1
|
Chen J, Wang S, Ding Y, Xu D, Zheng S. Radiotherapy-induced alterations in tumor microenvironment: metabolism and immunity. Front Cell Dev Biol 2025; 13:1568634. [PMID: 40356601 PMCID: PMC12066526 DOI: 10.3389/fcell.2025.1568634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Tumor metabolism plays a pivotal role in shaping immune responses within the tumor microenvironment influencing tumor progression, immune evasion, and the efficacy of cancer therapies. Radiotherapy has been shown to impact both tumor metabolism and immune modulation, often inducing immune activation through damage-associated molecular patterns and the STING pathway. In this study, we analyse the particular characteristics of the tumour metabolic microenvironment and its effect on the immune microenvironment. We also review the changes in the metabolic and immune microenvironment that are induced by radiotherapy, with a focus on metabolic sensitisation to the effects of radiotherapy. Our aim is to contribute to the development of research ideas in the field of radiotherapy metabolic-immunological studies.
Collapse
Affiliation(s)
- Jinpeng Chen
- Department of General Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
- Southeast University Medical School, Nanjing, Jiangsu, China
| | - Sheng Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Yue Ding
- Department of General Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
- Southeast University Medical School, Nanjing, Jiangsu, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiya Zheng
- Southeast University Medical School, Nanjing, Jiangsu, China
- Department of Oncology, Southeast University, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Kast RE. UBC4: A Repurposed Drug Regimen for Adjunctive Use During Bladder Cancer Treatment. Biomedicines 2025; 13:706. [PMID: 40149682 PMCID: PMC11940094 DOI: 10.3390/biomedicines13030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
After it has metastasized, bladder cancer, the malignant transformation of the bladder urothelium, continues to be a common cause of death after maximal use of all currently available standard treatments. To address this problem in 2025, the drug repurposing movement within oncology aims to identify medicines in common general medical care use that have data indicating that they can interfere or inhibit a growth driving element that has been identified in bladder cancer. This paper now outlines extensive preclinical data showing that four drugs from general medical practice meet these criteria-the melatonergic drug ramelteon, the antidepressant fluoxetine, the antibiotic dapsone, and the analgesic drug celecoxib. This is the UBC4 regimen, meant as a possible adjunct added to standard treatments of metastatic bladder cancer. Three factors justify a clinical pilot trial of UBC4: (1) the UBC4 drugs are usually well tolerated and carry a low risk of harm, (2) the commonly fatal outcome of bladder cancer once it has widely metastasized, plus (3) the strong preclinical database showing UBC growth inhibition by each of the individual UBC4 drugs as outlined in this paper.
Collapse
Affiliation(s)
- Richard E Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, VT 05408, USA
| |
Collapse
|
3
|
Yu Y, Poulsen SA, Di Trapani G, Tonissen KF. Exploring the Redox and pH Dimension of Carbonic Anhydrases in Cancer: A Focus on Carbonic Anhydrase 3. Antioxid Redox Signal 2024; 41:957-975. [PMID: 38970427 DOI: 10.1089/ars.2024.0693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Significance: Both redox and pH are important regulatory processes that underpin cell physiological functions, in addition to influencing cancer cell development and tumor progression. The thioredoxin (Trx) and glutathione redox systems and the carbonic anhydrase (CA) proteins are considered key regulators of cellular redox and pH, respectively, with components of the Trx system and CAs regarded as cancer therapeutic targets. However, the redox and pH axis in cancer cells is an underexplored topic of research. Recent Advances: Structural studies of a CA family member, CA3, localized two of its five cysteine residues to the protein surface. Redox-regulated modifications to CA3 have been identified, including glutathionylation. CA3 has been shown to bind to other proteins, including B cell lymphoma-2-associated athanogene 3, and squalene epoxidase, which can modulate autophagy and proinflammatory signaling, respectively, in cancer cells. Critical Issues: CA3 has also been associated with epithelial-mesenchymal transition processes, which promote cancer cell metastasis, whereas CA3 overexpression activates the phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, which upregulates cell growth and inhibits autophagy. It is not yet known if CA3 modulates cancer progression through its reported antioxidant functions. Future Directions: CA3 is one of the least studied CA isozymes. Further studies are required to assess the cellular antioxidant role of CA3 and its impact on cancer progression. Identification of other binding partners is also required, including whether CA3 binds to Trx in human cells. The development of specific CA3 inhibitors will facilitate these functional studies and allow CA3 to be investigated as a cancer therapeutic target. Antioxid. Redox Signal. 41, 957-975.
Collapse
Affiliation(s)
- Yezhou Yu
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| | - Sally-Ann Poulsen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| | | | - Kathryn F Tonissen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| |
Collapse
|
4
|
Masci D, Puxeddu M, Di Magno L, D’Ambrosio M, Parisi A, Nalli M, Bai R, Coluccia A, Sciò P, Orlando V, D’Angelo S, Biagioni S, Urbani A, Hamel E, Nocentini A, Filiberti S, Turati M, Ronca R, Kopecka J, Riganti C, Fionda C, Bordone R, Della Rocca G, Canettieri G, Supuran CT, Silvestri R, La Regina G. 4-(3-Phenyl-4-(3,4,5-trimethoxybenzoyl)-1 H-pyrrol-1-yl)benzenesulfonamide, a Novel Carbonic Anhydrase and Wnt/β-Catenin Signaling Pathway Dual-Targeting Inhibitor with Potent Activity against Multidrug Resistant Cancer Cells. J Med Chem 2023; 66:14824-14842. [PMID: 37902628 PMCID: PMC10641813 DOI: 10.1021/acs.jmedchem.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
We synthesized new pyrrole and indole derivatives as human carbonic anhydrase (hCA) inhibitors with the potential to inhibit the Wnt/β-catenin signaling pathway. The presence of both N1-(4-sulfonamidophenyl) and 3-(3,4,5-trimethoxyphenyl) substituents was essential for strong hCA inhibitors. The most potent hCA XII inhibitor 15 (Ki = 6.8 nM) suppressed the Wnt/β-catenin signaling pathway and its target genes MYC, Fgf20, and Sall4 and exhibited the typical markers of apoptosis, cleaved poly(ADP-ribose)polymerase, and cleaved caspase-3. Compound 15 showed strong inhibition of viability in a panel of cancer cells, including colorectal cancer and triple-negative breast cancer cells, was effective against the NCI/ADR-RES DOX-resistant cell line, and restored the sensitivity to doxorubicin (DOX) in HT29/DX and MDCK/P-gp cells. Compound 15 is a novel dual-targeting compound with activity against hCA and Wnt/β-catenin. It thus has a broad targeting spectrum and is an anticancer agent with specific potential in P-glycoprotein overexpressing cell lines.
Collapse
Affiliation(s)
- Domiziana Masci
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, Rome 00168, Italy
| | - Michela Puxeddu
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Laura Di Magno
- Laboratory
Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, Rome 00161, Italy
| | - Michele D’Ambrosio
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Anastasia Parisi
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Marianna Nalli
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Ruoli Bai
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland 21702, United States
| | - Antonio Coluccia
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Pietro Sciò
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Viviana Orlando
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Sara D’Angelo
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Stefano Biagioni
- Department
of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Andrea Urbani
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, Rome 00168, Italy
| | - Ernest Hamel
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland 21702, United States
| | - Alessio Nocentini
- Dipartimento
Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitá degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino I-50019, Firenze, Italy
| | - Serena Filiberti
- Experimental
Oncology and Immunology Unit, Department of Molecular and Translational
Medicine, University of Brescia, Via Branze 39, Brescia 25123, Italy
| | - Marta Turati
- Experimental
Oncology and Immunology Unit, Department of Molecular and Translational
Medicine, University of Brescia, Via Branze 39, Brescia 25123, Italy
| | - Roberto Ronca
- Experimental
Oncology and Immunology Unit, Department of Molecular and Translational
Medicine, University of Brescia, Via Branze 39, Brescia 25123, Italy
| | - Joanna Kopecka
- Department
of Oncology and Molecular Biotecnology Center “Guido Tarone″, Oncological Pharmacology Unit, Via Nizza 44, Torino 10126, Italy
| | - Chiara Riganti
- Department
of Oncology and Molecular Biotecnology Center “Guido Tarone″, Oncological Pharmacology Unit, Via Nizza 44, Torino 10126, Italy
| | - Cinzia Fionda
- Laboratory
Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, Rome 00161, Italy
| | - Rosa Bordone
- Laboratory
Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, Rome 00161, Italy
| | - Giorgia Della Rocca
- Laboratory
Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, Rome 00161, Italy
| | - Gianluca Canettieri
- Laboratory
Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine, Sapienza
University of Rome, Viale
Regina Elena 291, Rome 00161, Italy
| | - Claudiu T. Supuran
- Dipartimento
Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitá degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino I-50019, Firenze, Italy
| | - Romano Silvestri
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Giuseppe La Regina
- Laboratory
Affiliated with the Institute Pasteur Italy—Cenci Bolognetti
Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Roma 00185, Italy
| |
Collapse
|
5
|
Joshi N, Bhat F, Bellad A, Sathe G, Jain A, Chavan S, Sirdeshmukh R, Pandey A. Urinary Proteomics for Discovery of Gastric Cancer Biomarkers to Enable Precision Clinical Oncology. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:361-371. [PMID: 37579183 PMCID: PMC10625469 DOI: 10.1089/omi.2023.0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
For precision in clinical oncology practice, detection of tumor-derived peptides and proteins in urine offers an attractive and noninvasive alternative for diagnostic or screening purposes. In this study, we report comparative quantitative proteomic profiling of urine samples from patients with gastric cancer and healthy controls using tandem mass tags-based multiplexed mass spectrometry approach. We identified 1504 proteins, of which 246 were differentially expressed in gastric cancer cases. Notably, ephrin A1 (EFNA1), pepsinogen A3 (PGA3), sortilin 1 (SORT1), and vitronectin (VTN) were among the upregulated proteins, which are known to play crucial roles in the progression of gastric cancer. We also found other overexpressed proteins, including shisa family member 5 (SHISA5), mucin like 1 (MUCL1), and leukocyte cell derived chemotaxin 2 (LECT2), which had not previously been linked to gastric cancer. Using a novel approach for targeted proteomics, SureQuant, we validated changes in abundance of a subset of proteins discovered in this study. We confirmed the overexpression of vitronectin and sortilin 1 in an independent set of urine samples. Altogether, this study provides molecular candidates for biomarker development in gastric cancer, and the findings also support the promise of urinary proteomics for noninvasive diagnostics and personalized/precision medicine in the oncology clinic.
Collapse
Affiliation(s)
- Neha Joshi
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Firdous Bhat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Anikha Bellad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anu Jain
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sandip Chavan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ravi Sirdeshmukh
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Akhilesh Pandey
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Chen S, Chen X, Zhang P, Chen S, Wang X, Luo Q, Cui Z, Huang Y, Wan L, Hou X, Yao H, Liu X, He A, Jiang Z, Qiu J, Li Y, Yu K, Zhuang J. Bioinformatics Analysis and Experimental Identification of Immune-Related Genes and Immune Cells in the Progression of Retinoblastoma. Invest Ophthalmol Vis Sci 2022; 63:28. [PMID: 36315123 PMCID: PMC9631497 DOI: 10.1167/iovs.63.11.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose Retinoblastoma (RB) is the most common type of aggressive intraocular malignancy in children. The alteration of immunity during RB progression and invasion has not yet been well defined. This study investigated significantly altered immune-associated genes and cells related to RB invasion. Methods The differentially expressed immune-related genes (IRGs) in noninvasive RB and invasive RB were identified by analysis of two microarray datasets (GSE97508 and GSE110811). Hub IRGs were further identified by real time PCR. The single-sample gene set enrichment analysis algorithm and Pearson correlation analysis were used to define immune cell infiltration and the relationships between hub IRGs and immune cells. Cell viability and migration were evaluated by CCK-8 and Transwell assays. A xenograft mouse model was used to verify the relationship between Src homology 3 (SH3) domain GRB2-like 2 (SH3GL2) expression and myeloid-derived suppressor cells (MDSCs). Results Eight upregulated genes and six downregulated IRGs were identified in invasive RB. Seven IRGs were confirmed by real-time PCR. Moreover, the proportions of MDSCs were higher in invasive RB tissues than in noninvasive RB tissues. Furthermore, correlation analysis of altered immune genes and cells suggested that SH3GL2, Langerhans cell protein 1 (LCP1) and transmembrane immune signaling adaptor TYROBP have strong connections with MDSCs. Specifically, decreased SH3GL2 expression promoted the migration of RB cells in vitro, increased the tumor size and weight, and increased the numbers of MDSCs in the tumor and spleen in vivo. Conclusions This study indicated that SH3GL2 and MDSCs play a critical role in RB progression and invasion and provide candidate targets for the treatment of RB.
Collapse
Affiliation(s)
- Shuilian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Ping Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Shuxia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Xiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Qian Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Zedu Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Linxi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Xiangtao Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Huan Yao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Xuan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Anqi He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Zihua Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou City, China
| |
Collapse
|
7
|
Matsue T, Gi M, Shiota M, Tachibana H, Suzuki S, Fujioka M, Kakehashi A, Yamamoto T, Kato M, Uchida J, Wanibuchi H. The carbonic anhydrase inhibitor acetazolamide inhibits urinary bladder cancers via suppression of β-catenin signaling. Cancer Sci 2022; 113:2642-2653. [PMID: 35723039 PMCID: PMC9357660 DOI: 10.1111/cas.15467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/21/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Carbonic anhydrases (CAs) play an important role in maintaining pH homeostasis. We previously demonstrated that overexpression of CA2 was associated with invasion and progression of urothelial carcinoma (UC) in humans. The purpose of the present study was to evaluate the effects of the CA inhibitor acetazolamide (Ace) on N‐butyl‐N‐(4‐hydroxybutyl)nitrosamine (BBN)‐induced bladder carcinogenesis in mice and explore the function of CA2 in muscle invasion by UC. Male mice were treated with 0.025% (experiment 1) or 0.05% BBN (experiment 2) in their drinking water for 10 weeks, then treated with cisplatin (Cis), Ace, or Cis plus Ace for 12 weeks. In experiment 1, the overall incidence of BBN‐induced UCs was significantly decreased in the BBN→Ace and BBN→Cis+Ace groups. In experiment 2, the overall incidence of BBN‐induced UCs was significantly decreased in the BBN→Cis+Ace group, and the incidence of muscle invasive UC was significantly decreased in both the BBN→Ace and the BBN→Cis+Ace groups. We also show that overexpression of CA2 by human UC cells T24 and UMUC3 significantly increased their migration and invasion capabilities, and that Ace significantly inhibited migration and invasion by CA2‐overexpressing T24 and UMUC3 cells. These data demonstrate a functional association of CA2 with UC development and progression, confirming the association of CA2 with UC that we had shown previously by immunohistochemical analysis of human UC specimens and proteome analysis of BBN‐induced UC in rats. Our finding that inhibition of CA2 inhibits UC development and muscle invasion also directly confirms that CA2 is a potential therapeutic target for bladder cancers.
Collapse
Affiliation(s)
- Taisuke Matsue
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.,Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Min Gi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.,Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Shiota
- Department of Molecular Biology of Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hirokazu Tachibana
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomoki Yamamoto
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.,Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Minoru Kato
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Junji Uchida
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Identification of novel biomarkers affecting the metastasis of colorectal cancer through bioinformatics analysis and validation through qRT-PCR. Cancer Cell Int 2020; 20:105. [PMID: 32256214 PMCID: PMC7106634 DOI: 10.1186/s12935-020-01180-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background Tumor progression and distant metastasis are the main causes of deaths in colorectal cancer (CRC) patients, and the molecular mechanisms in CRC metastasis have not been completely discovered. Methods We identified differentially expressed genes (DEGs) and lncRNAs (DELs) of CRC from The Cancer Genome Atlas (TCGA) database. Then we conducted the weighted gene co-expression network analysis (WGCNA) to investigate co-expression modules related with CRC metastasis. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, DEG-DEL co-expression network and survival analyses of significant modules were also conducted. Finally, the expressions of selected biomarkers were validated in cell lines by quantitative real-time PCR (qRT-PCR). Results 2032 DEGs and 487 DELs were involved the construction of WGCNA network, and greenyellow, turquoise and brown module were identified to have more significant correlation with CRC metastasis. GO and KEGG pathway analysis of these three modules have proven that the functions of DEGs were closely involved in many important processes in cancer pathogenesis. Through the DEG-DEL co-expression network, 12 DEGs and 2 DELs were considered as hub nodes. Besides, survival analysis showed that 30 DEGs were associated with the overall survival of CRC. Then 10 candidate biomarkers were chosen for validation and the expression of CA2, CHP2, SULT1B1, MOGAT2 and C1orf115 were significantly decreased in CRC cell lines when compared to normal human colonic epithelial cells, which were consistent with the results of differential expression analysis. Especially, low expression of SULT1B1, MOGAT2 and C1orf115 were closely correlated with poorer survival of CRC. Conclusion This study identified 5 genes as new biomarkers affecting the metastasis of CRC. Besides, SULT1B1, MOGAT2 and C1orf115 might be implicated in the prognosis of CRC patients.
Collapse
|
9
|
Mastuo T, Miyata Y, Yuno T, Mukae Y, Otsubo A, Mitsunari K, Ohba K, Sakai H. Molecular Mechanisms of the Anti-Cancer Effects of Isothiocyanates from Cruciferous Vegetables in Bladder Cancer. Molecules 2020; 25:molecules25030575. [PMID: 32013065 PMCID: PMC7037050 DOI: 10.3390/molecules25030575] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Bladder cancer (BC) is a representative of urological cancer with a high recurrence and metastasis potential. Currently, cisplatin-based chemotherapy and immune checkpoint inhibitors are used as standard therapy in patients with advanced/metastatic BC. However, these therapies often show severe adverse events, and prolongation of survival is unsatisfactory. Therefore, a treatment strategy using natural compounds is of great interest. In this review, we focused on the anti-cancer effects of isothiocyanates (ITCs) derived from cruciferous vegetables, which are widely cultivated and consumed in many regions worldwide. Specifically, we discuss the anti-cancer effects of four ITC compounds—allyl isothiocyanate, benzyl isothiocyanate, sulforaphane, and phenethyl isothiocyanate—in BC; the molecular mechanisms underlying their anti-cancer effects; current trends and future direction of ITC-based treatment strategies; and the carcinogenic potential of ITCs. We also discuss the advantages and limitations of each ITC in BC treatment, furthering the consideration of ITCs in treatment strategies and for improving the prognosis of patients with BC.
Collapse
|
10
|
Xu J, Zhang J, Shan F, Wen J, Wang Y. SSTR5‑AS1 functions as a ceRNA to regulate CA2 by sponging miR‑15b‑5p for the development and prognosis of HBV‑related hepatocellular carcinoma. Mol Med Rep 2019; 20:5021-5031. [PMID: 31638225 PMCID: PMC6854603 DOI: 10.3892/mmr.2019.10736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in the development and progression of cancer. However, the mechanisms of lncRNAs in hepatitis B virus (HBV) infection-induced hepatocellular carcinoma (HCC) remain unclear. The study aimed to reveal the roles of lncRNAs for HBV-HCC based on the hypothesis of competing endogenous RNA (ceRNA). The lncRNA (GSE27462), miRNA (GSE76903) and mRNA (GSE121248) expression profiles were collected from the Gene Expression Omnibus database. Differentially expressed lncRNAs (DELs), genes (DEGs) and miRNAs (DEMs) were identified using the LIMMA or EdgeR package, respectively. The ceRNA network was constructed based on interaction pairs between miRNAs and mRNAs/lncRNAs. The functions of DEGs in the ceRNA network were predicted using the DAVID database, which was overlapped with the known HCC pathways of Comparative Toxicogenomics Database (CTD) to construct the HCC-related ceRNA network. The prognosis values [overall survival, (OS); recurrence-free survival (RFS)] of genes were validated using the Cancer Genome Atlas (TCGA) data with Cox regression analysis. The present study screened 38 DELs, 127 DEMs and 721 DEGs. A ceRNA network was constructed among 17 DELs, 12 DEMs and 173 DEGs, including the FAM138B-hsa-miR-30c-CCNE2/RRM2 and SSTR5-AS1-hsa-miR-15b-5p-CA2 ceRNA axes. Function enrichment analysis revealed the genes in the ceRNA network that participated in the p53 signaling pathway [cyclin E2 (CCNE2), ribonucleotide reductase M2 subunit (RRM2)] and nitrogen metabolism [carbonic anhydrase 2 (CA2)], which were also included in the pathways of the CTD. Univariate Cox regression analysis revealed that six RNAs (2 DELs: FAM138B, SSTR5-AS1; 2 DEMs: hsa-miR-149, hsa-miR-7; 2 DEGs: CCNE2, RRM2) were significantly associated with OS; while seven RNAs (1 DEL: LINC00284; 3 DEMs: hsa-miR-7, hsa-miR-15b, hsa-miR-30c-2; and 3 DEGs: RRM2, CCNE2, CA2) were significantly associated with RFS. In conclusion, FAM138B-hsa-miR-30c-CCNE2/RRM2 and the SSTR5-AS1-hsa-miR-15b-5p-CA2 ceRNA axes may be important mechanisms for HBV-related HCC.
Collapse
Affiliation(s)
- Jing Xu
- Infectious Diseases Division, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Fenglian Shan
- Infectious Diseases Division, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Jie Wen
- Respiratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Yue Wang
- Infectious Diseases Division, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
11
|
Yamaguchi T, Gi M, Fujioka M, Tago Y, Kakehashi A, Wanibuchi H. A chronic toxicity study of diphenylarsinic acid in the drinking water of C57BL/6J mice for 52 weeks. J Toxicol Pathol 2019; 32:127-134. [PMID: 31404369 PMCID: PMC6682552 DOI: 10.1293/tox.2018-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/16/2019] [Indexed: 01/14/2023] Open
Abstract
Diphenylarsinic acid (DPAA), a neurotoxic organic arsenical, is present in the
groundwater and soil in some regions of Japan due to illegal dumping. The purpose of the
present study was to evaluate the potential toxicity of DPAA when administered to mice in
their drinking water for 52 weeks. DPAA was administered to mice at concentrations of 0,
6.25, 12.5, and 25 ppm in their drinking water for 52 weeks. There were no significant
differences in final body weights between the control groups and the DPAA treatment groups
in male or female mice. Relative liver weights were significantly increased in males
treated with 25 ppm DPAA, and absolute liver weights were significantly decreased in
female mice treated with 25 ppm DPAA. In female mice, cholangitis and simple bile duct
hyperplasia were observed in the 12.5 and 25 ppm DPAA groups, and focal necrosis of
hepatocytes was observed in the 25 ppm DPAA group. Proteomic analysis and Ingenuity
Pathway Analysis identified 18 proteins related to hepatotoxicity that were overexpressed
in the female 25 ppm group. The phase I metabolic enzyme CYP2E1 was one of these
overexpressed proteins. Immunostaining confirmed high expression of CYP2E1 in the livers
of females in the 25 ppm group. These results suggest that DPAA is toxic to the
intrahepatic bile duct epithelium and hepatocytes in female mice and that CYP2E1 might be
involved in DPAA-associated toxicity. The no-observed-adverse-effect levels of DPAA were
12.5 ppm (1.6 mg/kg bw/day) for males and 6.25 ppm (1.1 mg/kg bw/day) for females under
the conditions of this study.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Min Gi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Yoshiyuki Tago
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
12
|
Shimizu Y, Tamada S, Kato M, Takeyama Y, Fujioka M, Kakehashi A, Nakatani T, Wanibuchi H, Gi M. Steroid sulfatase promotes invasion through epithelial-mesenchymal transition and predicts the progression of bladder cancer. Exp Ther Med 2018; 16:4463-4470. [PMID: 30542396 PMCID: PMC6257456 DOI: 10.3892/etm.2018.6787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/17/2018] [Indexed: 11/11/2022] Open
Abstract
Androgen signal has been recently suggested to be associated with the progression of bladder cancer. Steroid sulfatase (STS) is a steroid sulfate activation enzyme, considered to be one of the key enzymes in the androgen signaling pathway. However, the role of STS in bladder cancer has not been elucidated. The purpose of the present study was to determine the clinical and functional significance of STS in bladder cancer. Immunohistochemical analysis of surgical specimens obtained by radical cystectomy (n=114) demonstrated that overexpression of STS was associated with the invasion of bladder cancer, as evidenced by the incidence of STS-positive cancers (11.5 and 37.1% in non-muscle invasive and muscle invasive bladder cancers, respectively; P=0.003). STS-positive cancer demonstrated shorter recurrence-free survival and cancer-specific survival (P=0.0027 and 0.0030, respectively). Furthermore, knockdown of STS significantly reduced cell migration and invasion capacities of bladder cancer cells (P<0.001 and P=0.005, respectively), accompanied by the upregulation of E-cadherin and downregulation of vimentin. In summary, the present study demonstrated that STS promotes the invasion capability of bladder cancer via regulation of the epithelial-mesenchymal transition, and may be a useful marker for predicting the progression of bladder cancers.
Collapse
Affiliation(s)
- Yasuomi Shimizu
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Satoshi Tamada
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Minoru Kato
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yuji Takeyama
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masaki Fujioka
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Anna Kakehashi
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tatsuya Nakatani
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Hideki Wanibuchi
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Min Gi
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
13
|
Tachibana H, Gi M, Kato M, Yamano S, Fujioka M, Kakehashi A, Hirayama Y, Koyama Y, Tamada S, Nakatani T, Wanibuchi H. Carbonic anhydrase 2 is a novel invasion-associated factor in urinary bladder cancers. Cancer Sci 2017; 108:331-337. [PMID: 28004470 PMCID: PMC5378286 DOI: 10.1111/cas.13143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/11/2016] [Accepted: 12/17/2016] [Indexed: 01/01/2023] Open
Abstract
Rat bladder cancer is nearly always papillary non-invasive urothelial carcinoma (UC). To establish an animal model mimicking invasive UC that arises from papillary non-invasive UC in the bladder, male human c-Ha-ras proto-oncogene transgenic rats (Hras128) were treated with 0.05% N-butyl-N-(hydroxybutyl)nitrosameine (BBN) in their drinking water and/or 0.1% phenylethyl isothiocyanate (PEITC) in their diet as follows: BBN (8 weeks)→PEITC (8 weeks); PEITC (8 weeks)→BBN (8 weeks); BBN alone (16 weeks); PEITC alone (16 weeks); and no treatment. At the end of week 16, the highest incidence of invasive UC was observed in the BBN→PEITC group. Therefore, we used Hras128 rats treated with BBN followed by PEITC as a model of invasive bladder cancer to identify invasion-associated proteins. Proteome analysis was performed to compare the protein profiles of invasive and non-invasive UC in Hras128 rats. We identified 49 proteins that were either overexpressed or underexpressed in invasive UC but not in non-invasive UC. Immunohistochemical analysis of carbonic anhydrase 2 (CA2), an overexpressed protein, showed that the relative number of CA2-positive UC was significantly higher for invasive UC compared to non-invasive UC in rats. Moreover, the incidence of CA2-positive cancers was also significantly higher for human muscle-invasive bladder cancer (MIBC) compared to non-MIBC (NMIBC) and was positively associated with the progression of NMIBC. Our findings indicate that CA2 is an invasion-associated factor and suggest that it could serve as a potential therapeutic molecular target for bladder cancers.
Collapse
Affiliation(s)
- Hirokazu Tachibana
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Min Gi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Minoru Kato
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shotaro Yamano
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yukiyoshi Hirayama
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuki Koyama
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Tamada
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsuya Nakatani
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|