combination of keratins impinge on cell migration by conferring biomechanical properties on any given epithelial cell affecting cytoplasmic viscoelasticity and adhesion to neighboring cells and the ECM.
Collapse
|
49
|
Li X, Song Q, Guo X, Wang L, Zhang Q, Cao L, Ren Y, Wu X, Meng Z, Xu K. The Metastasis Potential Promoting Capacity of Cancer-Associated Fibroblasts Was Attenuated by Cisplatin via Modulating KRT8. Onco Targets Ther 2020; 13:2711-2723. [PMID: 32280245 PMCID: PMC7132007 DOI: 10.2147/ott.s246235] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are an essential component of tumor microenvironment. They are attracting increasing attentions due to their crucial role in tumor growth, drug-resistance and metastasis. Cisplatin is a first-line chemotherapy drug applying in various types of cancer. There are intensive studies on cisplatin's effect on tumor cells, however, its effect on CAFs remains poorly understood. In the present study, we investigated the effect of cisplatin on CAFs. Methods Cell migration was detected by wound healing assay. Cell invasion was performed by the transwell assay. mRNA expression was detected by quantitative PCR, and protein expression was detected by Western blotting. Tumor growth was measured using BALB/c nude mice tumor models. Results Cisplatin attenuated the promoting capacity of CAFs on lung cancer cell migration and invasion, via suppressing CAFs' effect on metastasis-related genes including Twist1, vascular endothelial growth factor receptor (VEGFR), MMP2, and AKT signaling pathway. Keratin 8 (KRT8) was identified as a target of cisplatin. KRT8 upregulation in CAFs is responsible for the inhibitory effect of cisplatin on lung cancer cells metastasis potential through AKT pathway suppression. The stimulation of AKT by AKT activator SC79 reversed KRT8's effect on cell migration. Importantly, in vivo study also showed that CAFs enhanced tumor growth significantly, and cisplatin effectively abrogated the promoting effect of CAFs on tumor growth. Conclusion Our results revealed a novel mechanism that cisplatin attenuated the metastasis promoting effect of CAFs via KRT8/AKT signaling pathway. This finding highlights KRT8 in CAFs as a potential therapeutic candidate for metastasis treatment.
Collapse
Affiliation(s)
- Xueqin Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Qianqian Song
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Xueru Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Limin Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Yinghui Ren
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| |
Collapse
|
50
|
Phosphorylation of keratin 18 serine 52 regulates mother-daughter centriole engagement and microtubule nucleation by cell cycle-dependent accumulation at the centriole. Histochem Cell Biol 2020; 153:307-321. [PMID: 32078038 DOI: 10.1007/s00418-020-01849-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
Serine-52 (Ser52) is the major physiologic site of keratin 18 (K18) phosphorylation. Here, we report that serine-52 phosphorylated K18 (phospho-Ser52 K18) accumulated on centrosomes in a cell cycle-dependent manner. Moreover, we found that phospho-Ser52 K18 was located at the proximal end of the mother centriole. Transfection with the K18 Ser52 → Ala (K18 S52A) mutant prevented centriole localization of phospho-Ser52 K18 and resulted in separation of the mother-daughter centrioles. Inhibition of microtubule polymerization led to the disappearance of aggregated phospho-Ser52 K18 on the centrosome; removal of inhibitors resulted in reaccumulation of phospho-Ser52 K18 in microtubule-organizing centers. Transfection with a K18 S52A mutant inhibited microtubule nucleation. These results reveal a cell cycle-dependent change in centrosome localization of phospho-Ser52 k18 and strongly suggest that the phosphorylation status of Ser52 K18 of mother centrioles plays a critical role in maintaining a tight engagement between mother and daughter centrioles and also contributes to microtubule nucleation.
Collapse
|