1
|
Ji G, Zhao J, Si X, Song W. Targeting bacterial metabolites in tumor for cancer therapy: An alternative approach for targeting tumor-associated bacteria. Adv Drug Deliv Rev 2024; 211:115345. [PMID: 38834140 DOI: 10.1016/j.addr.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Emerging evidence reveal that tumor-associated bacteria (TAB) can facilitate the initiation and progression of multiple types of cancer. Recent work has emphasized the significant role of intestinal microbiota, particularly bacteria, plays in affecting responses to chemo- and immuno-therapies. Hence, it seems feasible to improve cancer treatment outcomes by targeting intestinal bacteria. While considering variable richness of the intestinal microbiota and diverse components among individuals, direct manipulating the gut microbiota is complicated in clinic. Tumor initiation and progression requires the gut microbiota-derived metabolites to contact and reprogram neoplastic cells. Hence, directly targeting tumor-associated bacteria metabolites may have the potential to provide alternative and innovative strategies to bypass the gut microbiota for cancer therapy. As such, there are great opportunities to explore holistic approaches that incorporates TAB-derived metabolites and related metabolic signals modulation for cancer therapy. In this review, we will focus on key opportunistic areas by targeting TAB-derived metabolites and related metabolic signals, but not bacteria itself, for cancer treatment, and elucidate future challenges that need to be addressed in this emerging field.
Collapse
Affiliation(s)
- Guofeng Ji
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingjing Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| |
Collapse
|
2
|
de Souza JB, de Lacerda Coriolano D, dos Santos Silva RC, da Costa Júnior SD, de Almeida Campos LA, Cavalcanti IDL, Lira Nogueira MCDB, Pereira VRA, Brelaz-de-Castro MCA, Cavalcanti IMF. Ceftazidime and Usnic Acid Encapsulated in Chitosan-Coated Liposomes for Oral Administration against Colorectal Cancer-Inducing Escherichia coli. Pharmaceuticals (Basel) 2024; 17:802. [PMID: 38931469 PMCID: PMC11206294 DOI: 10.3390/ph17060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Escherichia coli has been associated with the induction of colorectal cancer (CRC). Thus, combined therapy incorporating usnic acid (UA) and antibiotics such as ceftazidime (CAZ), co-encapsulated in liposomes, could be an alternative. Coating the liposomes with chitosan (Chi) could facilitate the oral administration of this nanocarrier. Liposomes were prepared using the lipid film hydration method, followed by sonication and chitosan coating via the drip technique. Characterization included particle size, polydispersity index, zeta potential, pH, encapsulation efficiency, and physicochemical analyses. The minimum inhibitory concentration and minimum bactericidal concentration were determined against E. coli ATCC 25922, NCTC 13846, and H10407 using the microdilution method. Antibiofilm assays were conducted using the crystal violet method. The liposomes exhibited sizes ranging from 116.5 ± 5.3 to 240.3 ± 3.5 nm and zeta potentials between +16.4 ± 0.6 and +28 ± 0.8 mV. The encapsulation efficiencies were 51.5 ± 0.2% for CAZ and 99.94 ± 0.1% for UA. Lipo-CAZ-Chi and Lipo-UA-Chi exhibited antibacterial activity, inhibited biofilm formation, and preformed biofilms of E. coli. The Lipo-CAZ-UA-Chi and Lipo-CAZ-Chi + Lipo-UA-Chi formulations showed enhanced activities, potentially due to co-encapsulation or combination effects. These findings suggest potential for in vivo oral administration in future antibacterial and antibiofilm therapies against CRC-inducing bacteria.
Collapse
Affiliation(s)
- Jaqueline Barbosa de Souza
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Davi de Lacerda Coriolano
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Rayza Camila dos Santos Silva
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Sérgio Dias da Costa Júnior
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Luís André de Almeida Campos
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Iago Dillion Lima Cavalcanti
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Valéria Rêgo Alves Pereira
- Department of Immunology, Aggeu Magalhães Institute (IAM/FIOCRUZ), Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil;
| | - Maria Carolina Accioly Brelaz-de-Castro
- Department of Immunology, Aggeu Magalhães Institute (IAM/FIOCRUZ), Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil;
- Laboratory of Parasitology, Academic Center of Vitoria (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| |
Collapse
|
3
|
Takeuchi C, Yamashita S, Liu YY, Takeshima H, Sasaki A, Fukuda M, Hashimoto T, Naka T, Ishizu K, Sekine S, Yoshikawa T, Hamada A, Yamamichi N, Fujishiro M, Ushijima T. Precancerous nature of intestinal metaplasia with increased chance of conversion and accelerated DNA methylation. Gut 2024; 73:255-267. [PMID: 37751933 DOI: 10.1136/gutjnl-2023-329492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE The presence of intestinal metaplasia (IM) is a risk factor for gastric cancer. However, it is still controversial whether IM itself is precancerous or paracancerous. Here, we aimed to explore the precancerous nature of IM by analysing epigenetic alterations. DESIGN Genome-wide DNA methylation analysis was conducted by EPIC BeadArray using IM crypts isolated by Alcian blue staining. Chromatin immunoprecipitation sequencing for H3K27ac and single-cell assay for transposase-accessible chromatin by sequencing were conducted using IM mucosa. NOS2 was induced using Tet-on gene expression system in normal cells. RESULTS IM crypts had a methylation profile unique from non-IM crypts, showing extensive DNA hypermethylation in promoter CpG islands, including those of tumour-suppressor genes. Also, the IM-specific methylation profile, namely epigenetic footprint, was present in a fraction of gastric cancers with a higher frequency than expected, and suggested to be associated with good overall survival. IM organoids had remarkably high NOS2 expression, and NOS2 induction in normal cells led to accelerated induction of aberrant DNA methylation, namely epigenetic instability, by increasing DNA methyltransferase activity. IM mucosa showed dynamic enhancer reprogramming, including the regions involved in higher NOS2 expression. NOS2 had open chromatin in IM cells but not in gastric cells, and IM cells had frequent closed chromatin of tumour-suppressor genes, indicating their methylation-silencing. NOS2 expression in IM-derived organoids was upregulated by interleukin-17A, a cytokine secreted by extracellular bacterial infection. CONCLUSIONS IM cells were considered to have a precancerous nature potentially with an increased chance of converting into cancer cells, and an accelerated DNA methylation induction due to abnormal NOS2 expression.
Collapse
Affiliation(s)
- Chihiro Takeuchi
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Biotechnology, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Yu-Yu Liu
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Akiko Sasaki
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Gastroenterology Medicine Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Masahide Fukuda
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Oita, Japan
| | - Taiki Hashimoto
- Department of Diagnostic Pathology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Tomoaki Naka
- Department of Diagnostic Pathology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Kenichi Ishizu
- Department of Gastric Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Shigeki Sekine
- Department of Diagnostic Pathology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Nobutake Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
4
|
Simpson RC, Shanahan ER, Scolyer RA, Long GV. Towards modulating the gut microbiota to enhance the efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2023; 20:697-715. [PMID: 37488231 DOI: 10.1038/s41571-023-00803-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
The gut microbiota modulates immune processes both locally and systemically. This includes whether and how the immune system reacts to emerging tumours, whether antitumour immune responses are reactivated during treatment with immune-checkpoint inhibitors (ICIs), and whether unintended destructive immune pathologies accompany such treatment. Advances over the past decade have established that the gut microbiota is a promising target and that modulation of the microbiota might overcome resistance to ICIs and/or improve the safety of treatment. However, the specific mechanisms through which the microbiota modulates antitumour immunity remain unclear. Understanding the biology underpinning microbial associations with clinical outcomes in patients receiving ICIs, as well as the landscape of a 'healthy' microbiota would provide a critical foundation to facilitate opportunities to effectively manipulate the microbiota and thus improve patient outcomes. In this Review, we explore the role of diet and the gut microbiota in shaping immune responses during treatment with ICIs and highlight the key challenges in attempting to leverage the gut microbiome as a practical tool for the clinical management of patients with cancer.
Collapse
Affiliation(s)
- Rebecca C Simpson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Erin R Shanahan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Baba Y, Hara Y, Toihata T, Kosumi K, Iwatsuki M, Iwagami S, Miyamoto Y, Yoshida N, Komohara Y, Baba H. Relationship between gut microbiome Fusobacterium nucleatum and LINE-1 methylation level in esophageal cancer. Esophagus 2023; 20:704-712. [PMID: 37173453 DOI: 10.1007/s10388-023-01009-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND We previously demonstrated the relationship of human microbiome Fusobacterium nucleatum with unfavorable clinical outcomes and inferior chemotherapeutic responses in esophageal cancer. Global DNA methylation is associated with the occurrence and development of various cancers. In our previous study, LINE-1 hypomethylation (i.e., global DNA hypomethylation) was associated with a poor prognosis in esophageal cancer. As the gut microbiota may play crucial roles in the DNA methylation of host cells, we hypothesized that F. nucleatum might influence LINE-1 methylation levels in esophageal cancer. METHODS We qualified the F. nucleatum DNA using a quantitative PCR assay and LINE-1 methylation via a pyrosequencing assay using formalin-fixed paraffin-embedded specimens from 306 esophageal cancer patients. RESULTS Intratumoral F. nucleatum DNA was detected in 65 cases (21.2%). The LINE-1 methylation scores ranged from 26.9 to 91.8 (median = 64.8) in tumors. F. nucleatum DNA was related to the LINE-1 hypomethylation of tumor lesions in esophageal cancer (P < 0.0001). The receiver operating characteristic curve analysis showed that the area under the curve was 0.71 for F. nucleatum positivity. Finally, we found that the impact of F. nucleatum on clinical outcomes was not modified by LINE-1 hypomethylation (P for interaction = 0.34). CONCLUSIONS F. nucleatum alters genome-wide methylation levels in cancer cells, which may be one of the mechanisms by which F. nucleatum affects the malignant behavior of esophageal cancer.
Collapse
Affiliation(s)
- Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
- Department of Next-Generation Surgical Therapy Development, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| | - Yoshihiro Hara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Tasuku Toihata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Keisuke Kosumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Next-Generation Surgical Therapy Development, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
6
|
Le Naour J, Montégut L, Pan Y, Scuderi SA, Cordier P, Joseph A, Sauvat A, Iebba V, Paillet J, Ferrere G, Brechard L, Mulot C, Dubourg G, Zitvogel L, Pol JG, Vacchelli E, Puig PL, Kroemer G. Formyl peptide receptor-1 (FPR1) represses intestinal oncogenesis. Oncoimmunology 2023; 12:2237354. [PMID: 37492227 PMCID: PMC10364666 DOI: 10.1080/2162402x.2023.2237354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
Formyl peptide receptor-1 (FPR1) is a pattern recognition receptor that is mostly expressed by myeloid cells. In patients with colorectal cancer (CRC), a loss-of-function polymorphism (rs867228) in the gene coding for FPR1 has been associated with reduced responses to chemotherapy or chemoradiotherapy. Moreover, rs867228 is associated with accelerated esophageal and colorectal carcinogenesis. Here, we show that dendritic cells from Fpr1-/- mice exhibit reduced migration in response to chemotherapy-treated CRC cells. Moreover, Fpr1-/- mice are particularly susceptible to chronic ulcerative colitis and colorectal oncogenesis induced by the mutagen azoxymethane followed by oral dextran sodium sulfate, a detergent that induces colitis. These experiments were performed after initial co-housing of Fpr1-/- mice and wild-type controls, precluding major Fpr1-driven differences in the microbiota. Pharmacological inhibition of Fpr1 by cyclosporin H also tended to increase intestinal oncogenesis in mice bearing the ApcMin mutation, and this effect was reversed by the anti-inflammatory drug sulindac. We conclude that defective FPR1 signaling favors intestinal tumorigenesis through the modulation of the innate inflammatory/immune response.
Collapse
Affiliation(s)
- Julie Le Naour
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sarah Adriana Scuderi
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Pierre Cordier
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
| | - Valerio Iebba
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Juliette Paillet
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Gladys Ferrere
- Institut National de la Santé Et de la Recherche Medicale (INSERM) U1015 and Equipe Labellisée–Ligue Nationale Contre le Cancer, Villejuif, France
| | - Ludivine Brechard
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Claire Mulot
- Centre de Recherche des Cordeliers, Equipe Labélisée Ligue Contre le Cancer, Sorbonne Université, Université Paris Cité, INSERM, Paris, France
| | - Grégory Dubourg
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Laurence Zitvogel
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
- Gustave Roussy Cancer Center, Villejuif, France
| | - Jonathan G. Pol
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
| | - Erika Vacchelli
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
| | - Pierre-Laurent Puig
- Centre de Recherche des Cordeliers, Equipe Labélisée Ligue Contre le Cancer, Sorbonne Université, Université Paris Cité, INSERM, Paris, France
- Institut du Cancer Paris CARPEM, APHP. Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Villejuif, France
- Institut du Cancer Paris CARPEM, APHP. Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
7
|
Noble AJ, Nowak JK, Adams AT, Uhlig HH, Satsangi J. Defining Interactions Between the Genome, Epigenome, and the Environment in Inflammatory Bowel Disease: Progress and Prospects. Gastroenterology 2023; 165:44-60.e2. [PMID: 37062395 DOI: 10.1053/j.gastro.2023.03.238] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023]
Abstract
Recent advances in our understanding of the pathogenesis of inflammatory bowel disease (IBD) have highlighted the complex interplay between the genome, the epigenome, and the environment. Despite the exciting advances in genomics that have enabled the identification of over 200 susceptibility loci, these only account for a small proportion of the disease variance and the estimated heritability in IBD. It is likely that gene-environment (GxE) interactions contribute to "missing heritability" and these may act through epigenetic mechanisms. Several environmental factors, such as the microbiome, nutrition, and tobacco smoking, induce alterations in the epigenome of children and adults, which may impact disease susceptibility. Other mechanisms for GxE interactions are also directly pertinent in early life. We discuss a model in which environmental factors imprint disease risk in a window of susceptibility during infancy that may contribute to later disease onset, whereas other elements of the exposome act later in life and contribute directly to the pathogenesis and course of the disease. Understanding the mechanisms underlying GxE interactions may provide the basis for new therapeutic targets or preventative strategies for IBD.
Collapse
Affiliation(s)
- Alexandra J Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom.
| | - Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Department of Pediatrics, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Ying HZ, Xie W, Wang MC, He JQ, Zhang HH, Yu CH. Gut microbiota: An emerging therapeutic approach of herbal medicine for prevention of colorectal cancer. Front Cell Infect Microbiol 2022; 12:969526. [PMID: 36051242 PMCID: PMC9426771 DOI: 10.3389/fcimb.2022.969526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
The gut dysbiosis has emerged as a prominent player in the pathogenesis and development of colorectal cancer (CRC), which in turn intensifies dysregulated gut microbiota composition and inflammation. Since most drugs are given orally, this dysbiosis directly and indirectly impinges the absorption and metabolism of drugs in the gastrointestinal tract, and subsequently affects the clinical outcome of patients with CRC. Herbal medicine, including the natural bioactive products, have been used traditionally for centuries and can be considered as novel medicinal sources for anticancer drug discovery. Due to their various structures and pharmacological effects, natural products have been found to improve microbiota composition, repair intestinal barrier and reduce inflammation in human and animal models of CRC. This review summarizes the chemo-preventive effects of extracts and/or compounds derived from natural herbs as the promising antineoplastic agents against CRC, and will provide innovative strategies to counteract dysregulated microbiota and improve the lives of CRC patients.
Collapse
Affiliation(s)
- Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Wei Xie
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Meng-Chuan Wang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Chen-Huan Yu,
| |
Collapse
|
10
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
11
|
Sasaki T, Nagashima H, Okuma A, Yamauchi T, Yamasaki K, Aiba S, So T, Ishii N, Owada Y, MaruYama T, Kobayashi S. Functional Analysis of the Transcriptional Regulator IκB-ζ in Intestinal Homeostasis. Dig Dis Sci 2022; 67:1252-1259. [PMID: 33818662 DOI: 10.1007/s10620-021-06958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/12/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND The Toll-like receptor signaling pathway contributes to the regulation of intestinal homeostasis through interactions with commensal bacteria. Although the transcriptional regulator IκB-ζ can be induced by Toll-like receptor signaling, its role in intestinal homeostasis is still unclear. AIMS To investigate the role of IκB-ζ in gut homeostasis. METHODS DSS-administration induced colitis in control and IκB-ζ-deficient mice. The level of immunoglobulins in feces was detected by ELISA. The immunological population in lamina propria (LP) was analyzed by FACS. RESULTS IκB-ζ-deficient mice showed severe inflammatory diseases with DSS administration in the gut. The level of IgM in the feces after DSS administration was less in IκB-ζ-deficient mice compared to control mice. Upon administration of DSS, IκB-ζ-deficient mice showed exaggerated intestinal inflammation (more IFN-g-producing CD4+ T cells in LP), and antibiotic treatment canceled this inflammatory phenotype. CONCLUSION IκB-ζ plays a crucial role in maintaining homeostasis in the gut.
Collapse
Affiliation(s)
- Tomoki Sasaki
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Nagashima
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Okuma
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takeshi Yamauchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi, Japan
| | - Takashi MaruYama
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Mucosal Immunology Unit, NIDCR, NIH, Bethesda, MD, USA
| | - Shuhei Kobayashi
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Japan. .,Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi, Japan.
| |
Collapse
|
12
|
Hakura A, Koyama N, Seki Y, Sonoda J, Asakura S. o-Aminoazotoluene, 7,12-dimethylbenz[a]anthracene, and N-ethyl-N-nitrosourea, which are mutagenic but not carcinogenic in the colon, rapidly induce colonic tumors in mice with dextran sulfate sodium-induced colitis. Genes Environ 2022; 44:11. [PMID: 35351212 PMCID: PMC8966303 DOI: 10.1186/s41021-022-00240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several rodent models with chemically induced colon cancer have been developed. Among these models, dextran sulfate sodium (DSS), a colitis inducer, combined with azoxymethane as a colon mutagenic carcinogen, is commonly used. We previously reported that although benzo [a] pyrene (BP) is mutagenic but not carcinogenic in the colon, it rapidly develops colon tumors at a high incidence/multiplicity after treatment with DSS. In the present study, we examined whether other colon-mutagenic non-carcinogens (CMNCs) induced colon tumors after treatment with DSS. RESULTS o-Aminoazotoluene, 7,12-dimethylbenz[a]anthracene, and N-ethyl-N-nitrosourea were selected as CMNCs. Male CD2F1 mice were orally administered CMNC for 5 consecutive days. After a 9-day dose-free period, mice were treated with 4% DSS in drinking water for 1 week. Three months after DSS treatment, colon samples were collected for histopathology and β-catenin immunohistochemistry analyses. All CMNCs in combination with DSS induced colonic adenocarcinomas at a high incidence/multiplicity in the distal and middle parts of the colon, coinciding with the location of colitis. Unlike in normal cells where β-catenin is exclusively located on the cell membrane, in adenocarcinoma cells, it was translocated to both the nucleus and cytoplasm or only to cytoplasm. The translocation of β-catenin is closely associated with colon carcinogenesis in rodents and humans. No colonic tumors or dysplastic lesions were found after exposure to either CMNC or DSS alone. CONCLUSION We provided further evidence clearly showing that CMNCs can rapidly induce colonic tumors in mice with DSS-induced colitis, even if they are not colonic carcinogens.
Collapse
Affiliation(s)
- Atsushi Hakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan.
| | - Naoki Koyama
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Yuki Seki
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Jiro Sonoda
- Global Drug Safety (present affiliation, Advanced Data Assurance), Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| | - Shoji Asakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan
| |
Collapse
|
13
|
Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene 2020; 39:4925-4943. [PMID: 32514151 PMCID: PMC7314664 DOI: 10.1038/s41388-020-1341-1] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
Research about the role of gut microbiome in colorectal cancer (CRC) is a newly emerging field of study. Gut microbiota modulation, with the aim to reverse established microbial dysbiosis, is a novel strategy for prevention and treatment of CRC. Different strategies including probiotics, prebiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT) have been employed. Although these strategies show promising results, mechanistically by correcting microbiota composition, modulating innate immune system, enhancing gut barrier function, preventing pathogen colonization and exerting selective cytotoxicity against tumor cells, it should be noted that they are accompanied by risks and controversies that can potentially introduce clinical complications. During bench-to-bedside translation, evaluation of risk-and-benefit ratio, as well as patient selection, should be carefully performed. In view of the individualized host response to gut microbiome intervention, developing personalized microbiome therapy may be the key to successful clinical treatment.
Collapse
|
14
|
Hofseth LJ, Hebert JR, Chanda A, Chen H, Love BL, Pena MM, Murphy EA, Sajish M, Sheth A, Buckhaults PJ, Berger FG. Early-onset colorectal cancer: initial clues and current views. Nat Rev Gastroenterol Hepatol 2020; 17:352-364. [PMID: 32086499 PMCID: PMC10711686 DOI: 10.1038/s41575-019-0253-4] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Over the past several decades, the incidence of early-onset colorectal cancer (EOCRC; in patients <50 years old) has increased at an alarming rate. Although robust and scientifically rigorous epidemiological studies have sifted out environmental elements linked to EOCRC, our knowledge of the causes and mechanisms of this disease is far from complete. Here, we highlight potential risk factors and putative mechanisms that drive EOCRC and suggest likely areas for fruitful research. In addition, we identify inconsistencies in the evidence implicating a strong effect of increased adiposity and suggest that certain behaviours (such as diet and stress) might place nonobese and otherwise healthy people at risk of this disease. Key risk factors are reviewed, including the global westernization of diets (usually involving a high intake of red and processed meats, high-fructose corn syrup and unhealthy cooking methods), stress, antibiotics, synthetic food dyes, monosodium glutamate, titanium dioxide, and physical inactivity and/or sedentary behaviour. The gut microbiota is probably at the crossroads of these risk factors and EOCRC. The time course of the disease and the fact that relevant exposures probably occur in childhood raise important methodological issues that are also discussed.
Collapse
Affiliation(s)
- Lorne J Hofseth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA.
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| | - James R Hebert
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Anindya Chanda
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Hexin Chen
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Bryan L Love
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Maria M Pena
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - E Angela Murphy
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Mathew Sajish
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Amit Sheth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Computer Science and Engineering, College of Engineering, University of South Carolina, Columbia, SC, USA
| | - Phillip J Buckhaults
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Franklin G Berger
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
15
|
Fujiwara-Tani R, Fujii K, Mori S, Kishi S, Sasaki T, Ohmori H, Nakashima C, Kawahara I, Nishiguchi Y, Mori T, Sho M, Kondoh M, Luo Y, Kuniyasu H. Role of Clostridium perfringens Enterotoxin on YAP Activation in Colonic Sessile Serrated Adenoma/ Polyps with Dysplasia. Int J Mol Sci 2020; 21:ijms21113840. [PMID: 32481659 PMCID: PMC7313056 DOI: 10.3390/ijms21113840] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Sessile serrated adenoma/polyp with dysplasia (SSA/P-D) is an SSA/P with cellular dysplasia and has a higher risk of progressing to colon carcinogenesis. Previously, we reported that tight junction impairment by Clostridiumperfringens enterotoxin (CPE) leads to activation of the transcriptional co-activator yes-associated protein (YAP) in oral squamous cell carcinoma. Here, we investigated whether CPE activates YAP to promote the malignant progression of SSA/P. E-cadherin expression was lower in the 12 cases with SSA/P-D examined than that in normal mucosa, SSA/P, or tubular adenoma (TA). Furthermore, intracellular translocation of claudin-4 (CLDN4) and nuclear translocation of YAP were observed. The CPE gene was detected in DNA extracted from SSA/P-D lesions, but not in SSA/P or TA. Treatment of the rat intestinal epithelial cell line IEC6 with low-dose CPE resulted in intracellular translocation of CLDN4 to the cytoplasmic membrane. Cytoplasmic CLDN4 showed co-precipitation with transcriptional co-activator with PDZ-binding motif, zonula occludens (ZO)-1, large tumor suppressor, and mammalian Ste20-like. Additionally, YAP co-precipitated with ZO-2 under CPE treatment led to decreased YAP phosphorylation and nuclear translocation. YAP activation promoted increase in nuclear TEA domain family member level, expression of cyclin D1, snail, vimentin, CD44, NS and decrease in E-cadherin levels, thereby inducing stemness and epithelial-mesenchymal-transition (EMT). The Hippo complex with the incorporation of CLDN4 increased stability. Upon low-dose CPE treatment, HT29 cells with BRAFV600E gene mutation showed increased growth, enhanced invasive potential, stemness, and induced EMT phenotype, whereas HCT116 cells, which carry KRASG13D gene mutation, did not show such changes. In an examination of 10 colorectal cancers, an increase in EMT and stemness was observed in CPE (+) and BRAF mutation (+) cases. These findings suggest that C.perfringens might enhance the malignant transformation of SSA/P-D via YAP activation. Our findings further highlight the importance of controlling intestinal flora using probiotics or antibiotics.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 6-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
- Correspondence: (Y.L.); (H.K.); Tel.: +86-0513-8505-1805 (Y.L.); +81-744-22-3051 (H.K.); Fax: +81-744-25-7308 (H.K.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (R.F.-T.); (K.F.); (S.M.); (S.K.); (T.S.); (H.O.); (C.N.); (I.K.); (Y.N.); (T.M.)
- Correspondence: (Y.L.); (H.K.); Tel.: +86-0513-8505-1805 (Y.L.); +81-744-22-3051 (H.K.); Fax: +81-744-25-7308 (H.K.)
| |
Collapse
|
16
|
Watson KM, Gaulke CA, Tsikitis VL. Understanding the microbiome: a primer on the role of the microbiome in colorectal neoplasia. Ann Gastroenterol 2020; 33:223-236. [PMID: 32382225 PMCID: PMC7196612 DOI: 10.20524/aog.2020.0467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is a leading cause of cancer-related death internationally, with mounting evidence pointing to the role of the microbiome in adenoma and cancer development. This article aims to provide clinicians with a foundation for understanding the field of research into the microbiome. We also illustrate the various ways in which the microbiota have been linked to colorectal cancer, with a specific focus on microbiota with identified virulence factors, and also on the ways that byproducts of microbiota metabolism may result in oncogenesis. We also review strategies for manipulating the microbiome for therapeutic effects.
Collapse
Affiliation(s)
- Katherine M. Watson
- Department of Surgery, Oregon Health & Science University, Portland, OR (Katherine M. Watson, Vassiliki Liana Tsikitis)
| | | | - Vassiliki Liana Tsikitis
- Department of Surgery, Oregon Health & Science University, Portland, OR (Katherine M. Watson, Vassiliki Liana Tsikitis)
| |
Collapse
|
17
|
Nakashima C, Yamamoto K, Kishi S, Sasaki T, Ohmori H, Fujiwara-Tani R, Mori S, Kawahara I, Nishiguchi Y, Mori T, Kondoh M, Luo Y, Kirita T, Kuniyasu H. Clostridium perfringens enterotoxin induces claudin-4 to activate YAP in oral squamous cell carcinomas. Oncotarget 2020; 11:309-321. [PMID: 32064037 PMCID: PMC6996904 DOI: 10.18632/oncotarget.27424] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Claudin (CLDN)-4 expression has been associated with malignancy in various cancers. When CLDN4 expression was examined in oral squamous cell carcinoma (OSCC), 22 out of 57 (39%) cases showed immunoreactivity in the nucleus. Nuclear CLDN4-positive cases showed a stronger correlation with cancer progression than the negative cases. Intratumoral anaerobic bacterial DNA examination revealed nuclear CLDN4 expression in 81% of Clostridium perfringens-positive cases. Treatment of human oral squamous cell carcinoma cell lines HSC3 and HSC4 with Clostridium perfringens enterotoxin (CPE), induced CLDN4 nuclear translocation to enhance epithelial-mesenchymal transition (EMT), stemness, cell proliferation and invasive ability. In addition, CPE treatment suppressed phosphorylation of yes-associated protein-1 (YAP1) and promoted YAP1 nuclear translocation, resulting in increased expression of YAP1 target genes; cyclin D1 and connective tissue growth factor. Moreover, it was revealed that the complex of YAP1, CLDN4 and zona occludens-2 (ZO-2) was formed by CPE treatment, further suppressing YAP1 phosphorylation by LATS1 and activating it. Thus YAP activation in OSCC was regarded important in promoting malignant phenotypes. Our research suggested that the control of oral anaerobic bacteria may suppress YAP activation and in turn tumor progression.
Collapse
Affiliation(s)
- Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kazuhiko Yamamoto
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
18
|
Stern J, Miller G, Li X, Saxena D. Virome and bacteriome: two sides of the same coin. Curr Opin Virol 2019; 37:37-43. [PMID: 31177014 PMCID: PMC6768692 DOI: 10.1016/j.coviro.2019.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Although bacterial dysbiosis has been previously associated with carcinogenesis and HIV infection, the impact of the virome and these disease states has been less well studied. In this review, we will summarize what is known about the interplay between both the bacterial and the viral components of the microbiome on cancer and HIV pathogenesis. Bacterial dysbiosis has been associated with carcinogenesis such as colorectal cancer (CRC), hepatocellular carcinoma (HCC), lung cancer, breast cancer, and gastric cancer. The dysbiotic pathogenesis may be species-based or community-based and can have varying mechanisms of carcinogenesis. The human virome was also associated with certain cancers. Viruses, such as cytomegalovirus (CMV), Human herpesvirus 8 (HHV-8), human papilloma virus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV), all had associations with cancers. It was also reported that an altered bacteriophage community may lead to carcinogenesis by allowing opportunistic, oncogenic bacteria to proliferate in a gastrointestinal biofilm. This mechanism shows the importance of analyzing the bacteriome and the virome concurrently as their interactions can provide insight into new mechanisms in the pathogenesis of not only cancer, but other diseases as well. The enteric bacteriome was shown to be distinctly altered in immunocompromised HIV-infected individuals, and highly active antiretroviral therapy (HAART) was shown to at least partially reverse the alterations that HIV causes in the bacteriome. Studies have shown that the progression to HIV is associated with changes in the plasma concentration of commensal viruses. HIV also acts synergistically with multiple other viruses, such as HPV, EBV, varicella zoster virus (VZV), and HHV-8. Although it has been shown that HIV infection leads to enteric virome expansion in humans, most of the research on HIV's effect on the virome was conducted in non-human primates, and there is a lack of research on the effect of HAART on the virome. Virome-wide analysis is necessary for identifying novel viral etiologies. There is currently a wealth of information on the bacteriome and its associations with cancer and HIV, but more research should be conducted on the virome's associations and reaction to HAART as well as the bacteriome-virome interactions that may play a major role in pathogenesis and recovery.
Collapse
Affiliation(s)
- Jonathan Stern
- Department of Basic Science, New York University College of Dentistry, New York, NY 10010, United States
| | - George Miller
- S. Arthur Localio Laboratory, Departments of Surgery, New York University, School of Medicine, New York, NY 10016, United States
| | - Xin Li
- Department of Basic Science, New York University College of Dentistry, New York, NY 10010, United States
| | - Deepak Saxena
- Department of Basic Science, New York University College of Dentistry, New York, NY 10010, United States; S. Arthur Localio Laboratory, Departments of Surgery, New York University, School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
19
|
Hattori N, Niwa T, Ishida T, Kobayashi K, Imai T, Mori A, Kimura K, Mori T, Asami Y, Ushijima T. Antibiotics suppress colon tumorigenesis through inhibition of aberrant DNA methylation in an azoxymethane and dextran sulfate sodium colitis model. Cancer Sci 2018; 110:147-156. [PMID: 30443963 PMCID: PMC6317928 DOI: 10.1111/cas.13880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation is involved in the development of colon cancer by inducing mutations and aberrant DNA methylation in colon epithelial cells. Furthermore, there is growing evidence that colonic microbiota modulates the inflammation response in the host and influences colon tumorigenesis. However, the influence of colonic microbiota on aberrant DNA methylation remains unknown. Here, we show the effect of colonic microbes on DNA methylation and tumorigenicity using a mouse model of human ulcerative colitis. Mice treated with azoxymethane (AOM) and dextran sulfate sodium (DSS) showed an increase in degree of colitis, as estimated by body weight, occult blood, and stool consistency/diarrhea at 2 weeks after treatment, but treatment with antibiotics markedly reduced the severity of the colitis. Although mucosal hyperplasia and increased inflammation‐related genes were observed in the colonic epithelial cells of the AOM/DSS‐treated mice, treatment with antibiotics abrogated these changes. In addition, treatment with antibiotics significantly decreased the number of mucosal nodules from 5.9 ± 5.3 to 0.2 ± 0.6 (P < .01) and area of occupancy from 50.1 ± 57.4 to 0.5 ± 1.4 mm2 (P < .01). Aberrant DNA methylation of three marker CpG islands (Cbln4, Fosb, and Msx1) was induced by AOM/DSS treatment in colonic mucosae, but this increase was suppressed by 50%‐92% (P < .05) with antibiotic treatment. Microbiome analysis showed that this change was associated with a decrease of the Clostridium leptum subgroup. These data indicate that antibiotics suppressed tumorigenesis through inhibition of aberrant DNA methylation induced by chronic inflammation.
Collapse
Affiliation(s)
- Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tohru Niwa
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | - Toshio Imai
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Akiko Mori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kana Kimura
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Takeshi Mori
- Communication Division, Meiji Co., Ltd, Tokyo, Japan
| | | | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|