1
|
Elimam H, Zaki MB, Abd-Elmawla MA, Darwish HA, Hatawsh A, Aborehab NM, Mageed SSA, Moussa R, Mohammed OA, Abdel-Reheim MA, Doghish AS. Natural products and long non-coding RNAs in prostate cancer: insights into etiology and treatment resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6349-6368. [PMID: 39825964 DOI: 10.1007/s00210-024-03736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 01/20/2025]
Abstract
Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy. The capacity of phytochemical and nutraceutical chemicals to repress oncogenic lncRNAs and activate tumor suppressor lncRNAs has garnered significant attention as a possible strategy to diminish the development, proliferation, metastasis, and invasion of cancer cells. A potential technique to treat cancer and enhance the sensitivity of cancer cells to existing conventional therapies is the use of phytochemicals with anticancer characteristics. Functional studies indicate that lncRNAs modulate drug resistance, stemness, invasion, metastasis, angiogenesis, and proliferation via interactions with tumor suppressors and oncoproteins. Among them, numerous lncRNAs, such as HOTAIR, PlncRNA1, GAS5, MEG3, LincRNA-21, and POTEF-AS1, support the development of PCa through many molecular mechanisms, including modulation of tumor suppressors and regulation of various signal pathways like PI3K/Akt, Bax/Caspase 3, P53, MAPK cascade, and TGF-β1. Other lncRNAs, in particular, MALAT-1, CCAT2, DANCR, LncRNA-ATB, PlncRNA1, LincRNA-21, POTEF-AS1, ZEB1-AS1, SChLAP1, and H19, are key players in regulating the aforementioned processes. Natural substances have shown promising anticancer benefits against PCa by altering essential signaling pathways. The overexpression of some lncRNAs is associated with advanced TNM stage, metastasis, chemoresistance, and reduced survival. LncRNAs possess crucial clinical and transitional implications in PCa, as diagnostic and prognostic biomarkers, as well as medicinal targets. To impede the progression of PCa, it is beneficial to target aberrant long non-coding RNAs using antisense oligonucleotides or small interfering RNAs (siRNAs). This prevents them from transmitting harmful messages. In summary, several precision medicine approaches may be used to rectify dysfunctional lncRNA regulatory circuits, so improving early PCa detection and eventually facilitating the conquest of this lethal disease. Due to their presence in biological fluids and tissues, they may serve as novel biomarkers. Enhancing PCa treatments mitigates resistance to chemotherapy and radiation.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebatallah A Darwish
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26Th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Rewan Moussa
- School Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
2
|
Zhao S, Liu Y, Wang H, Wang J, Zhang J, Liu Y, Ma D. Mechanisms and progress of LncRNAs in prostate cancer development and diagnostic therapy. Int Urol Nephrol 2025:10.1007/s11255-025-04497-z. [PMID: 40266504 DOI: 10.1007/s11255-025-04497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related morbidity and mortality in men worldwide. Despite advancements in diagnosis and treatment, challenges such as late-stage detection, therapeutic resistance, and the complexity of castration-resistant prostate cancer (CRPC) persist. Long non-coding RNAs (LncRNAs) play critical roles in PCa progression through epigenetic regulation, transcriptional and post-transcriptional modulation, and immune response regulation. This review highlights the molecular mechanisms by which LncRNAs influence PCa development, treatment resistance, and immune regulation, emphasizing their potential as biomarkers and therapeutic targets. We also discuss future research directions to advance precision medicine in PCa.
Collapse
Affiliation(s)
- Shihan Zhao
- School of Basic Medical College, Beihua University, Jilin, 132013, China
| | - Yuqi Liu
- School of Basic Medical College, Beihua University, Jilin, 132013, China
| | - Han Wang
- School of Basic Medical College, Beihua University, Jilin, 132013, China
| | - Jiayi Wang
- School of Basic Medical College, Beihua University, Jilin, 132013, China
| | - Jihong Zhang
- The Pathology Department of Affiliated Hospital, Beihua University, Jilin, 132013, China
| | - Yanbo Liu
- School of Basic Medical College, Beihua University, Jilin, 132013, China.
| | - Dongrui Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Hsu CY, Jasim SA, Bansal P, Kaur H, Ahmad I, Saud A, Deorari M, Al-Mashhadani ZI, Kumar A, Zwamel AH. Delving Into lncRNA-Mediated Regulation of Autophagy-Associated Signaling Pathways in the Context of Breast Cancer. Cell Biol Int 2025; 49:221-234. [PMID: 39873206 DOI: 10.1002/cbin.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 12/15/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025]
Abstract
Breast cancer is a multifaceted and prevalent malignancy, impacting a considerable proportion of women globally. Numerous signaling pathways intricately regulate cellular functions such as growth, proliferation, and survival. Among the various regulators, lncRNAs have emerged as significant players despite their inability to encode proteins. An expanding body of literature underscores the pivotal roles lncRNAs play in cancer biology, particularly in the context of breast cancer. Autophagy, the cellular process dedicated to the degradation and recycling of cellular components, is now recognized as a crucial factor in cancer initiation and progression. The interplay between lncRNAs, various signaling pathways, and autophagy in the pathophysiology of breast cancer remains an active area of investigation. Researchers have identified specific lncRNAs that are dysregulated in breast cancer patients, influencing the modulation of key signaling pathways. Using experimental methodologies and bioinformatics approaches, multiple lncRNAs have been elucidated, providing deeper insights into their contributions to breast cancer pathogenesis and metastatic processes. In summary, the pathophysiological landscape of breast cancer is characterized by the complex interactions involving lncRNA-mediated autophagy. This understanding paves the way for identifying novel therapeutic targets, prognostic markers, and diagnostic markers, ultimately contributing to improved treatment outcomes in breast cancer management.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, Arizona, USA
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University College, Anbar, Iraq
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Abdulnaser Saud
- Department of Pharmacy, Al-Hadi University College, Baghdad, Iraq
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
- Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Ahmed Hussein Zwamel
- Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| |
Collapse
|
4
|
Morgan RA, Hazard ES, Savage SJ, Halbert CH, Gattoni-Celli S, Hardiman G. Unveiling Racial Disparities in Localized Prostate Cancer: A Systems-Level Exploration of the lncRNA Landscape. Genes (Basel) 2025; 16:229. [PMID: 40004558 PMCID: PMC11855151 DOI: 10.3390/genes16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Prostate cancer (PC) is the most common non-cutaneous cancer in men globally, and one which displays significant racial disparities. Men of African descent (AF) are more likely to develop PC and face higher mortality compared to men of European descent (EU). The biological mechanisms underlying these differences remain unclear. Long non-coding RNAs (lncRNAs), recognized as key regulators of gene expression and immune processes, have emerged as potential contributors to these disparities. This study aimed to investigate the regulatory role of lncRNAs in localized PC in AF men relative to those of EU and assess their involvement in immune response and inflammation. METHODS A systems biology approach was employed to analyze differentially expressed (DE) lncRNAs and their roles in prostate cancer (PC). Immune-related pathways were investigated through over-representation analysis of lncRNA-mRNA networks. The study also examined the effects of vitamin D supplementation on lncRNA expression in African descent (AF) PC patients, highlighting their potential regulatory roles in immune response and inflammation. RESULTS Key lncRNAs specific to AF men were identified, with several being implicated for immune response and inflammatory processes. Notably, 10 out of the top 11 ranked lncRNAs demonstrated strong interactions with immune-related genes. Pathway analysis revealed their regulatory influence on antigen processing and presentation, chemokine signaling, and ribosome pathways, suggesting their critical roles in immune regulation. CONCLUSIONS These findings highlight the pivotal role of lncRNAs in PC racial disparities, particularly through immune modulation. The identified lncRNAs may serve as potential biomarkers or therapeutic targets to address racial disparities in PC outcomes.
Collapse
Affiliation(s)
- Rebecca A. Morgan
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Queen’s University Belfast (QUB), Belfast BT9 5DL, UK;
| | - E. Starr Hazard
- Academic Affairs Faculty, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA;
| | - Stephen J. Savage
- Department of Urology, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA;
- Ralph H. Johnson VA Health Care System (VAHCS) Medical Center, Charleston, SC 29425, USA;
| | - Chanita Hughes Halbert
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA;
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Sebastiano Gattoni-Celli
- Ralph H. Johnson VA Health Care System (VAHCS) Medical Center, Charleston, SC 29425, USA;
- Department of Radiation Oncology, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Queen’s University Belfast (QUB), Belfast BT9 5DL, UK;
- Department of Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| |
Collapse
|
5
|
Khaleel AQ, Jasim SA, Menon SV, Kaur M, Sivaprasad GV, Rab SO, Hjazi A, Kumar A, Husseen B, Mustafa YF. siRNA-based knockdown of lncRNAs: A new modality to target tumor progression. Pathol Res Pract 2025; 266:155746. [PMID: 39657398 DOI: 10.1016/j.prp.2024.155746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
This study examines the potential of small interfering RNA (siRNA) as a therapeutic agent for cancer targeting long non-coding RNAs (lncRNAs). The article begins with an analysis of the structure and biogenesis of lncRNA. It explains the diverse functions of lncRNAs in cancer, establishing a foundation for assessing approaches to inhibit these molecules. The analysis focuses on the consequences of lncRNA suppression through siRNA on signaling pathways associated with cancer, connecting theoretical understanding to practical applications. An evaluation of ongoing clinical trials and applications contributes to the discourse by revealing the potential for siRNA-mediated interventions to be practiced. Furthermore, an evaluation of the advantages and disadvantages of this therapeutic approach offers a nuanced viewpoint. In conclusion, the paper synthesizes significant discoveries and outlines potential avenues for future research, contributing to the dialogue surrounding personalized cancer therapeutics and precision medicine. Future challenges in using siRNA to target lncRNAs in oncology include optimizing delivery systems for efficient tumor cell uptake, minimizing off-target effects, enhancing RNA stability for a longer therapeutic window, and overcoming barriers in the tumor microenvironment. Addressing these factors is essential for the practical application of siRNA-based cancer therapies.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar 31001, Iraq.
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India.
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia; Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India.
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq.
| |
Collapse
|
6
|
Tan W, Xiao C, Ma M, Cao Y, Huang Z, Wang X, Kang R, Li Z, Li E. Role of non-coding RNA in lineage plasticity of prostate cancer. Cancer Gene Ther 2025; 32:1-10. [PMID: 39496938 DOI: 10.1038/s41417-024-00834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024]
Abstract
The treatment of prostate cancer (PCa) has made great progress in recent years, but treatment resistance always develops and can even lead to fatal disease. Exploring the mechanism of drug resistance is of great significance for improving treatment outcomes and developing biomarkers with predictive value. It is increasingly recognized that mechanism of drug resistance in advanced PCa is related to lineage plasticity and tissue differentiation. Specifically, one of the mechanisms by which castration-resistant prostate cancer (CRPC) cells acquire drug resistance and transform into neuroendocrine prostate cancer (NEPC) cells is lineage plasticity. NEPC is a subtype of PCa that is highly aggressive and lethal, with a median survival of only 7 months. With the development of high-throughput RNA sequencing technology, more and more non-coding RNAs have been identified, which play important roles in different diseases through different mechanisms. Several ncRNAs have shown great potential in PCa lineage plasticity and as biomarkers. In the review, the role of ncRNA in PCa lineage plasticity and its use as biomarkers were reviewed.
Collapse
Affiliation(s)
- Wenhui Tan
- Institute of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Min Ma
- Institute of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Youhan Cao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhenguo Huang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaolan Wang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhenfa Li
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China.
| | - Ermao Li
- Institute of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
7
|
Liu Y, Yang H, Lv G, Duan J, Zhao W, Shi Y, Lei Y. Integration analysis of cis- and trans-regulatory long non-coding RNAs associated with immune-related pathways in non-small cell lung cancer. Biochem Biophys Rep 2024; 40:101832. [PMID: 39539669 PMCID: PMC11558640 DOI: 10.1016/j.bbrep.2024.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are importantly involved in the initiation and progression of non-small cell lung cancer (NSCLC). However, the classification and mechanisms of lncRNAs remain largely elusive. Aim Hence, we addressed this through bioinformatics analysis. Methods and results We utilized microarray technology to analyze lncRNAs and mRNAs in twenty paired NSCLC tumor tissues and adjacent normal tissues. Gene set enrichment analysis, Kyoto Encyclopedia of Genes and Genomes, and Gene Ontology were conducted to discern the biological functions of identified differentially expressed transcripts. Additionally, networks of lncRNA-mRNA co-expression, including cis-regulation, lncRNA-transcription factor (TF)-mRNA, trans-regulation, and lncRNA-miRNA-mRNA interactions were explored. Furthermore, the study examined differentially expressed transcripts and their prognostic values in a large RNA-seq dataset of 1016 NSCLC tumors and normal tissues extracted from the Cancer Genome Atlas (TCGA). The analysis revealed 391 lncRNAs and 344 mRNAs with differential expression in NSCLC tumor tissues compared to adjacent normal tissues. Subsequently, 43,557 co-expressed lncRNA-mRNA pairs were identified, including 27 lncRNA-mRNA pairs in cis, 9 lncRNA-TF-mRNA networks, 34 lncRNA-mRNA pairs in trans, and 8701 lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks. Notably, these lncRNAs were found to be involved in immune-related pathways. Six significant transcripts, including NTF4, PTPRD-AS, ITGA11, HID1-AS1, RASGRF2-AS1, and TBX2-AS1, were identified within the ceRNA network and trans-regulation. Conclusion This study brings important insights into the regulatory roles of lncRNAs in NSCLC, providing a fresh perspective on lncRNA research in tumor biology.
Collapse
Affiliation(s)
| | | | - Guoli Lv
- Department of Geriatric Thoracic Surgery, the First Hospital of Kunming Medical University, Kunming, China
| | - Jin Duan
- Department of Geriatric Thoracic Surgery, the First Hospital of Kunming Medical University, Kunming, China
| | - Wei Zhao
- Department of Geriatric Thoracic Surgery, the First Hospital of Kunming Medical University, Kunming, China
| | - Yunfei Shi
- Department of Geriatric Thoracic Surgery, the First Hospital of Kunming Medical University, Kunming, China
| | - Youming Lei
- Department of Geriatric Thoracic Surgery, the First Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Chen S, Weng M, Lin R, Wei J, Zhu L, Ju Z, Lin Z, Zhan B, Pathak RA, Sayyid RK, Ge R. The inhibition effect of psoralen on prostate cancer PC3 cells via down-regulation of long non-coding RNA ENST00000510619. Transl Androl Urol 2024; 13:2294-2306. [PMID: 39507866 PMCID: PMC11535728 DOI: 10.21037/tau-24-457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Background New medications are needed to improve outcomes of castration-resistant prostate cancer (CRPC). Psoralen has been reported to have anti-cancer properties for various tumors, but there are limited reports about psoralen treatment in prostate cancer (PCa). This study aimed to investigate the effect of psoralen on PC3 cells and to investigate potential underlying mechanisms of action. Methods The effect of psoralen on the proliferation and cell cycle progression of PC3 cells was determined using Cell Counting Kit-8 (CCK-8) test and flow cytometry, respectively. The differential gene profiles in PC3 cells treated with psoralen were determined with microarray analyses. The effect of psoralen on long non-coding RNA (lncRNA) ENST00000510619 expression in PC3 cells was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The effect of psoralen and transfection of small interfering lnc-RNA (si-lncRNA) ENST00000510619 on cell viability, invasion ability, and migratory activity of PC3 cells were evaluated using the CCK-8 test, transwell assay, and wound healing, respectively. Results Psoralen significantly inhibited PC3 cells in a concentration- and time-dependent manner and caused G1 phase and G2/M phase cycle arrests. When screened with a fold change (FC) of ≥2 and a P value of <0.05, 1,716 lncRNAs and 1,160 messenger RNAs (mRNAs) were significantly up-regulated, whereas 3,269 lncRNAs and 3,263 mRNAs were significantly down-regulated in PC3 cells after psoralen treatment. Among the differentially down-regulated lncRNAs in which the signal of the probe showed significant differences compared to the background, lncRNA ENST00000510619 had the highest FC. The expression of lncRNA ENST00000510619 was shown to be down-regulated by psoralen in a concentration-dependent manner. CCK-8 assay, wound healing, and transwell assay showed that both psoralen and si-lncRNA ENST00000510619 transfection significantly inhibited the activity, invasion, and migration of PC3 cells (P<0.01 for all). Conclusions Psoralen was confirmed to inhibit proliferation and block the cell cycle in PC3 cells in this in vitro study. The molecular mechanism involves multiple differentially expressed lncRNAs and mRNAs and is related to the down-regulation of lncRNA ENST000000510619 expression. This study provides the experimental basis for the development of psoralen as a novel anti-CRPC drug and for the consideration of lncRNA ENST00000510619 as a potential clinical target for CRPC.
Collapse
Affiliation(s)
- Shushang Chen
- Department of Urology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Department of Urology, 900th Hospital of Joint Logistics Support Force, Fujian Medical University, Fuzhou, China
| | - Mingfang Weng
- Department of Urology, 900th Hospital of Joint Logistics Support Force, Fujian Medical University, Fuzhou, China
| | - Ronghui Lin
- Department of Urology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Junjie Wei
- Department of Critical Care Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Lingfeng Zhu
- Department of Urology, 900th Hospital of Joint Logistics Support Force, Fujian Medical University, Fuzhou, China
- Department of Urology, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, China
| | - Zhenghua Ju
- Department of Urology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Zhitao Lin
- Department of Urology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Bin Zhan
- Department of Urology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Ram A. Pathak
- Department of Urology, Mayo Clinic, Jacksonville, FL, USA
| | - Rashid K. Sayyid
- Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - Rong Ge
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
9
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
10
|
Chrenková E, Študentová H, Holá K, Kahounová Z, Hendrychová R, Souček K, Bouchal J. Castration-resistant prostate cancer monitoring by cell-free circulating biomarkers. Front Oncol 2024; 14:1394292. [PMID: 39319053 PMCID: PMC11420116 DOI: 10.3389/fonc.2024.1394292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Background Prostate cancer is the second leading cause of male cancer-related deaths in Western countries, which is predominantly attributed to the metastatic castration-resistant stage of the disease (CRPC). There is an urgent need for better prognostic and predictive biomarkers, particularly for androgen receptor targeted agents and taxanes. Methods We have searched the PubMed database for original articles and meta-analyses providing information on blood-based markers for castration-resistant prostate cancer monitoring, risk group stratification and prediction of therapy response. Results The molecular markers are discussed along with the standard clinical parameters, such as prostate specific antigen, lactate dehydrogenase or C-reactive protein. Androgen receptor (AR) alterations are commonly associated with progression to CRPC. These include amplification of AR and its enhancer, point mutations and splice variants. Among DNA methylations, a novel 5-hydroxymethylcytosine activation marker of TOP2A and EZH2 has been identified for the aggressive disease. miR-375 is currently the most promising candidate among non-coding RNAs and sphingolipid analysis has recently emerged as a novel approach. Conclusions The promising biomarkers have the potential to improve the care of metastatic prostate cancer patients, however, they need further validation for routine implementation.
Collapse
Affiliation(s)
- Eva Chrenková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Hana Študentová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Kateřina Holá
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Zuzana Kahounová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Romana Hendrychová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| |
Collapse
|
11
|
Tao J, Bian X, Zhou J, Zhang M. From microscopes to molecules: The evolution of prostate cancer diagnostics. Cytojournal 2024; 21:29. [PMID: 39391208 PMCID: PMC11464998 DOI: 10.25259/cytojournal_36_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 10/12/2024] Open
Abstract
In the ever-evolving landscape of oncology, the battle against prostate cancer (PCa) stands at a transformative juncture, propelled by the integration of molecular diagnostics into traditional cytopathological frameworks. This synthesis not only heralds a new epoch of precision medicine but also significantly enhances our understanding of the disease's genetic intricacies. Our comprehensive review navigates through the latest advancements in molecular biomarkers and their detection technologies, illuminating the potential these innovations hold for the clinical realm. With PCa persisting as one of the most common malignancies among men globally, the quest for early and precise diagnostic methods has never been more critical. The spotlight in this endeavor shines on the molecular diagnostics that reveal the genetic underpinnings of PCa, offering insights into its onset, progression, and resistance to conventional therapies. Among the genetic aberrations, the TMPRSS2-ERG fusion and mutations in genes such as phosphatase and tensin homolog (PTEN) and myelocytomatosis viral oncogene homolog (MYC) are identified as significant players in the disease's pathology, providing not only diagnostic markers but also potential therapeutic targets. This review underscores a multimodal diagnostic approach, merging molecular diagnostics with cytopathology, as a cornerstone in managing PCa effectively. This strategy promises a future where treatment is not only tailored to the individual's genetic makeup but also anticipates the disease's trajectory, offering hope for improved prognosis and quality of life for patients.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaokang Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
12
|
Zhou T, Nguyen S, Wu J, He B, Feng Q. LncRNA LOC730101 Promotes Darolutamide Resistance in Prostate Cancer by Suppressing miR-1-3p. Cancers (Basel) 2024; 16:2594. [PMID: 39061232 PMCID: PMC11274508 DOI: 10.3390/cancers16142594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antiandrogen is part of the standard-of-care treatment option for metastatic prostate cancer. However, prostate cancers frequently relapse, and the underlying resistance mechanism remains incompletely understood. This study seeks to investigate whether long non-coding RNAs (lncRNAs) contribute to the resistance against the latest antiandrogen drug, darolutamide. Our RNA sequencing analysis revealed significant overexpression of LOC730101 in darolutamide-resistant cancer cells compared to the parental cells. Elevated LOC730101 levels were also observed in clinical samples of metastatic castration-resistant prostate cancer (CRPC) compared to primary prostate cancer samples. Silencing LOC730101 with siRNA significantly impaired the growth of darolutamide-resistant cells. Additional RNA sequencing analysis identified a set of genes regulated by LOC730101, including key players in the cell cycle regulatory pathway. We further demonstrated that LOC730101 promotes darolutamide resistance by competitively inhibiting microRNA miR-1-3p. Moreover, by Hi-C sequencing, we found that LOC730101 is located in a topologically associating domain (TAD) that undergoes specific gene induction in darolutamide-resistant cells. Collectively, our study demonstrates the crucial role of the lncRNA LOC730101 in darolutamide resistance and its potential as a target for overcoming antiandrogen resistance in CRPC.
Collapse
Affiliation(s)
- Tianyi Zhou
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Steven Nguyen
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Jacky Wu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Bin He
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine-Cancer Biology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Qin Feng
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
13
|
Song Y, Chen B, Jiao H, Yi L. Long noncoding RNA UNC5B-AS1 suppresses cell proliferation by sponging miR-24-3p in glioblastoma multiforme. BMC Med Genomics 2024; 17:83. [PMID: 38594690 PMCID: PMC11003007 DOI: 10.1186/s12920-024-01851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary CNS tumor, characterized by high mortality and heterogeneity. However, the related lncRNA signatures and their target microRNA (miRNA) for GBM are still mostly unknown. Therefore, it is critical that we discover lncRNA markers in GBM and their biological activities. MATERIALS AND METHODS GBM-related RNA-seq data were obtained from the Cancer Genome Atlas (TCGA) database. The "edger" R package was used for differently expressed lncRNAs (DELs) identification. Then, we forecasted prospective miRNAs that might bind to lncRNAs by Cytoscape software. Survival analysis of those miRNAs was examined by the starBase database, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the miRNAs' target genes was conducted by the Gene Set Enrichment Analysis (GSEA) database and R software. Moreover, the proliferative ability of unc-5 netrin receptor B antisense RNA 1 (UNC5B-AS1) cells was evaluated by Cell Counting Kit-8 (CCK-8) analysis. Mechanistically, the regulatory interaction between UNC5B-AS1 and miRNA in GBM biological processes was studied using CCK-8 analysis. RESULTS Our results indicated that overexpression of UNC5B-AS1 has been shown to suppress GBM cell growth. Mechanistically, miR-24-3p in GBM was able to alleviate the anti-oncogenic effects of UNC5B-AS1 on cell proliferation. CONCLUSION The discovery of the novel UNC5B-AS1-miR-24-3p network suggests possible lncRNA and miRNA roles in the development of GBM, which may have significant ramifications for the analysis of clinical prognosis and the development of GBM medications.
Collapse
Affiliation(s)
- Ying Song
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Baodong Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Huili Jiao
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
14
|
Mo Y, Adu-Amankwaah J, Qin W, Gao T, Hou X, Fan M, Liao X, Jia L, Zhao J, Yuan J, Tan R. Unlocking the predictive potential of long non-coding RNAs: a machine learning approach for precise cancer patient prognosis. Ann Med 2023; 55:2279748. [PMID: 37983519 PMCID: PMC11571739 DOI: 10.1080/07853890.2023.2279748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
The intricate web of cancer biology is governed by the active participation of long non-coding RNAs (lncRNAs), playing crucial roles in cancer cells' proliferation, migration, and drug resistance. Pioneering research driven by machine learning algorithms has unveiled the profound ability of specific combinations of lncRNAs to predict the prognosis of cancer patients. These findings highlight the transformative potential of lncRNAs as powerful therapeutic targets and prognostic markers. In this comprehensive review, we meticulously examined the landscape of lncRNAs in predicting the prognosis of the top five cancers and other malignancies, aiming to provide a compelling reference for future research endeavours. Leveraging the power of machine learning techniques, we explored the predictive capabilities of diverse lncRNA combinations, revealing their unprecedented potential to accurately determine patient outcomes.
Collapse
Affiliation(s)
- Yixuan Mo
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
| | - Wenjie Qin
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Tan Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Xiaoqing Hou
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Mengying Fan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Xuemei Liao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Liwei Jia
- Department of Pathology, UT Southwestern Medical Center, Dallas, UT, USA
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Pathology, The First Hospital of China Medical University, Shenyang, China
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Fadaka AO, Akinsoji T, Klein A, Madiehe AM, Meyer M, Keyster M, Sikhwivhilu LM, Sibuyi NRS. Stage-specific treatment of colorectal cancer: A microRNA-nanocomposite approach. J Pharm Anal 2023; 13:1235-1251. [PMID: 38174117 PMCID: PMC10759263 DOI: 10.1016/j.jpha.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 01/05/2024] Open
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer mortality. The lifetime risk of developing CRC is about 5% in adult males and females. CRC is usually diagnosed at an advanced stage, and at this point therapy has a limited impact on cure rates and long-term survival. Novel and/or improved CRC therapeutic options are needed. The involvement of microRNAs (miRNAs) in cancer development has been reported, and their regulation in many oncogenic pathways suggests their potent tumor suppressor action. Although miRNAs provide a promising therapeutic approach for cancer, challenges such as biodegradation, specificity, stability and toxicity, impede their progression into clinical trials. Nanotechnology strategies offer diverse advantages for the use of miRNAs for CRC-targeted delivery and therapy. The merits of using nanocarriers for targeted delivery of miRNA-formulations are presented herein to highlight the role they can play in miRNA-based CRC therapy by targeting different stages of the disease.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Taiwo Akinsoji
- School of Medicine, Southern Illinois University, Springfield, IL, 62702, USA
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
| | - Lucky Mashudu Sikhwivhilu
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Johannesburg, 2125, South Africa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, 0950, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, 7535, South Africa
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Johannesburg, 2125, South Africa
| |
Collapse
|
16
|
Alharbi KS. Exploring GAS5's impact on prostate cancer: Recent discoveries and emerging paradigms. Pathol Res Pract 2023; 251:154851. [PMID: 37837861 DOI: 10.1016/j.prp.2023.154851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Novel treatment targets must be discovered to improve the results for patients with prostate cancer, which continues to be a significant worldwide health problem. Growth Arrest-Specific 5 (GAS5) is a long non-coding RNA (lncRNA) that has emerged as a promising target. GAS5 is a non-coding RNA that is a tumour suppressor in many different cancers by reducing cell proliferation and increasing apoptosis. GAS5 influences cell cycle control and apoptosis via interactions with important signalling pathways and microRNAs, as has been shown by recent studies. Furthermore, GAS5 has attracted interest for its diagnostic and prognostic potential in prostate cancer. GAS5 expression is a promising biomarker for disease classification and individualized treatment approaches because of its association with clinicopathological characteristics such as tumour stage, Gleason score, and metastatic potential. Preclinical models have revealed encouraging anticancer benefits from experimental techniques employing GAS5 overexpression or synthetic analogues, indicating the possibility of translational treatments. Whether GAS5 can be used as a diagnostic biomarker and therapeutic target might lead to more effective and individualized ways to fight prostate cancer, improving patient outcomes and quality of life. To utilize its potential for therapy and establish it as a useful addition to the clinical arsenal against this pervasive malignancy, more investigation into the complex molecular pathways of GAS5 in prostate cancer is essential. This review highlights the recent advancements and insights into the role of GAS5 in prostate cancer pathogenesis and progression.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.
| |
Collapse
|
17
|
Roach M, Coleman PW, Kittles R. Prostate Cancer, Race, and Health Disparity: What We Know. Cancer J 2023; 29:328-337. [PMID: 37963367 DOI: 10.1097/ppo.0000000000000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
ABSTRACT Prostate cancer (PCa) in African American men is one of the most common cancers with a great disparity in outcomes. The higher incidence and tendency to present with more advanced disease have prompted investigators to postulate that this is a problem of innate biology. However, unequal access to health care and poorer quality of care raise questions about the relative importance of genetics versus social/health injustice. Although race is inconsistent with global human genetic diversity, we need to understand the sociocultural reality that race and racism impact biology. Genetic studies reveal enrichment of PCa risk alleles in populations of West African descent and population-level differences in tumor immunology. Structural racism may explain some of the differences previously reported in PCa clinical outcomes; fortunately, there is high-level evidence that when care is comparable, outcomes are comparable.
Collapse
Affiliation(s)
- Mack Roach
- From the Particle Therapy Research Program & Outreach, Department of Radiation Oncology, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Pamela W Coleman
- Department of Surgery/Obstetrics-Gynecology, Howard University College of Medicine, Washington, DC
| | | |
Collapse
|
18
|
Logotheti S, Papadaki E, Zolota V, Logothetis C, Vrahatis AG, Soundararajan R, Tzelepi V. Lineage Plasticity and Stemness Phenotypes in Prostate Cancer: Harnessing the Power of Integrated "Omics" Approaches to Explore Measurable Metrics. Cancers (Basel) 2023; 15:4357. [PMID: 37686633 PMCID: PMC10486655 DOI: 10.3390/cancers15174357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients.
Collapse
Affiliation(s)
- Souzana Logotheti
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Eugenia Papadaki
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
- Department of Informatics, Ionian University, 49100 Corfu, Greece;
| | - Vasiliki Zolota
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vasiliki Tzelepi
- Department of Pathology, University of Patras, 26504 Patras, Greece; (S.L.); (E.P.); (V.Z.)
| |
Collapse
|
19
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Chen DM, Dong R, Kachuri L, Hoffmann T, Jiang Y, Berndt SI, Shelley JP, Schaffer KR, Machiela MJ, Freedman ND, Huang WY, Li SA, Lilja H, Van Den Eeden SK, Chanock S, Haiman CA, Conti DV, Klein RJ, Mosley JD, Witte JS, Graff RE. Transcriptome-Wide Association Analysis Identifies Novel Candidate Susceptibility Genes for Prostate-Specific Antigen Levels in Men Without Prostate Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.04.23289526. [PMID: 37205487 PMCID: PMC10187439 DOI: 10.1101/2023.05.04.23289526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Deciphering the genetic basis of prostate-specific antigen (PSA) levels may improve their utility to screen for prostate cancer (PCa). We thus conducted a transcriptome-wide association study (TWAS) of PSA levels using genome-wide summary statistics from 95,768 PCa-free men, the MetaXcan framework, and gene prediction models trained in Genotype-Tissue Expression (GTEx) project data. Tissue-specific analyses identified 41 statistically significant (p < 0.05/12,192 = 4.10e-6) associations in whole blood and 39 statistically significant (p < 0.05/13,844 = 3.61e-6) associations in prostate tissue, with 18 genes associated in both tissues. Cross-tissue analyses that combined associations across 45 tissues identified 155 genes that were statistically significantly (p < 0.05/22,249 = 2.25e-6) associated with PSA levels. Based on conditional analyses that assessed whether TWAS associations were attributable to a lead GWAS variant, we found 20 novel genes (11 single-tissue, 9 cross-tissue) that were associated with PSA levels in the TWAS. Of these novel genes, five showed evidence of colocalization (colocalization probability > 0.5): EXOSC9, CCNA2, HIST1H2BN, RP11-182L21.6, and RP11-327J17.2. Six of the 20 novel genes are not known to impact PCa risk. These findings yield new hypotheses for genetic factors underlying PSA levels that should be further explored toward improving our understanding of PSA biology.
Collapse
Affiliation(s)
- Dorothy M. Chen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ruocheng Dong
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, 94305, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Thomas Hoffmann
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Yu Jiang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20814, USA
| | - John P. Shelley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kerry R. Schaffer
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20814, USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20814, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20814, USA
| | - Shengchao A. Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20814, USA
| | - Hans Lilja
- Departments of Pathology and Laboratory Medicine, Surgery, Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Translational Medicine, Lund University, Malmö, 21428, Sweden
| | | | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20814, USA
| | - Christopher A. Haiman
- Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - David V. Conti
- Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Robert J. Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jonathan D. Mosley
- Departments of Internal Medicine and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - John S. Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, 94305, USA
- Departments of Biomedical Data Science and Genetics (by courtesy), Stanford University, Stanford, CA, 94305, USA
| | - Rebecca E. Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
21
|
Karthikeyan SK, Nuo X, Ferguson JE, Rais-Bahrami S, Qin ZS, Manne U, Netto GJ, Chandrashekar DS, Varambally S. Identification of androgen response-related lncRNAs in prostate cancer. Prostate 2023; 83:590-601. [PMID: 36760203 PMCID: PMC10038919 DOI: 10.1002/pros.24494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are RNA molecules with over 200 nucleotides that do not code for proteins, but are known to be widely expressed and have key roles in gene regulation and cellular functions. They are also found to be involved in the onset and development of various cancers, including prostate cancer (PCa). Since PCa are commonly driven by androgen regulated signaling, mainly stimulated pathways, identification and determining the influence of lncRNAs in androgen response is useful and necessary. LncRNAs regulated by the androgen receptor (AR) can serve as potential biomarkers for PCa. In the present study, gene expression data analysis were performed to distinguish lncRNAs related to the androgen response pathway. METHODS AND RESULTS We used publicly available RNA-sequencing and ChIP-seq data to identify lncRNAs that are associated with the androgen response pathway. Using Universal Correlation Coefficient (UCC) and Pearson Correlation Coefficient (PCC) analyses, we found 15 lncRNAs that have (a) highly correlated expression with androgen response genes in PCa and are (b) differentially expressed in the setting of treatment with an androgen agonist as well as antagonist compared to controls. Using publicly available ChIP-seq data, we investigated the role of androgen/AR axis in regulating expression of these lncRNAs. We observed AR binding in the promoter regions of 5 lncRNAs (MIR99AHG, DUBR, DRAIC, PVT1, and COLCA1), showing the direct influence of AR on their expression and highlighting their association with the androgen response pathway. CONCLUSION By utilizing publicly available multiomics data and by employing in silico methods, we identified five candidate lncRNAs that are involved in the androgen response pathway. These lncRNAs should be investigated as potential biomarkers for PCa.
Collapse
Affiliation(s)
| | - Xu Nuo
- Collat School of Business, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James E. Ferguson
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Soroush Rais-Bahrami
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhaohui S. Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George J. Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
22
|
Taheri M, Badrlou E, Hussen BM, Kashi AH, Ghafouri-Fard S, Baniahmad A. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of prostate cancer. Front Oncol 2023; 13:1123101. [PMID: 37025585 PMCID: PMC10070735 DOI: 10.3389/fonc.2023.1123101] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are regulatory transcripts with essential roles in the pathogenesis of almost all types of cancers, including prostate cancer. They can act as either oncogenic lncRNAs or tumor suppressor ones in prostate cancer. Small nucleolar RNA host genes are among the mostly assessed oncogenic lncRNAs in this cancer. PCA3 is an example of oncogenic lncRNAs that has been approved as a diagnostic marker in prostate cancer. A number of well-known oncogenic lncRNAs in other cancers such as DANCR, MALAT1, CCAT1, PVT1, TUG1 and NEAT1 have also been shown to act as oncogenes in prostate cancer. On the other hand, LINC00893, LINC01679, MIR22HG, RP1-59D14.5, MAGI2-AS3, NXTAR, FGF14-AS2 and ADAMTS9-AS1 are among lncRNAs that act as tumor suppressors in prostate cancer. LncRNAs can contribute to the pathogenesis of prostate cancer via modulation of androgen receptor (AR) signaling, ubiquitin-proteasome degradation process of AR or other important signaling pathways. The current review summarizes the role of lncRNAs in the evolution of prostate cancer with an especial focus on their importance in design of novel biomarker panels and therapeutic targets.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Badrlou
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Iraq
| | - Amir Hossein Kashi
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
23
|
Labani M, Beheshti A, Argha A, Alinejad-Rokny H. A Comprehensive Investigation of Genomic Variants in Prostate Cancer Reveals 30 Putative Regulatory Variants. Int J Mol Sci 2023; 24:2472. [PMID: 36768794 PMCID: PMC9916892 DOI: 10.3390/ijms24032472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Prostate cancer (PC) is the most frequently diagnosed non-skin cancer in the world. Previous studies have shown that genomic alterations represent the most common mechanism for molecular alterations responsible for the development and progression of PC. This highlights the importance of identifying functional genomic variants for early detection in high-risk PC individuals. Great efforts have been made to identify common protein-coding genetic variations; however, the impact of non-coding variations, including regulatory genetic variants, is not well understood. Identification of these variants and the underlying target genes will be a key step in improving the detection and treatment of PC. To gain an understanding of the functional impact of genetic variants, and in particular, regulatory variants in PC, we developed an integrative pipeline (AGV) that uses whole genome/exome sequences, GWAS SNPs, chromosome conformation capture data, and ChIP-Seq signals to investigate the potential impact of genomic variants on the underlying target genes in PC. We identified 646 putative regulatory variants, of which 30 significantly altered the expression of at least one protein-coding gene. Our analysis of chromatin interactions data (Hi-C) revealed that the 30 putative regulatory variants could affect 131 coding and non-coding genes. Interestingly, our study identified the 131 protein-coding genes that are involved in disease-related pathways, including Reactome and MSigDB, for most of which targeted treatment options are currently available. Notably, our analysis revealed several non-coding RNAs, including RP11-136K7.2 and RAMP2-AS1, as potential enhancer elements of the protein-coding genes CDH12 and EZH1, respectively. Our results provide a comprehensive map of genomic variants in PC and reveal their potential contribution to prostate cancer progression and development.
Collapse
Affiliation(s)
- Mahdieh Labani
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Data Analytic Lab, Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
| | - Amin Beheshti
- Data Analytic Lab, Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
| | - Ahmadreza Argha
- The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- UNSW Data Science Hub, The University of New South Wales, Sydney, NSW 2052, Australia
- Health Data Analytics Program, Centre for Applied AI, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
24
|
Guo X, Gu Y, Guo C, Pei L, Hao C. LINC01146/F11R facilitates growth and metastasis of prostate cancer under the regulation of TGF-β. J Steroid Biochem Mol Biol 2023; 225:106193. [PMID: 36162632 DOI: 10.1016/j.jsbmb.2022.106193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/01/2023]
Abstract
The effect of long intergenic non-protein coding RNAs (lncRNAs) was verified in prostate cancer (PCa), but the mechanism of LINC01146 in PCa is unclear. Bioinformatics was applied to analyze LINC01146 expression in PCa and predict target genes of LINC01146, followed by the verification of qRT-PCR, RNA pull-down and co-immunoprecipitation (Co-IP). The correlation between LINC01146 expression and clinicopathological characteristics was investigated. The location of LINC01146 in PCa cells was detected by fluorescence in situ hybridization (FISH). After interference with LINC01146 or/and F11 receptor (F11R) or treated with transforming growth factor beta 1 (TGF-β1), the function of LINC01146 in PCa in vitro or in vivo was determined by CCK-8, colony formation, flow cytometry, scratch test, transwell assay, xenograft experiment and western blot. LINC01146 and F11R were over-expressed in PCa and positively correlated with poor prognosis. LINC01146 located in the cytoplasm and combined with F11R. LINC01146 overexpression impeded apoptosis, facilitated viability, proliferation, migration and invasion in PCa cells in vitro, promoted tumor growth in vivo, downregulated E-cadherin, Bax and Cleaved caspase-3, and upregulated N-cadherin, Vimentin and PCNA, but LINC01146 silencing did the opposite. F11R was positively regulated by LINC01146 and F11R depletion negated the effect of LINC01146 overexpression on malignant phenotypes of PCa cells. The expression of LINC01146 and F11R was regulated by TGF-β1. The promoting role of TGF-β1 in migration, invasion and F11R in PCa cells was reversed by LINC01146 silencing. LINC01146 upregulated F11R to facilitate malignant phenotypes of PCa cells, which was regulated by TGF-β.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Urology, Second Hospital of Shanxi Medical University, China.
| | - Yong Gu
- Department of Urology, Second Hospital of Shanxi Medical University, China
| | - Chao Guo
- Department of Urology, Second Hospital of Shanxi Medical University, China
| | - Liang Pei
- Department of Urology, Second Hospital of Shanxi Medical University, China
| | - Chuan Hao
- Department of Urology, Second Hospital of Shanxi Medical University, China
| |
Collapse
|
25
|
Ding L, Zheng Q, Lin Y, Wang R, Wang H, Luo W, Lu Z, Xie H, Ren L, Lu H, Yu C, Zhang J, Shen D, Cheng S, Xia L, Li G, Xue D. Exosome-derived circTFDP2 promotes prostate cancer progression by preventing PARP1 from caspase-3-dependent cleavage. Clin Transl Med 2023; 13:e1156. [PMID: 36597139 PMCID: PMC9810792 DOI: 10.1002/ctm2.1156] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to play a significant role in tumorigenesis. However, the detailed function of circRNA in prostate cancer (PCa) is still largely unknown. METHODS We quantified circTFDP2 expression in PCa tissues and adjacent normal tissues using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Colony formation, Cell Counting Kit-8 (CCK-8), flow cytometry, transwell, and in vivo progression and metastasis assays were applied to reveal the proliferation and metastatic abilities of circTFDP2 in PCa cells. Mass spectrometry, RNA pulldown, RNA-immunoprecipitation (RIP), western blotting and immunofluorescence were used for the mechanistic studies. qRT-PCR and RIP assays were used to explore the regulatory role of eIF4A3 in the biogenesis of circTFDP2. Finally, functional assays showed the effect of circTFDP2-containing exosomes on PCa cell progression. RESULTS circTFDP2 was upregulated in PCa tissues compared with adjacent normal tissues. Furthermore, high circTFDP2 expression was positively correlated with the Gleason score. Functionally, circTFDP2 promoted PCa cell proliferation and metastasis both in vivo and in vitro. Mechanistically, circTFDP2 interacted with poly(ADP-ribose) polymerase 1 (PARP1) protein in its DNA-binding domain to prevent it from active caspase-3-dependent cleavage, and finally relieved PCa cells from DNA damage. In addition, RNA-binding protein eIF4A3 can interact with the flanking region of circTFDP2 and promote the biogenesis of circTFDP2. Moreover, exosome-derived circTFDP2 promoted PCa cell progression. CONCLUSIONS In general, our study demonstrated that circTFDP2 promoted PCa cell progression through the PARP1/DNA damage axis, which may be a promising therapeutic target for PCa.
Collapse
Affiliation(s)
- Lifeng Ding
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiming Zheng
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Yudong Lin
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Ruyue Wang
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Huan Wang
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Wenqin Luo
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Zeyi Lu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Haiyun Xie
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Liangliang Ren
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Haohua Lu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenhao Yu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Jixuan Zhang
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Danyang Shen
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Sheng Cheng
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Liqun Xia
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Gonghui Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Dingwei Xue
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
26
|
Study on the role of SLC14A1 gene in biochemical recurrence of prostate cancer. Sci Rep 2022; 12:17064. [PMID: 36257969 PMCID: PMC9579171 DOI: 10.1038/s41598-022-20775-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/19/2022] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer (PCa) is a common malignant disease among men and biochemical recurrence (BCR) is considered to be a decisive risk factor for clinical recurrence and PCa metastasis. Clarifying the genes related to BCR and its possible pathways is vital for providing diagnosis and treatment methods to delay the progress of BCR. An analysis of data concerning PCa from previous datasets of The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) was performed. Immunohistochemical (IHC) staining were used to evaluate the expression of SLC14A1 in prostate tissues. Kaplan-Meier analysis, Pearson correlation, and single sample Gene Set Enrichment Analysis (ssGSEA) were used to identify the potential pathway and molecular mechanism of the function of SLC14A1 in BCR of PCa. The expression of SLC14A1 is significantly reduced in prostate cancer cells and tissue comparing to normal prostate epithelial cell and para-cancerous tissue. As indicated by Kaplan-Meier analysis, High expression of SLC14A1 could increase the BCR-free survival time of PCa patients. This effect might be related to the interaction with miRNAs (has-miR-508, has-mir-514a2, and has-mir-449a) and the infiltration of B cells. SLC14A1 is a novel important gene associated with BCR of PCa, and further studies of its molecular mechanism may delay the progress of BCR.
Collapse
|
27
|
Shen D, Peng H, Xia C, Deng Z, Tong X, Wang G, Qian K. The Role of Long Non-Coding RNAs in Epithelial-Mesenchymal Transition-Related Signaling Pathways in Prostate Cancer. Front Mol Biosci 2022; 9:939070. [PMID: 35923466 PMCID: PMC9339612 DOI: 10.3389/fmolb.2022.939070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common male malignancies with frequent remote invasion and metastasis, leading to high mortality. Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development and plays a key role in tumor proliferation, invasion and metastasis. Numerous long non-coding RNAs (lncRNAs) could regulate the occurrence and development of EMT through various complex molecular mechanisms involving multiple signaling pathways in PCa. Given the importance of EMT and lncRNAs in the progression of tumor metastasis, we recapitulate the research progress of EMT-related signaling pathways regulated by lncRNAs in PCa, including AR signaling, STAT3 signaling, Wnt/β-catenin signaling, PTEN/PI3K/AKT signaling, TGF-β/Smad and NF-κB signaling pathways. Furthermore, we summarize four modes of how lncRNAs participate in the EMT process of PCa via regulating relevant signaling pathways.
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Hongwei Peng
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Caixia Xia
- President’s Office, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Tong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| |
Collapse
|
28
|
Liang D, Tian C, Zhang X. lncRNA MNX1‑AS1 promotes prostate cancer progression through regulating miR‑2113/MDM2 axis. Mol Med Rep 2022; 26:231. [PMID: 35616155 PMCID: PMC9178709 DOI: 10.3892/mmr.2022.12747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
A growing number of dysregulated long non‑coding (lnc)RNAs have been verified to serve an essential role in human prostate cancer. However, the underlying mechanisms of lncRNA MNX1 Antisense RNA 1 (MNX1‑AS1) in prostate cancer has not been explored. Therefore, the present study aimed to explore the function of MNX1‑AS1 in prostate cancer tumorigenesis and investigate the in‑depth mechanism. The expression of MNX1‑AS1, microRNA (miR)‑2113 and murine double min 2 (MDM2) in prostate cancer tissues and corresponding normal tissues were assessed by reverse transcription‑quantitative PCR. The protein expression levels of MDM2 were detected by western blotting. LNCaP and PC‑3 cells were transfected with short hairpin (sh)‑MNX1‑AS1, miR‑2113 mimics, miR‑2113 inhibitor and pCDH‑MDM2 vector using Lipofectamine® 3000. Cell proliferation, migration and invasion abilities were assessed by CCK‑8 assay, colony formation and Transwell assay, respectively. Dual luciferase reporter assay was carried out to confirm the putative targets of MNX1‑AS1 and miR‑2113. Tumor formation experiment in nude mice was applied to evaluate the tumor growth effect of MNX1‑AS1 in vivo. The expression of MNX1‑AS1 was significantly upregulated in the prostate cancer tissues and cell lines. MNX1‑AS1 knockdown suppressed the abilities of cell viability and migration and invasion in vitro and inhibited tumor growth in vivo. Additionally, luciferase reporter assay revealed that MNX1‑AS1 could target miR‑2113 and negatively interacted with miR‑2113 in prostate cancer cells. miR‑2113 directly targeted to MDM2 and negatively modulated the expression of MDM2. Rescue assays suggested that the viability, migration and invasion of impaired cells triggered by transfection with sh‑MNX1‑AS1 alone could be recovered by co‑transfection with sh‑MNX1‑AS1 + miR‑2113 inhibitor or sh‑MNX1‑AS1 + pCDH‑ MDM2 vector. The present study demonstrated that MNX1‑AS1 promoted prostate cancer progression through regulating miR‑2113/ MDM2 axis.
Collapse
Affiliation(s)
- Dong Liang
- Department of Urology Surgery, Binhai County Hospital of TCM, Yancheng, Jiangsu 224500, P.R. China
| | - Chuanjie Tian
- Department of Urology Surgery, Heqiao Hospital, Heqiao, Yixing, Jiangsu 214200, P.R. China
| | - Xiaowen Zhang
- Department of Urology Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
29
|
You X, Wu Y, Li Q, Sheng W, Zhou Q, Fu W. Astragalus-Scorpion Drug Pair Inhibits the Development of Prostate Cancer by Regulating GDPD4-2/PI3K/AKT/mTOR Pathway and Autophagy. Front Pharmacol 2022; 13:895696. [PMID: 35847007 PMCID: PMC9277392 DOI: 10.3389/fphar.2022.895696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Prostate cancer (PCa) is an epithelial malignancy of the prostate that currently lacks effective treatment. Traditional Chinese medicine (TCM) can play an anticancer role through regulating the immune system, anti-tumor angiogenesis, regulating tumor cell apoptosis, autophagy dysfunction, and other mechanisms. This study attempted to explore the active ingredients and potential mechanism of action of the Astragalus-Scorpion (A-S) drug pair in PCa, in order to provide new insights into the treatment of PCa. Methods: Network pharmacology was used to analyze the A-S drug pair and PCa targets. Bioinformatics analysis was used to analyze the LncRNAs with significant differences in PCa. The expression of LC3 protein was detected by immunofluorescence. CCK8 was used to detect cell proliferation. The expressions of GDPD4-2, AC144450.1, LINC01513, AC004009.2, AL096869.1, AP005210.1, and BX119924.1 were detected by RT-qPCR. The expression of the PI3K/AKT/mTOR pathway and autophagy-related proteins were detected by western blot. LC-MS/MS was used to identify the active components of Astragalus and Scorpion. Results: A-S drug pair and PCa have a total of 163 targets, which were mainly related to the prostate cancer and PI3K/AKT pathways. A-S drug pair inhibited the formation of PCa, promoted the expression of LC3Ⅱ and Beclin1 proteins, and inhibited the expression of P62 and PI3K-AKT pathway proteins in PCa mice. Astragaloside IV and polypeptide extract from scorpion venom (PESV) were identified as the main active components of the A-S drug pair. GDPD4-2 was involved in the treatment of PCa by Astragaloside IV-PESV. Silencing GDPD4-2 reversed the therapeutic effects of Astragaloside IV-PESV by regulating the PI3K/AKT/mTOR pathway. Conclusion: Astragaloside IV-PESV is the main active components of A-S drug pair treated PCa by regulating the GDPD4-2/PI3K-AKT/mTOR pathway and autophagy.
Collapse
Affiliation(s)
- Xujun You
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yongrong Wu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wen Sheng
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Fu
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
30
|
Huang F, Zhou LQ. Effect and Mechanism of lncRNA CERS6-AS1 on the Biological Behavior of Prostate Cancer Cell. Appl Bionics Biomech 2022; 2022:9292538. [PMID: 35706508 PMCID: PMC9192302 DOI: 10.1155/2022/9292538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Objective To investigate the effect of long noncoding RNA (lncRNA) CERS6 antisense RNA1 (CERS6-AS1) on the biological behavior of prostate cancer cells DU145 and its mechanism. Methods RT-PCR was used to detect the relative level of CERS6-AS1 and miR-16-5p in prostate cancer tissues, adjacent tissues, prostate cancer cells DU145, and human normal prostate epithelial cells RWPE-1. DU145 cells were divided into control group, si-CERS6-AS1 group, si-NC group, miR-16-5p mimic group, miR-NC group, and si-CERS6-AS1+miR-16-5p inhibitor group. And CCK-8 method and colony formation test was applied to detect cell proliferation ability, flow cytometry was selected to calculate cell apoptosis, and scratch healing test was employed to assess cell migration ability. Western blot was determined to detect high mobility protein A2 (HMGA2) expression. RT-PCR and dual-luciferase reporter experiments were used to analyze the targeting relationship among CERS6-AS1, miR-16-5p, and HMGA2. Results Compared with the adjacent tissues, the relative level of CERS6-AS1 in prostate cancer tissue was increased (P < 0.05), and the relative level of miR-16-5p was decreased (P < 0.05). Compared with RWPE-1 cells, the relative level of CERS6-AS1 in DU145 cells was increased (P < 0.05), and the relative level of miR-16-5p was decreased (P < 0.05). Compared with the control group and the si-NC group, the HMGA2 protein expression, the colony formation number, and the scratch healing rate of DU145 cells in the si-CERS6-AS1 group and the miR-16-5p mimic group were reduced (P < 0.05), and the relative level of miR-16-5p and the proliferation inhibition rate and apoptosis were increased (P < 0.05). miR-16-5p is specifically bound to CERS6-AS1 and HMGA2, respectively. Compared with the si-CERS6-AS1 group, the HMGA2 protein expression, the colony formation number, and the scratch healing rate of DU145 cells in the si-CERS6-AS1+miR-16-5p inhibitor group were increased (P < 0.05), and the cell proliferation inhibition rate and apoptosis rate were reduced (P < 0.05). Conclusion Silencing CERS6-AS1 can inhibit the proliferation and migration of prostate cancer cell DU145 and induce cell apoptosis, the mechanism is related to the regulation of the miR-16-5p/HMGA2 axis.
Collapse
Affiliation(s)
- Fu Huang
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, China
| | - Li Quan Zhou
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, China
| |
Collapse
|
31
|
Abdi E, Latifi-Navid S. LncRNA polymorphisms and urologic cancer risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:190-203. [PMID: 35178782 DOI: 10.1002/em.22472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Urologic cancers involve nearly one-quarter of all cancers and include the prostate, bladder, and kidney cancers. Long non-coding RNAs (LncRNAs) are expressed in a tissue-specific manner and affect cell proliferation, apoptosis, and differentiation. LncRNAs expression is misregulated in urologic cancers, as their aberrant expression may make them capable of being utilized in the diagnosis, prognosis, and treatment of cancers. LncRNAs polymorphisms can affect their structure, expression, and function by interfering with the associated target mRNAs. As a result, lncRNA polymorphisms may be linked to the mechanism driving cancer susceptibility. Therefore, SNPs in lncRNAs may be a beneficial biomarker for early diagnosis and prognosis of cancers, as they affect lncRNA role in tumorigenesis and cancer progression. Moreover, the genetic heredity of lncRNA SNPs affects the personal therapeutic response to drugs. In this study, the lncRNAs polymorphism is summarized in relation to urologic cancers. It is proposed that lncRNA-related polymorphisms, as an individual or combined genotypes, can predict urologic cancer risk, even clinical and prognostic outcomes. However, large-scale population-based prospective studies and comprehensive meta-analyses should be conducted to validate and use these lncRNAs SNPs as the indicators of urologic cancers. Future research should examine the function of these SNPs to explain their associations with urologic cancers.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
32
|
Li Y, Pan B, Guo X, Meng X, Tian X. Prognostic Value of Long Noncoding RNA SNHG11 in Patients with Prostate Cancer. Horm Metab Res 2022; 54:187-193. [PMID: 35276744 DOI: 10.1055/a-1745-8952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study was aimed to explore the prognostic value of long noncoding RNA SNHG11 in prostate cancer, study its expression, and assess its effect on tumor progression. One hundred and twenty prostate cancer patients and 45 cases of benign prostate hyperplasia (BPH) patients were collected. RT-qPCR was used to test the expression of SNHG11 in prostate cancer and BPH tissues, as well as in cell lines. Kaplan-Meier survival analysis and Cox regression assays were introduced to evaluate the prognostic meaning of SNHG11 in prostate cancer. The CCK-8 assays were performed to explore the effect of SNHG11 on prostate cancer cell proliferation, and a Transwell assay was conducted to access the influence of SNHG11 on prostate cancer cell migration and invasion. SNHG11 expression level was upregulated both in prostate cancer tissues and cell lines. Overexpression of SNHG11 was significantly associated with Gleason score, clinical T stage, surgical margin status, and lymph node metastasis. Patients with high SNHG11 expression levels led to a shorter overall survival time and biochemical recurrence-free survival when compared with those of low expression levels. Multivariate Cox regression results suggested that SNHG11 has the potential to act as a prognostic marker for prostate cancer patients. Knockdown of SNHG11 suppressed 22RV1 cell proliferation, migration, and invasion. In conclusion, SNHG11 is upregulated in prostate cancer patients and predicts an unfavorable prognosis for prostate cancer patients. Its knockdown can weaken prostate cancer cell metastasis and growth in vitro.
Collapse
Affiliation(s)
- Ying Li
- Department of Urology Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Bin Pan
- Department of Urology Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xiuqin Guo
- Department of Supply Room, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xiaomin Meng
- Department of Urology Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xiaojing Tian
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
33
|
Wang K, Wang X, Fu X, Sun J, Zhao L, He H, Fan Y. Lung cancer metastasis-related protein 1 promotes the transferring from advanced metastatic prostate cancer to castration-resistant prostate cancer by activating the glucocorticoid receptor α signal pathway. Bioengineered 2022; 13:5373-5385. [PMID: 35184651 PMCID: PMC8974197 DOI: 10.1080/21655979.2021.2020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Androgen deprivation therapy is currently the main therapeutic strategy for the treatment of advanced metastatic prostate cancer (ADPC). However, the tumor type in ADPC patients transforms into castration-resistant prostate cancer (CRPC) after 18–24 months of treatments, the underlying mechanism of which remains unclear. The present study aimed to investigate the potential pathological mechanism of the conversion from ADPC to CRPC by exploring the function of lung cancer metastasis-related protein 1 (LCMR1). We found that LCMR1 and glucocorticoid receptor α (GRα) were highly expressed in CRPC tissues, compared to ADPC tissues, and were accompanied by high concentrations of inflammatory factors. Knocking down LCMR1 or GRα in CRPC cells led to inhibition of metastasis and proliferation and induction of apoptosis. The expression of HSP90 and IL-6 was upregulated and that of androgen receptor was downregulated by knocking down LCMR1 or GRα in CRPC cells. Luciferase assay results indicated that the transcription of GRα was promoted by the LCMR1 promoter. The growth rate of CRPC cells in vivo was greatly decreased by knocking down LCMR1 or GRα. Lastly, CRPC cell sensitivity to enzalutamide treatment was found significantly enhanced by the knockdown of LCMR1. Taken together, LCMR1 might regulate the conversion of ADPC to CRPC by activating the GRα signaling pathway.
Collapse
Affiliation(s)
- Kai Wang
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Xuliang Wang
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xian Fu
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Ji Sun
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Liwei Zhao
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Huadong He
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yi Fan
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
34
|
Cai Z, Wu Y, Ju G, Wang G, Liu B. Role of BCAR4 in prostate cancer cell autophagy. Transl Androl Urol 2022; 10:4253-4261. [PMID: 34984190 PMCID: PMC8661267 DOI: 10.21037/tau-21-929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/04/2021] [Indexed: 11/06/2022] Open
Abstract
Background Increased autophagy of prostate cancer (PC) cells contributes to their resistance to chemotherapy. Recently, we reported that a long non-coding RNA (lncRNA)-breast-cancer anti-estrogen resistance 4 (BCAR4)-is highly expressed in PC and contributes to castration resistance through activation of GLI2 signaling. However, the role of BCAR4 in the regulation of PC cell autophagy is unknown and is the subject of the current study. Methods BCAR4 and Beclin-1 levels and the alteration in autophagy pathway genes were assessed in PC using a public database and in our own clinical specimens. The correlation between BCAR4 and Beclin-1 levels in PC and PC cell lines was determined and their regulatory relationship was assessed by overexpression and knockout assay. The final effect on autophagy was measured by microtubule-associated protein 1A/1B-light chain 3 (LC3) levels. The mechanism that underlies the control of Beclin-1 by BCAR4 was analyzed by cancer database and gain-of-function and loss-of-function approaches. Results BCAR4 and Beclin-1 were both upregulated in PC and were positively correlated. BCAR4 directly activated Beclin-1 at transcriptional level, which subsequently increased the ratio of LC3 II to LC3I to augment PC cell autophagy. Beclin-1 did not control levels of BCAR4. Mechanically, BCAR4 and Beclin-1 shared several targeting microRNAs, among which miR-15 and miR-146 appeared to be the mediators of the effects of BACR4 on Beclin-1. Conclusions BCAR4 may enhance PC cell autophagy through altering miRNA-regulated Beclin-1 expression in PC.
Collapse
Affiliation(s)
- Zhiping Cai
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yapei Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Guanqun Ju
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Gangmin Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bing Liu
- Department of Urology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
35
|
Morgan R, da Silveira WA, Kelly RC, Overton I, Allott EH, Hardiman G. Long non-coding RNAs and their potential impact on diagnosis, prognosis, and therapy in prostate cancer: racial, ethnic, and geographical considerations. Expert Rev Mol Diagn 2021; 21:1257-1271. [PMID: 34666586 DOI: 10.1080/14737159.2021.1996227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Advances in high-throughput sequencing have greatly advanced our understanding of long non-coding RNAs (lncRNAs) in a relatively short period of time. This has expanded our knowledge of cancer, particularly how lncRNAs drive many important cancer phenotypes via their regulation of gene expression. AREAS COVERED Men of African descent are disproportionately affected by PC in terms of incidence, morbidity, and mortality. LncRNAs could serve as biomarkers to differentiate low-risk from high-risk diseases. Additionally, they may represent therapeutic targets for advanced and castrate-resistant cancer. We review current research surrounding lncRNAs and their association with PC. We discuss how lncRNAs can provide new insights and diagnostic biomarkers for African American men. Finally, we review advances in computational approaches that predict the regulatory effects of lncRNAs in cancer. EXPERT OPINION PC diagnostic biomarkers that offer high specificity and sensitivity are urgently needed. PC specific lncRNAs are compelling as diagnostic biomarkers owing to their high tissue and tumor specificity and presence in bodily fluids. Recent studies indicate that PCA3 clinical utility might be restricted to men of European descent. Further work is required to develop lncRNA biomarkers tailored for men of African descent.
Collapse
Affiliation(s)
- Rebecca Morgan
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Willian Abraham da Silveira
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Ryan Christopher Kelly
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ian Overton
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emma H Allott
- Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.,Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Department of Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina
| |
Collapse
|
36
|
Johnson JR, Woods-Burnham L, Hooker SE, Batai K, Kittles RA. Genetic Contributions to Prostate Cancer Disparities in Men of West African Descent. Front Oncol 2021; 11:770500. [PMID: 34820334 PMCID: PMC8606679 DOI: 10.3389/fonc.2021.770500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed malignancy and the second leading cause of death in men worldwide, after adjusting for age. According to the International Agency for Research on Cancer, continents such as North America and Europe report higher incidence of PCa; however, mortality rates are highest among men of African ancestry in the western, southern, and central regions of Africa and the Caribbean. The American Cancer Society reports, African Americans (AAs), in the United States, have a 1.7 increased incidence and 2.4 times higher mortality rate, compared to European American's (EAs). Hence, early population history in west Africa and the subsequent African Diaspora may play an important role in understanding the global disproportionate burden of PCa shared among Africans and other men of African descent. Nonetheless, disparities involved in diagnosis, treatment, and survival of PCa patients has also been correlated to socioeconomic status, education and access to healthcare. Although recent studies suggest equal PCa treatments yield equal outcomes among patients, data illuminates an unsettling reality of disparities in treatment and care in both, developed and developing countries, especially for men of African descent. Yet, even after adjusting for the effects of the aforementioned factors; racial disparities in mortality rates remain significant. This suggests that molecular and genomic factors may account for much of PCa disparities.
Collapse
Affiliation(s)
- Jabril R. Johnson
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Leanne Woods-Burnham
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Stanley E. Hooker
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Ken Batai
- Department of Urology, University of Arizona, Tucson, AZ, United States
| | - Rick A. Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
37
|
Wang M, Gu J, Zhang X, Yang J, Zhang X, Fang X. Long Non-coding RNA DANCR in Cancer: Roles, Mechanisms, and Implications. Front Cell Dev Biol 2021; 9:753706. [PMID: 34722539 PMCID: PMC8554091 DOI: 10.3389/fcell.2021.753706] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNA (lncRNA) DANCR (also known as ANCR)—differentiation antagonizing non-protein coding RNA, was first reported in 2012 to suppress differentiation of epithelial cells. Emerging evidence demonstrates that DANCR is a cancer-associated lncRNA abnormally expressed in many cancers (e.g., lung cancer, gastric cancer, breast cancer, hepatocellular carcinoma). Increasing studies suggest that the dysregulation of DANCR plays critical roles in cancer cell proliferation, apoptosis, migration, invasion, and chemoresistance in vitro and tumor growth and metastasis in vivo. Mechanistic analyses show that DANCR can serve as miRNA sponges, stabilize mRNAs, and interact with proteins. Recent research reveals that DANCR can be detected in many body fluids such as serum, plasma, and exosomes, providing a quick and convenient method for cancer monitor. Thus DANCR can be used as a promising diagnostic and prognostic biomarker and therapeutic target for various types of cancer. This review focuses on the role and mechanism of DANCR in cancer progression with an emphasis on the clinical significance of DANCR in human cancers.
Collapse
Affiliation(s)
- Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianping Yang
- Department of Orthopedics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Xiaoxin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinjian Fang
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| |
Collapse
|
38
|
Takeiwa T, Mitobe Y, Ikeda K, Hasegawa K, Horie K, Inoue S. Long Intergenic Noncoding RNA OIN1 Promotes Ovarian Cancer Growth by Modulating Apoptosis-Related Gene Expression. Int J Mol Sci 2021; 22:ijms222011242. [PMID: 34681900 PMCID: PMC8541687 DOI: 10.3390/ijms222011242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022] Open
Abstract
Patients with advanced ovarian cancer usually exhibit high mortality rates, thus more efficient therapeutic strategies are expected to be developed. Recent transcriptomic studies revealed that long intergenic noncoding RNAs (lincRNAs) can be a new class of molecular targets for cancer management, because lincRNAs likely exert tissue-specific activities compared with protein-coding genes or other noncoding RNAs. We here show that an unannotated lincRNA originated from chromosome 10q21 and designated as ovarian cancer long intergenic noncoding RNA 1 (OIN1), is often overexpressed in ovarian cancer tissues compared with normal ovaries as analyzed by RNA sequencing. OIN1 silencing by specific siRNAs significantly exerted proliferation inhibition and enhanced apoptosis in ovarian cancer cells. Notably, RNA sequencing showed that OIN1 expression was negatively correlated with the expression of apoptosis-related genes ras association domain family member 5 (RASSF5) and adenosine A1 receptor (ADORA1), which were upregulated by OIN1 knockdown in ovarian cancer cells. OIN1-specifc siRNA injection was effective to suppress in vivo tumor growth of ovarian cancer cells inoculated in immunodeficient mice. Taken together, OIN1 could function as a tumor-promoting lincRNA in ovarian cancer through modulating apoptosis and will be a potential molecular target for ovarian cancer management.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; (T.T.); (Y.M.); (K.I.)
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yuichi Mitobe
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; (T.T.); (Y.M.); (K.I.)
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; (T.T.); (Y.M.); (K.I.)
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama 350-1298, Japan;
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; (T.T.); (Y.M.); (K.I.)
- Correspondence: (K.H.); (S.I.); Tel.: +81-42-984-4606 (K.H.); +81-3-3964-3241 (S.I.)
| | - Satoshi Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan; (T.T.); (Y.M.); (K.I.)
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
- Correspondence: (K.H.); (S.I.); Tel.: +81-42-984-4606 (K.H.); +81-3-3964-3241 (S.I.)
| |
Collapse
|
39
|
Guo J, Lian H, Liu M, Dong J, Guo Z, Yang J, Ye C. Integrated analyses of long noncoding RNAs and mRNAs in the progression of breast cancer. J Int Med Res 2021; 49:300060520973137. [PMID: 34528496 PMCID: PMC8451004 DOI: 10.1177/0300060520973137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective The objective was to explore the expression and potential functions of long noncoding RNA (lncRNA) and mRNAs in human breast cancer (BC). Methods Differentially expressed lncRNAs and mRNAs were identified and annotated in BC tissues by using the Agilent human lncRNA assay (Agilent Technologies, Santa Clara, CA, USA) and RNA sequencing. After identification of lncRNAs and mRNAs through quantitative reverse transcription polymerase chain reaction, we conducted a series of functional experiments to confirm the effects of knockdown of one lncRNA, TCONS_00029809, on the progression of BC. Results We discovered 238 lncRNAs and 200 mRNAs that were differentially expressed in BC tissues and para-carcinoma tissue. We showed that differentially expressed mRNAs were related to biological adhesion and biological regulation and mainly enriched in cytokine-cytokine receptor interaction, metabolic pathways, and PI3K-Akt signaling pathway. We created a protein–protein interaction network to analyze the proteins enriched in these pathways. We demonstrated that silencing of TCONS_00029809 remarkably inhibited proliferation, invasion, and migration of BC cells, and accelerated their apoptosis. Conclusions We identified a large number of differentially expressed lncRNAs and mRNAs, which provide data useful in understanding BC carcinogenesis. The lncRNA TCONS_00029809 may be involved in the development of BC.
Collapse
Affiliation(s)
- Jingyun Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huining Lian
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Minfeng Liu
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianyu Dong
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaoze Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinlamao Yang
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changsheng Ye
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Capik O, Sanli F, Kurt A, Ceylan O, Suer I, Kaya M, Ittmann M, Karatas OF. CASC11 promotes aggressiveness of prostate cancer cells through miR-145/IGF1R axis. Prostate Cancer Prostatic Dis 2021; 24:891-902. [PMID: 33753875 DOI: 10.1038/s41391-021-00353-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignancy diagnosed among men after lung cancer in developed countries. Investigation of the underlying molecular mechanisms of PCa is urgently needed in order to develop better therapeutic strategies and to reveal more effective therapeutic targets. In this study, we aimed at exploring the potential functions of CASC11 in association with miR-145 and IGF1R during the malignant progression of PCa cells. METHODS We initially investigated the oncogenic potential of noncoding members of CASC gene family and analyzed the effects of CASC11 overexpression on proliferation, migration, and colony formation ability of DU145, LNCaP, and PC3 PCa cells. We, then, exprlored the association of CASC11, miR-145, and IGF1R expression and their impacts on PI3K/AKT/mTOR signaling pathway in in vitro models. RESULTS In silico analysis revealed that of the CASC family only CASC11 showed consistent results considering its differential expression as well as its association with the overall survival of patients. We demonstrated that ectopic overexpression of CASC11 significantly increased the proliferation, colony formation, and migration capacity in all three cell lines. CASC11 overexpression caused suppression of miR-145 and overexpression of IGF1R, leading to activation of PI3K/AKT/mTOR signaling pathway. CONCLUSION In summary, we found that CASC11 is upregulated in PCa cells and clinical tumor samples in comparison to corresponding controls and revealed that ectopic CASC11 overexpression promotes cellular phenotypes associated with PCa progression through CASC11/miR-145/IGF1R axis.
Collapse
Affiliation(s)
- Ozel Capik
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Fatma Sanli
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ali Kurt
- Department of Pathology, Erzurum Faculty of Medicine, Health Sciences University, Erzurum, Turkey
| | - Onur Ceylan
- Department of Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ilknur Suer
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Kaya
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey VAMC, Houston, TX, USA
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey. .,Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| |
Collapse
|
41
|
The Utility of Nicotinamide N-Methyltransferase as a Potential Biomarker to Predict the Oncological Outcomes for Urological Cancers: An Update. Biomolecules 2021; 11:biom11081214. [PMID: 34439880 PMCID: PMC8393883 DOI: 10.3390/biom11081214] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation reaction of nicotinamide, using S-adenosyl-L-methionine as the methyl donor. Enzyme overexpression has been described in many non-neoplastic diseases, as well as in a wide range of solid malignancies. This review aims to report and discuss evidence available in scientific literature, dealing with NNMT expression and the potential involvement in main urologic neoplasms, namely, renal, bladder and prostate cancers. Data illustrated in the cited studies clearly demonstrated NNMT upregulation (pathological vs. normal tissue) in association with these aforementioned tumors. In addition to this, enzyme levels were also found to correlate with key prognostic parameters and patient survival. Interestingly, NNMT overexpression also emerged in peripheral body fluids, such as blood and urine, thus leading to candidate the enzyme as promising biomarker for the early and non-invasive detection of these cancers. Examined results undoubtedly showed NNMT as having the capacity to promote cell proliferation, migration and invasiveness, as well as its potential participation in fundamental events highlighting cancer progression, metastasis and resistance to chemo- and radiotherapy. In the light of this evidence, it is reasonable to attribute to NNMT a promising role as a potential biomarker for the diagnosis and prognosis of urologic neoplasms, as well as a molecular target for effective anti-cancer treatment.
Collapse
|
42
|
Imada EL, Sanchez DF, Dinalankara W, Vidotto T, Ebot EM, Tyekucheva S, Franco GR, Mucci LA, Loda M, Schaeffer EM, Lotan T, Marchionni L. Transcriptional landscape of PTEN loss in primary prostate cancer. BMC Cancer 2021; 21:856. [PMID: 34311724 PMCID: PMC8314517 DOI: 10.1186/s12885-021-08593-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND PTEN is the most frequently lost tumor suppressor in primary prostate cancer (PCa) and its loss is associated with aggressive disease. However, the transcriptional changes associated with PTEN loss in PCa have not been described in detail. In this study, we highlight the transcriptional changes associated with PTEN loss in PCa. METHODS Using a meta-analysis approach, we leveraged two large PCa cohorts with experimentally validated PTEN and ERG status by Immunohistochemistry (IHC), to derive a transcriptomic signature of PTEN loss, while also accounting for potential confounders due to ERG rearrangements. This signature was expanded to lncRNAs using the TCGA quantifications from the FC-R2 expression atlas. RESULTS The signatures indicate a strong activation of both innate and adaptive immune systems upon PTEN loss, as well as an expected activation of cell-cycle genes. Moreover, we made use of our recently developed FC-R2 expression atlas to expand this signature to include many non-coding RNAs recently annotated by the FANTOM consortium. Highlighting potential novel lncRNAs associated with PTEN loss and PCa progression. CONCLUSION We created a PCa specific signature of the transcriptional landscape of PTEN loss that comprises both the coding and an extensive non-coding counterpart, highlighting potential new players in PCa progression. We also show that contrary to what is observed in other cancers, PTEN loss in PCa leads to increased activation of the immune system. These findings can help the development of new biomarkers and help guide therapy choices.
Collapse
Affiliation(s)
- Eddie Luidy Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | - Wikum Dinalankara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thiago Vidotto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ericka M Ebot
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Svitlana Tyekucheva
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gloria Regina Franco
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lorelei Ann Mucci
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Tamara Lotan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
43
|
Elevated LINC00909 Promotes Tumor Progression of Ovarian Cancer via Regulating the miR-23b-3p/MRC2 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5574130. [PMID: 34336102 PMCID: PMC8318762 DOI: 10.1155/2021/5574130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/11/2021] [Accepted: 06/05/2021] [Indexed: 01/05/2023]
Abstract
Ovarian cancer (OC), the third common gynecologic malignancy, contributes to the most cancer-caused mortality in women. However, 70% of patients with OC are diagnosed at an advanced stage, of which the 5-year survival is less than 30%. Long noncoding RNAs (long ncRNAs or lncRNA), a type of RNA with exceeding 200 nucleotides in length but no protein-coding capability, have been demonstrated to involve the pathogenesis of various cancers and show considerable potential in the diagnosis of OC. In this study, we found that the LINC00909 expression in tumor and serum specimens of OC patients was elevated, determined by real-time quantitative, and droplet digital PCR. In receiver operating characteristic (ROC) analysis, our results revealed that serum LINC00909 distinguished cancers from normal ovarian tissue with 87.8% of sensitivity and 69.6% of specificity (AUC, 81.2%) and distinguished serous ovarian cancer from normal ovarian tissue with 90.0% of sensitivity and 75.9% of specificity (AUC, 84.5%). Furthermore, we observed that the tumor and serum LINC00909 level was positively associated with the International Federation of Gynecology and Obstetrics (FIGO) stage and the Eastern Cooperative Oncology Group (ECOG) score (reflecting patients' performance status). Also, patients with low serum LINC00909 level showed a longer overall (hazard ratio, HR = 1.874, p = 0.0004) and progression-free (HR = 1.656, p = 0.0017) survival. Functional assays indicated that the elevation of LINC00909 expression contributes to cell proliferation, migration, and invasion capability of ovarian cancer cells. Besides, we demonstrated that LINC00909 functions as a competing endogenous RNA (ceRNA) of MRC2 mRNA by sponging miR-23-3p, and thereby promotes epithelial-to-mesenchymal transition (EMT) of ovarian cancer cells. Therefore, we highlight that the LINC00909/miR-23b-3p/MRC2 axis is implicated in the pathogenesis of ovarian cancer, and serum LINC00909 may be a promising biomarker for the diagnosis of OC.
Collapse
|
44
|
Circulating lncRNA UCA1 and lncRNA PGM5-AS1 act as potential diagnostic biomarkers for early-stage colorectal cancer. Biosci Rep 2021; 41:229154. [PMID: 34212174 PMCID: PMC8276091 DOI: 10.1042/bsr20211115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common and significant malignant diseases worldwide. In the present study, we evaluated two long non-coding RNAs (lncRNAs) in CRC patients as diagnostic markers for early-stage CRC. METHODS Using Gene Expression Omnibus (GEO) datasets GSE102340, GSE126092, GSE109454 and GSE115856, 14 differentially expressed lncRNAs were identified between cancer and adjacent tissues, among which, the two most differentially expressed were confirmed using quantitative real-time polymerase chain reaction (qRT-PCR) in 200 healthy controls and 188 CRC patients. A receiver operating characteristic (ROC) analysis was employed to evaluate the diagnostic accuracy for CRC. RESULTS From four GEO datasets, three up-regulated and eleven down-regulated lncRNAs were identified in CRC tissues, among which, lncRNA urothelial carcinoma-associated 1 (UCA1) and lncRNA phosphoglucomutase 5-antisense RNA 1 (PGM5-AS1) were the most significantly up- and down-regulated lncRNAs in CRC patient plasma, respectively. The area under the ROC curve was calculated to be 0.766, 0.754 and 0.798 for UCA1, PGM5-AS1 and the combination of these two lncRNAs, respectively. Moreover, the diagnostic potential of these two lncRNAs was even higher for the early stages of CRC. The combination of UCA1 and PGM5-AS1 enhanced the AUC to 0.832, and when the lncRNAs were used with carcinoembryonic antigen (CEA), the AUC was further improved to 0.874. CONCLUSION In the present study, we identified two lncRNAs, UCA1 and PGM5-AS1, in CRC patients' plasma, which have the potential to be used as diagnostic biomarkers of CRC.
Collapse
|
45
|
Current Trends in Prevalence and Role of Long Noncoding RNA and Gene Fusion in Prostate Cancer: An Overview. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2021. [DOI: 10.1055/s-0041-1729780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
Objectives The aim of this study is to analyze the current scenario in the diagnostic modalities for prostate cancer.
Materials and Methods We searched PubMed, Google Scholar, and ResearchGate for relevant data. Articles published in the last 10 years were taken into consideration. The role of long noncoding RNA and gene fusion products in the context of prostate cancer was reviewed, which included their roles in diagnosis, prognosis, and assessment of response to therapy.
Results Several long noncoding RNAs (lncRNA) have been isolated and have been shown to be useful in diagnosing and prognosticating prostate cancer. We have also looked into the role of TMPRSS2:ERG gene fusion in prostate carcinoma diagnosis. These molecular parameters have been looked into due to the fact that the current parameters in use such as prostate-specific antigen have several drawbacks that limit their potential.
Collapse
|
46
|
Wang M, Liu H, Wu W, Zhao J, Song G, Chen X, Wang R, Shao C, Li J, Wang H, Wang Q, Feng X. Identification of Differentially Expressed Plasma lncRNAs As Potential Biomarkers for Breast Cancer. Clin Breast Cancer 2021; 22:e135-e141. [PMID: 34119428 DOI: 10.1016/j.clbc.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is the most common malignant tumor in women and is not easy to diagnose. Increasing evidence has underscored that long non-coding RNAs (lncRNAs) play important regulatory roles in the occurrence and progression of many cancers, including breast cancer. We aimed to identify lncRNAs in plasma as potential biomarkers for breast cancer. PATIENTS AND METHODS We analyzed the Gene Expression Omnibus (GEO) datasets GSE22820, GSE42568, and GSE65194 to identify the common differential genes between cancer tissues and adjacent tissues. Then 14 lncRNAs were identified among the common differential genes and validated by using real-time quantitative polymerase chain reaction in 92 patients with breast cancer and 100 healthy controls. Receiver operating characteristic (ROC) curves were constructed to evaluate their diagnostic value for breast cancer. RESULTS Integrated analysis of the GEO datasets identified three significantly upregulated and 11 downregulated lncRNAs in breast cancer tissues. Compared with healthy controls, MIAT was significantly upregulated in breast cancer patient plasma, and LINC00968 and LINC01140 were significantly downregulated. ROC curve analysis suggested that these three lncRNAs can discriminate breast cancer from healthy individual with high specificity and sensitivity. CONCLUSION This research identified three differentially expressed lncRNAs in breast cancer patient plasma. Our data suggest that these three lncRNAs can be used as potential diagnostic biomarkers of breast cancer.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Huilin Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenyao Wu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jinxia Zhao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guanghui Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Rong Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Changfeng Shao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaodong Feng
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
47
|
Li J, Du H, Chen W, Qiu M, He P, Ma Z. Identification of potential autophagy-associated lncRNA in prostate cancer. Aging (Albany NY) 2021; 13:13153-13165. [PMID: 33971627 PMCID: PMC8148478 DOI: 10.18632/aging.202997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Background: Long non-coding RNAs (lncRNAs) have been linked to autophagy. It is urgent to identify and assess the hub autophagy-associated lncRNA in prostate cancer. Methods: Differentially expressed lncRNAs associated with autophagy were identified in prostate cancer based on The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data. An autophagy-mediated competing endogenous RNA network was constructed to screen for autophagy-associated lncRNA, and the preselected lncRNAs were further validated using Gene Expression Omnibus (GEO) datasets. Furthermore, a prognostic lncRNA signature was established and assessed. Additionally, Gene Set Enrichment Analysis (GSEA) revealed the underlying molecular mechanisms. Results: Using a competing endogenous RNA network, 66 differentially expressed lncRNAs associated with autophagy were identified, and the differential expression of 7 lncRNAs were verified using the TCGA-PRAD, GSE21034, and GSE94767 datasets. Additionally, a lncRNA signature associated with autophagy, including MKNK1-AS1 and INE1, was identified as an independent indicator of survival with a C-index of 0.882. The GSEA analysis indicated that several autophagy-related signaling pathways were enriched in different risk groups. Conclusions: The lncRNAs associated with autophagy were identified, and a prediction model was developed that could be used as a prognostic predictor for prostate cancer, indicating the critical role of lncRNA in the regulation of prostate cancer autophagy regulation.
Collapse
Affiliation(s)
- Jun Li
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Du
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenqiang Chen
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxing Qiu
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng He
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiwei Ma
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
48
|
Takeiwa T, Ikeda K, Horie-Inoue K, Inoue S. Mechanisms of Apoptosis-Related Long Non-coding RNAs in Ovarian Cancer. Front Cell Dev Biol 2021; 9:641963. [PMID: 33996797 PMCID: PMC8117355 DOI: 10.3389/fcell.2021.641963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a health-threatening malignancy of ovary in female reproductive systems and one of the most common gynecological malignancies worldwide. Due to rare early symptoms, ovarian cancers are often diagnosed at advanced stages and exhibit poor prognosis. Thus, efforts have been paid to develop alternative diagnostic and therapeutic strategies for the disease. Recent studies have presented that some long non-coding RNAs (lncRNAs) play roles in apoptosis of ovarian cancer cells through various mechanisms involved in the regulation of transcription factors, histone modification complexes, miRNAs, and protein stability. Because evasion of apoptosis in cancer cells facilitates to promote tumor progression and therapy resistance, apoptosis regulatory mechanisms of lncRNAs may be promising new targets in ovarian cancer. In this review, we introduce the recent findings in regard to the molecular mechanisms of apoptosis-related lncRNAs in ovarian cancer cells.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
49
|
Kumar S, Prajapati KS, Singh AK, Kushwaha PP, Shuaib M, Gupta S. Long non-coding RNA regulating androgen receptor signaling in breast and prostate cancer. Cancer Lett 2021; 504:15-22. [PMID: 33556545 DOI: 10.1016/j.canlet.2020.11.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/04/2020] [Accepted: 11/26/2020] [Indexed: 02/05/2023]
Abstract
The human genome transcribe an array of RNAs that do not encode proteins and may act as mediators in the regulation of gene expression. Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs consisting of more than 200 nucleotides of RNA transcripts that play important role in tumor development. Numerous lncRNAs have been characterized as functional transcripts associated with several biological processes and pathologic stages. Although the biological function and molecular mechanisms of lncRNAs remains to be explored, recent studies demonstrate aberrant expression of several lncRNAs linked with various human cancers. The present review summarizes the current knowledge of lncRNA expression patterns and mechanisms that contribute to carcinogenesis. In particular, we focus on lncRNAs regulating androgen receptor signaling pathways in prostate and breast cancer subtype having prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Shashank Kumar
- Department of Biochemistry, Drug Discovery and Therapeutic Laboratory, Central University of Punjab, Bathinda, 151401, India.
| | - Kumari Sunita Prajapati
- Department of Biochemistry, Drug Discovery and Therapeutic Laboratory, Central University of Punjab, Bathinda, 151401, India
| | - Atul Kumar Singh
- Department of Biochemistry, Drug Discovery and Therapeutic Laboratory, Central University of Punjab, Bathinda, 151401, India
| | - Prem Prakash Kushwaha
- Department of Biochemistry, Drug Discovery and Therapeutic Laboratory, Central University of Punjab, Bathinda, 151401, India
| | - Mohd Shuaib
- Department of Biochemistry, Drug Discovery and Therapeutic Laboratory, Central University of Punjab, Bathinda, 151401, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44106, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA; Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA; Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
50
|
Role of Curcumin in Regulating Long Noncoding RNA Expression in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:13-23. [PMID: 33861433 DOI: 10.1007/978-3-030-64872-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytochemicals are various compounds produced by plants. There is growing evidence on their potential health effects. Some of these compounds are considered as traditional medicines and used as painkillers, anti-inflammatory agents, and for other applications. One of these phytochemicals is curumin, a natural polyphenol derived from the turmeric plant (Curcuma longa L.). Curcumin is widely used as a food coloring, preservative and condiment. It has also been shown to have antioxidative and anti-inflammatory effects. Moreover, there is growing evidence that curcumin alters long noncoding RNAs (lncRNAs) in many kinds of cancer. These noncoding RNAs can cause epigenetic modulation in the expression of several genes. This study reviews reports of curcumin effects on lncRNAs in lung, prostate, colorectal, breast, pancreatic, renal, gastric, and ovarian cancers.
Collapse
|