1
|
Jiang M, Yu H. Ginsenoside 20(S)-Rg3 Hinders Esophageal Squamous Cell Carcinoma Cells Malignant Behaviors by miR-210-3p/B4GALT5 Axis. Cell Biochem Biophys 2025; 83:1555-1563. [PMID: 39422791 DOI: 10.1007/s12013-024-01566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Ginsenoside 20(S)-Rg3 (20(S)-Rg3) belongs to a natural chemical with an anti-tumor function, but its potential function and underlying mechanism in esophageal squamous cell carcinoma (ESCC) are unknown. Several reports have manifested that microRNA (miRNA) miR-210-3p functions as a tumor repressor in tumors, but its biofunction in ESCC remains obscure. Herein, the role and interaction of 20(S)-Rg3 and miR-210-3p in ESCC cells were investigated. We performed a series of functional experiments to validate that 20(S)-Rg3 notably restrained ESCC cell proliferation and migration while promoting cell apoptosis. Besides, miR-210-3p was found to be lowly expressed in ESCC cells. Overexpressing miR-210-3p suppressed the malignant behaviors of ESCC cells. More importantly, 20(S)-Rg3 could upregulate miR-210-3p expression in ESCC cells. MiR-210-3p knockdown offset the inhibitive impacts of 20(S)-Rg3 treatment on ESCC cell growth and migration. Furthermore, through luciferase reporter assay, beta-1,4-galactosyltransferase 5 (B4GALT5) was certified to be targeted by miR-210-3p. B4GALT5 upregulation neutralized the suppressive function of 20(S)-Rg3 on ESCC progression. Overall, 20(S)-Rg3 attenuated malignant behaviors of ESCC cells by modulating miR-210-3p/B4GALT5 axis, indicating 20(S)-Rg3 has therapeutic potential for ESCC.
Collapse
Affiliation(s)
- Min Jiang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China.
| |
Collapse
|
2
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Liu X, Du J, Sun J, Wang H, An J, Li Y, Hu Y, Cheng S, Feng H, Tian H, Mei X, Qiu Y, Wu C. Borneol-Functionalized Macrophage Membrane-Encapsulated Mesoporous Selenium Nanoparticles Loaded with Resveratrol for the Treatment of Spinal Cord Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63170-63185. [PMID: 39511843 DOI: 10.1021/acsami.4c12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Spinal cord injury (SCI) is a serious neurological disease that can result in paralysis. After SCI occurs, the blood-spinal cord barrier (BSCB) is disrupted, and permeability is transiently elevated. However, the permeability of the BSCB returns to normal over time, which prevents many drugs from being used in subsequent treatments. In this study, we designed a borneol-functionalized macrophage membrane encapsulating mesoporous selenium nanoparticles loaded with resveratrol (MSe-Res-BMMs) for SCI treatment. In vivo animal experiments and in vitro cell experiments demonstrated that MSe-Res-BMMs were able to protect neurons from ferroptosis by reducing ROS levels and increasing glutathione peroxidase-4 (GPx-4) activity. In addition, this treatment also reduced ROS-induced inflammation and apoptosis by decreasing the expression of inflammatory factor IL-1β and apoptotic factor Cleaved Caspase-3 at the site of injury. Therefore, MSe-Res-BMMs are expected to provide new therapeutic options for SCI treatment.
Collapse
Affiliation(s)
- Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jiaqun Du
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Junpeng Sun
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Han Wang
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yingqiao Li
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yu Hu
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Shuai Cheng
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Huicong Feng
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - He Tian
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xifan Mei
- Liaoning Vocational College of Medicine, Shenyang, Liaoning 110101, China
| | - Yang Qiu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| |
Collapse
|
4
|
Jiménez R, Constantinescu A, Yazir M, Alfonso-Triguero P, Pequerul R, Parés X, Pérez-Alea M, Candiota AP, Farrés J, Lorenzo J. Targeting Retinaldehyde Dehydrogenases to Enhance Temozolomide Therapy in Glioblastoma. Int J Mol Sci 2024; 25:11512. [PMID: 39519068 PMCID: PMC11546810 DOI: 10.3390/ijms252111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma (GB) is an aggressive malignant central nervous system tumor that is currently incurable. One of the main pitfalls of GB treatment is resistance to the chemotherapeutic standard of care, temozolomide (TMZ). The role of aldehyde dehydrogenases (ALDHs) in the glioma stem cell (GSC) subpopulation has been related to chemoresistance. ALDHs take part in processes such as cell proliferation, differentiation, invasiveness or metastasis and have been studied as pharmacological targets in cancer treatment. In the present work, three novel α,β-acetylenic amino thiolester compounds, with demonstrated efficacy as ALDH inhibitors, were tested in vitro on a panel of six human GB cell lines and one murine GB cell line. Firstly, the expression of the ALDH1A isoforms was assessed, and then inhibitors were tested for their cytotoxicity and their ability to inhibit cellular ALDH activity. Drug combination assays with TMZ were performed, as well as an assessment of the cell death mechanism and generation of ROS. A knockout of several ALDH genes was carried out in one of the human GB cell lines, allowing us to discuss their role in cell proliferation, migration capacity and resistance to treatment. Our results strongly suggest that ALDH inhibitors could be an interesting approach in the treatment of GB, with EC50 values in the order of micromolar, decreasing ALDH activity in GB cell lines to 40-50%.
Collapse
Affiliation(s)
- Rafael Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Andrada Constantinescu
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Muhube Yazir
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Paula Alfonso-Triguero
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, E-08193 Bellaterra, Spain
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
| | - Mileidys Pérez-Alea
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Ana Paula Candiota
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, E-08913 Bellaterra, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
| | - Julia Lorenzo
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, E-08913 Bellaterra, Spain
| |
Collapse
|
5
|
Yu K, Tian Q, Feng S, Zhang Y, Cheng Z, Li M, Zhu H, He J, Li M, Xiong X. Integration analysis of cell division cycle-associated family genes revealed potential mechanisms of gliomagenesis and constructed an artificial intelligence-driven prognostic signature. Cell Signal 2024; 119:111168. [PMID: 38599441 DOI: 10.1016/j.cellsig.2024.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Cell division cycle-associated (CDCA) gene family members are essential cell proliferation regulators and play critical roles in various cancers. However, the function of the CDCA family genes in gliomas remains unclear. This study aims to elucidate the role of CDCA family members in gliomas using in vitro and in vivo experiments and bioinformatic analyses. We included eight glioma cohorts in this study. An unsupervised clustering algorithm was used to identify novel CDCA gene family clusters. Then, we utilized multi-omics data to elucidate the prognostic disparities, biological functionalities, genomic alterations, and immune microenvironment among glioma patients. Subsequently, the scRNA-seq analysis and spatial transcriptomic sequencing analysis were carried out to explore the expression distribution of CDCA2 in glioma samples. In vivo and in vitro experiments were used to investigate the effects of CDCA2 on the viability, migration, and invasion of glioma cells. Finally, based on ten machine-learning algorithms, we constructed an artificial intelligence-driven CDCA gene family signature called the machine learning-based CDCA gene family score (MLCS). Our results suggested that patients with the higher expression levels of CDCA family genes had a worse prognosis, more activated RAS signaling pathways, and more activated immunosuppressive microenvironments. CDCA2 knockdown inhibited the proliferation, migration, and invasion of glioma cells. In addition, the MLCS had robust and favorable prognostic predictive ability and could predict the response to immunotherapy and chemotherapy drug sensitivity.
Collapse
Affiliation(s)
- Kai Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Ziqi Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Mingyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jianying He
- Department of Orthopedics, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
6
|
Szulc A, Woźniak M. Targeting Pivotal Hallmarks of Cancer for Enhanced Therapeutic Strategies in Triple-Negative Breast Cancer Treatment-In Vitro, In Vivo and Clinical Trials Literature Review. Cancers (Basel) 2024; 16:1483. [PMID: 38672570 PMCID: PMC11047913 DOI: 10.3390/cancers16081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This literature review provides a comprehensive overview of triple-negative breast cancer (TNBC) and explores innovative targeted therapies focused on specific hallmarks of cancer cells, aiming to revolutionize breast cancer treatment. TNBC, characterized by its lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents distinct features, categorizing these invasive breast tumors into various phenotypes delineated by key elements in molecular assays. This article delves into the latest advancements in therapeutic strategies targeting components of the tumor microenvironment and pivotal hallmarks of cancer: deregulating cellular metabolism and the Warburg effect, acidosis and hypoxia, the ability to metastasize and evade the immune system, aiming to enhance treatment efficacy while mitigating systemic toxicity. Insights from in vitro and in vivo studies and clinical trials underscore the promising effectiveness and elucidate the mechanisms of action of these novel therapeutic interventions for TNBC, particularly in cases refractory to conventional treatments. The integration of targeted therapies tailored to the molecular characteristics of TNBC holds significant potential for optimizing clinical outcomes and addressing the pressing need for more effective treatment options for this aggressive subtype of breast cancer.
Collapse
Affiliation(s)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
7
|
Dai Y, Zhang H, Feng S, Guo C, Tian W, Sun Y, Zhang Y. SMG9 is a novel prognostic-related biomarker in glioma correlating with ferroptosis and immune infiltrates. Heliyon 2024; 10:e25716. [PMID: 38384572 PMCID: PMC10878878 DOI: 10.1016/j.heliyon.2024.e25716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Background Glioma is the most frequent type of malignancy that may damage the brain with high morbidity and mortality rates and patients' prognoses are still dismal. Ferroptosis, a newly uncovered mode of programmed cell death, may be triggered to destroy glioma cells. Nevertheless, the significance of ferroptosis-related genes (FRGs) in predicting prognosis in glioma individuals is still a mystery. Methods The CGGA (The Chinese Glioma Atlas), GEO (Gene Expression Omnibus), and TCGA (The Cancer Genome Atlas) databases were all searched to obtain the glioma expression dataset. First, TCGA was searched to identify differentially expressed genes (DEGs). This was followed by a machine learning algorithm-based screening of the glioma's most relevant genes. Additionally, these genes were subjected to Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) functional enrichment analyses. The chosen biological markers were then submitted to single-cell, immune function, and gene set enrichment analysis (GSEA). In addition, we performed functional enrichment and Mfuzz expression profile clustering on the most promising biological markers to delve deeper into their regulatory mechanisms and assess their clinical diagnostic capacities. Results We identified 4444 DEGs via differential analysis and 564 FRGs from the FerrDb database. The two were subjected to intersection analysis, which led to the discovery of 143 overlapping genes. After that, glioma biological markers were identified in fourteen genes by the use of machine learning methods. In terms of its use for clinical diagnosis, SMG9 stands out as the most significant among these biomarkers. Conclusion In light of these findings, the identification of SMG9 as a new biological marker has the potential to provide information on the mechanism of action and the effect of the immune milieu in glioma. The promise of SMG9 in glioma prognosis prediction warrants more study.
Collapse
Affiliation(s)
- Yong Dai
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, No. 666 Shengli Road, Nantong 226001, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huan Zhang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, No. 666 Shengli Road, Nantong 226001, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sujuan Feng
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, No. 666 Shengli Road, Nantong 226001, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao Guo
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, No. 666 Shengli Road, Nantong 226001, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenjie Tian
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, No. 666 Shengli Road, Nantong 226001, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yimei Sun
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, No. 666 Shengli Road, Nantong 226001, China
| | - Yi Zhang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, No. 666 Shengli Road, Nantong 226001, China
| |
Collapse
|
8
|
Li L, Wang L, Zhang L. Therapeutic Potential of Natural Compounds from Herbs and Nutraceuticals in Alleviating Neurological Disorders: Targeting the Wnt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2411-2433. [PMID: 38284360 DOI: 10.1021/acs.jafc.3c07536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
As an important signaling pathway in multicellular eukaryotes, the Wnt signaling pathway participates in a variety of physiological processes. Recent studies have confirmed that the Wnt signaling pathway plays an important role in neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. The regulation of Wnt signaling by natural compounds in herbal medicines and nutraceuticals has emerged as a potential strategy for the development of new drugs for neurological disorders. Purpose: The aim of this review is to evaluate the latest research results on the efficacy of natural compounds derived from herbs and nutraceuticals in the prevention and treatment of neurological disorders by regulating the Wnt pathway in vivo and in vitro. A manual and electronic search was performed for English articles available from PubMed, Web of Science, and ScienceDirect from the January 2010 to February 2023. Keywords used for the search engines were "natural products,″ "plant derived products,″ "Wnt+ clinical trials,″ and "Wnt+,″ and/or paired with "natural products″/″plant derived products", and "neurological disorders." A total of 22 articles were enrolled in this review, and a variety of natural compounds from herbal medicine and nutritional foods have been shown to exert therapeutic effects on neurological disorders through the Wnt pathway, including curcumin, resveratrol, and querctrin, etc. These natural products possess antioxidant, anti-inflammatory, and angiogenic properties, confer neurovascular unit and blood-brain barrier integrity protection, and affect neural stem cell differentiation, synaptic formation, and neurogenesis, to play a therapeutic role in neurological disorders. In various in vivo and in vitro studies and clinical trials, these natural compounds have been shown to be safe and tolerable with few adverse effects. Natural compounds may serve a therapeutic role in neurological disorders by regulating the Wnt pathway. This summary of the research progress of natural compounds targeting the Wnt pathway may provide new insights for the treatment of neurological disorders and potential targets for the development of new drugs.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning PR China
| |
Collapse
|
9
|
Feng S, Zhang Y, Zhu H, Jian Z, Zeng Z, Ye Y, Li Y, Smerin D, Zhang X, Zou N, Gu L, Xiong X. Cuproptosis facilitates immune activation but promotes immune escape, and a machine learning-based cuproptosis-related signature is identified for predicting prognosis and immunotherapy response of gliomas. CNS Neurosci Ther 2024; 30:e14380. [PMID: 37515314 PMCID: PMC10848101 DOI: 10.1111/cns.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
AIMS Cell death, except for cuproptosis, in gliomas has been extensively studied, providing novel targets for immunotherapy by reshaping the tumor immune microenvironment through multiple mechanisms. This study aimed to explore the effect of cuproptosis on the immune microenvironment and its predictive power in prognosis and immunotherapy response. METHODS Eight glioma cohorts were included in this study. We employed the unsupervised clustering algorithm to identify novel cuproptosis clusters and described their immune microenvironmental characteristics, mutation landscape, and altered signaling pathways. We verified the correlation among FDX1, SLC31A1, and macrophage infiltration in 56 glioma tissues. Next, based on multicenter cohorts and 10 machine learning algorithms, we constructed an artificial intelligence-driven cuproptosis-related signature named CuproScore. RESULTS Our findings suggested that glioma patients with high levels of cuproptosis had a worse prognosis owing to immunosuppression caused by unique immune escape mechanisms. Meanwhile, we experimentally validated the positive association between cuproptosis and macrophages and its tumor-promoting mechanism in vitro. Furthermore, our CuproScore exhibited powerful and robust prognostic predictive ability. It was also capable of predicting response to immunotherapy and chemotherapy drug sensitivity. CONCLUSIONS Cuproptosis facilitates immune activation but promotes immune escape. The CuproScore could predict prognosis and immunotherapy response in gliomas.
Collapse
Affiliation(s)
- Shi Feng
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yonggang Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Zhu
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhihong Jian
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi Zeng
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yingze Ye
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yina Li
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Daniel Smerin
- Department of NeurosurgeryUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Xu Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ning Zou
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lijuan Gu
- Department of AnesthesiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
10
|
Lin J, Huang G, Zeng Q, Zhang R, Lin Y, Li Y, Huang B, Pan H. IGFBP5, as a Prognostic Indicator Promotes Tumor Progression and Correlates with Immune Microenvironment in Glioma. J Cancer 2024; 15:232-250. [PMID: 38164271 PMCID: PMC10751672 DOI: 10.7150/jca.87733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Insulin-like growth factor binding protein 5 (IGFBP5) is highly expressed in multiple human cancers, including glioma. Despite this, it remains unclear what role it plays in glioma. The aim of the present study was to analyze whether IGFBP5 could be used as a predictor of prognosis and immune infiltration in glioma. Methods: Glioma patients' clinical information was collected from the Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), Rembrandt, and Gravendeel databases. The diagnostic and prognostic roles of IGFBP5 were assessed by the Kaplan-Meier survival curves, diagnostic receiver operating characteristic (ROC) curves, nomogram model, Cox regression analysis and Enrichment analysis by R software. Moreover, the correlation between IGFBP5 expression and immune cell infiltration, and immune checkpoint genes was conducted. Immunohistochemistry staining, CCK8, colony formation, scratch and transwell assays and western blot were used to interrogate the expression and function of IGFBP5 in glioma. Results: IGFBP5 levels were obviously increased in glioma with higher malignancy and predicted poor outcomes by Univariate and multivariate Cox analysis. The biological function analysis revealed that IGFBP5 correlated closely with immune signatures. Moreover, IGFBP5 expression was associated with tumor infiltration of B cells, T cells, macrophages, and NK cells. IGFBP5 affected glioma cell proliferation, migration, and invasion probably involved in the epithelial-to-mesenchymal transition (EMT) and Hippo-YAP signaling pathway. Further study showed that IGFBP5 induced the expression of PD-L1 and CXCR4. Conclusions: IGFBP5 as an oncogene is a useful biomarker of prognosis and correlates with progression and immune infiltration in glioma.
Collapse
Affiliation(s)
- Jiediao Lin
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Guowei Huang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qianru Zeng
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Rendong Zhang
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- The Breast Center, Surgical Oncology Session No. 1, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yun Lin
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yaochen Li
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Baohua Huang
- Department of Pathology, Shantou Central Hospital, Shantou, Guangdong 515041, China
| | - Hongchao Pan
- Central laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
11
|
Wu L, Bai L, Dai W, Wu Y, Xi P, Zhang J, Zheng L. Ginsenoside Rg3: A Review of its Anticancer Mechanisms and Potential Therapeutic Applications. Curr Top Med Chem 2024; 24:869-884. [PMID: 38441023 DOI: 10.2174/0115680266283661240226052054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) has a long history of treating various diseases and is increasingly being recognized as a complementary therapy for cancer. A promising natural compound extracted from the Chinese herb ginseng is ginsenoside Rg3, which has demonstrated significant anticancer effects. It has been tested in a variety of cancers and tumors and has proven to be effective in suppressing cancer. OBJECTIVES This work covers various aspects of the role of ginsenoside Rg3 in cancer treatment, including its biological functions, key pathways, epigenetics, and potential for combination therapies, all of which have been extensively researched and elucidated. The study aims to provide a reference for future research on ginsenoside Rg3 as an anticancer agent and a support for the potential application of ginsenoside Rg3 in cancer treatment.
Collapse
Affiliation(s)
- Lei Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Bai
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenshu Dai
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontier Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yaping Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pengjun Xi
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jie Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lily Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Bao H, Ai S, Wang G, Yi L, Lai J, Wang S, Lv Z, Li C, Liu Q, Zhao X, Wu C, Liu C, Mi S, Sun X, Hao C, Liang P. Intraoperative radiotherapy in recurrent IDH-wildtype glioblastoma with gross total resection: A single-center retrospective study. Clin Neurol Neurosurg 2024; 236:108103. [PMID: 38199118 DOI: 10.1016/j.clineuro.2023.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Isocitrate dehydrogenase-wildtype (IDHwt) glioblastoma (GBM) is one of the most aggressive primary brain tumors. The recurrence of GBM is almost inevitable. As an adjuvant option to surgery, intraoperative radiotherapy (IORT) is gaining increasing attention in the treatment of glioma. This study is aimed to evaluate the therapeutic efficacy of IORT on recurrent IDHwt GBM. METHODS In total, 34 recurrent IDHwt GBM patients who received a second surgery were included in the analysis (17 in the surgery group and 17 in the surgery + IORT group). RESULTS The progression-free survival and overall survival after the second surgery were defined as PFS2 and OS2, respectively. The median PFS2 was 7.3 months (95% CI: 6.3-10.5) and 10.6 months (95% CI: 9.3-14.6) for those patients who received surgery and surgery + IORT, respectively. Patients in the surgery + IORT group also had a longer OS2 (12.8 months, 95% CI: 11.4-17.2) than those in the surgery group (9.3 months, 95% CI: 8.9-12.9). The Kaplan-Meier survival curves, analyzed by log-rank test, revealed a statistically significant difference in PFS2 and OS2 between both groups, suggesting that IORT plays an active role in the observed benefits for PFS2 and OS2. The effects of IORT on PFS2 and OS2 were further confirmed by multivariate Cox hazards regression analysis. Two patients in the surgery group developed distant glioma metastases, and no radiation-related complications were observed in the IORT group. CONCLUSIONS This study suggests that low-dose IORT may improve the prognosis of recurrent IDHwt GBM patients. Future prospective large-scale studies are needed to validate the efficacy and safety of IORT.
Collapse
Affiliation(s)
- Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siqi Ai
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China; Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Wang
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Liye Yi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiacheng Lai
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shuai Wang
- Department of Imaging Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Zhonghua Lv
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Qing Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xinyu Zhao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chou Wu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chang Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shan Mi
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xiaoyang Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chuncheng Hao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
13
|
Bai P, Fan T, Wang X, Zhao L, Zhong R, Sun G. Modulating MGMT expression through interfering with cell signaling pathways. Biochem Pharmacol 2023; 215:115726. [PMID: 37524206 DOI: 10.1016/j.bcp.2023.115726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Guanine O6-alkylating agents are widely used as first-line chemotherapeutic drugs due to their ability to induce cytotoxic DNA damage. However, a major hurdle in their effectiveness is the emergence of chemoresistance, largely attributed to the DNA repair pathway mediated by O6-methylguanine-DNA methyltransferase (MGMT). MGMT plays an important role in removing the alkyl groups from lethal O6-alkylguanine (O6-AlkylG) adducts formed by chemotherapeutic alkylating agents. By doing so, MGMT enables tumor cells to evade apoptosis and develop drug resistance toward DNA alkylating agents. Although covalent inhibitors of MGMT, such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl)guanine (O6-4-BTG or lomeguatrib), have been explored in clinical settings, their utility is limited due to severe delayed hematological toxicity observed in most patients when combined with alkylating agents. Therefore, there is an urgent need to identify new targets and unravel the underlying molecular mechanisms and to develop alternative therapeutic strategies that can overcome MGMT-mediated tumor resistance. In this context, the regulation of MGMT expression via interfering the specific cell signaling pathways (e.g., Wnt/β-catenin, NF-κB, Hedgehog, PI3K/AKT/mTOR, JAK/STAT) emerges as a promising strategy for overcoming tumor resistance, and ultimately enhancing the efficacy of DNA alkylating agents in chemotherapy.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
14
|
Lin Y, Wang YN, Zhang GH, Chen G, Yang QH, Hao B, Yang SC. Reconstruction of engineered yeast factory for high yield production of ginsenosides Rg3 and Rd. Front Microbiol 2023; 14:1191102. [PMID: 37405161 PMCID: PMC10315489 DOI: 10.3389/fmicb.2023.1191102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Panax notoginseng is one of the most valuable traditional Chinese herbs. The main active ingredients, dammarane-type ginsenosides, show multiple pharmacological activities. Recently, the key UDP-dependent glycosyltransferases (UGTs) involved in the biosynthesis of common ginsenosides have been widely studied. However, only a few UGTs that catalyze ginsenoside formation have been reported. This study further investigated the new catalytic function of 10 characterized UGTs from the public database. PnUGT31(PnUGT94B2) and PnUGT53 (PnUGT71B8)exhibited promiscuous sugar-donor specificity of UDP-glucose and UDP-xylose, which could catalyze the glycosylation of C20-OH sites and elongation of the sugar chain at the C3 and/or C20 sites. We further analyzed the expression patterns in P. notoginseng and predicted the catalytic mechanisms of PnUGT31 and PnUGT53 using molecular docking simulations. Moreover, different gene modules were built to increase the yield of ginsenosides in engineered yeast. The metabolic flow of the proginsenediol (PPD) synthetic pathway was enhanced by LPPDS gene modules based on the engineered strain. The resulting yeast was constructed to produce 1.72 g/L PPD in a shaking flask, but cell growth was significantly inhibited. EGH and LKG gene modules were constructed to achieve high-level production of dammarane-type ginsenosides. The production of G-Rg3 controlled by LKG modules increased 3.84 times (254.07 mg/ L), whereas the G-Rd titer reached 56.68 mg/L after 96 h in shaking flask culture under the control of all modules, both of which yielded the highest values for known microbes.
Collapse
Affiliation(s)
- Yuan Lin
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yi Na Wang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guang Hui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Geng Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qing Hui Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bing Hao
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Sheng Chao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasms Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| |
Collapse
|
15
|
Xing Y, He M, Su Z, Yasinjan F, Liu J, Wang H, Cui J, Hong X. Emerging trends and research foci of epithelial-mesenchymal transition in gliomas: A scientometric analysis and review. Front Oncol 2022; 12:1015236. [PMID: 36338770 PMCID: PMC9632964 DOI: 10.3389/fonc.2022.1015236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is a key factor in the invasion and migration of glioma cells, and the study of EMT in gliomas has become a hot topic over the past decade. Scientometric analysis is gaining more attention since it can obtain hot topics and emerging trends in a research field. This article analyzed the research related to EMT in gliomas for the first time, including descriptions of research situations, evaluations of research foci, and predictions of emerging trends. METHODS We searched the topic-related original articles from January 2012 to December 2021 in the Web of Science Core Collection (WoSCC) by using a specific strategy, and a total of 1,217 publications were obtained. The WoS platform, VOS viewer, and CiteSpace were used to analyze the annual distribution of publications and citations, authors and density of keywords, and other analyses including countries, institutions, references, clustering, burst analysis, and the timeline view of keywords. RESULTS Scientometric analysis identified that the study of EMT in gliomas has developed fast and received continuous attention in the last decade. Based on the results of data analysis, most publications on the topic came from China, and the United States had the highest betweenness centrality. The top 10 co-cited references revealed the landmark documents that had greatly promoted the development of this field. The major focus is on the cellular and molecular mechanisms of EMT in gliomas, and the therapy related to EMT target and non-coding RNAs has been developing fast in recent years. CONCLUSIONS This study revealed the intimate connections between EMT and gliomas, and the complex mechanisms regulating EMT in gliomas had been studied widely in the last decade. Exploring the deep mechanisms of EMT in gliomas is the foundation of the targeted inhibitions, which can promote the development of therapies for gliomas.
Collapse
Affiliation(s)
- Yang Xing
- Department of Neurosurgery, The First Hospital of Jilin University, Chang Chun, China
| | - Minghua He
- College of Computer Science and Technology, Jilin University, Chang Chun, China
| | - Zhenjin Su
- Department of Neurosurgery, The First Hospital of Jilin University, Chang Chun, China
| | - Feroza Yasinjan
- Department of Neurosurgery, The First Hospital of Jilin University, Chang Chun, China
| | - Jiankai Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Chang Chun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Chang Chun, China
| | - Jiayue Cui
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Chang Chun, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Hospital of Jilin University, Chang Chun, China
| |
Collapse
|
16
|
Ginsenosides Rg1 and CK Control Temozolomide Resistance in Glioblastoma Cells by Modulating Cholesterol Efflux and Lipid Raft Distribution. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1897508. [PMID: 36276866 PMCID: PMC9583863 DOI: 10.1155/2022/1897508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 11/07/2022]
Abstract
Background Cholesterol efflux and lipid raft redistribution contribute to attenuating temozolomide resistance of glioblastoma. Ginsenosides are demonstrated to modify cholesterol metabolism and lipid raft distribution, and the brain distribution and central nervous effects of whose isoforms Rb1, Rg1, Rg3, and CK have been identified. This study aimed to reveal the role of Rb1, Rg1, Rg3, and CK in the drug resistance of glioblastoma. Methods The effects of ginsenosides on cholesterol metabolism in temozolomide-resistant U251 glioblastoma cells were evaluated by cholesterol content and efflux assay, confocal laser, qRT-PCR, and Western blot. The roles of cholesterol and ginsenosides in temozolomide resistance were studied by CCK-8, flow cytometry, and Western blot, and the mechanism of ginsenosides attenuating resistance was confirmed by inhibitors. Results Cholesterol protected the survival of resistant U251 cells from temozolomide stress and upregulated multidrug resistance protein (MDR)1, which localizes in lipid rafts. Resistant cells tended to store cholesterol intracellularly, with limited cholesterol efflux and LXRα expression to maintain the distribution of lipid rafts. Ginsenosides Rb1, Rg1, Rg3, and CK reduced intracellular cholesterol and promoted cholesterol efflux in resistant cells, causing lipid rafts to accumulate in specific regions of the membrane. Rg1 and CK also upregulated LXRα expression and increased the cytotoxicity of temozolomide in the presence of cholesterol. We further found that cholesterol efflux induction, lipid raft redistribution, and temozolomide sensitization by Rg1 and CK were induced by stimulating LXRα. Conclusions Ginsenosides Rg1 and CK controlled temozolomide resistance in glioblastoma cells by regulating cholesterol metabolism, which are potential synergists for temozolomide therapy.
Collapse
|
17
|
Ge X, Xu M, Cheng T, Hu N, Sun P, Lu B, Wang Z, Li J. TP53I13 promotes metastasis in glioma via macrophages, neutrophils, and fibroblasts and is a potential prognostic biomarker. Front Immunol 2022; 13:974346. [PMID: 36275718 PMCID: PMC9585303 DOI: 10.3389/fimmu.2022.974346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background TP53I13 is a protein coding tumor suppression gene encoded by the tumor protein p53. Overexpression of TP53I13 impedes tumor cell proliferation. Nevertheless, TP53I13 role and expression in the emergence and progression of glioma (low-grade glioma and glioblastoma) are yet to be identified. Thus, we aim to use comprehensive bioinformatics analyses to investigate TP53I13 and its prognostic value in gliomas. Methods Multiple databases were consulted to evaluate and assess the expression of TP53I13, such as the Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), GeneMANIA, and Gene Expression Profiling Interactive. TP53I13 expression was further explored using immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC). Through Gene Set Enrichment Analysis (GSEA), the biological functions of TP53I13 and metastatic processes associated with it were studied. Results The expression of TP53I13 was higher in tumor samples compared to normal samples. In samples retrieved from the TCGA and CGGA databases, high TP53I13 expression was associated with poor survival outcomes. The analysis of multivariate Cox showed that TP53I13 might be an independent prognostic marker of glioma. It was also found that increased expression of TP53I13 was significantly correlated with PRS type, status, 1p/19q codeletion status, IDH mutation status, chemotherapy, age, and tumor grade. According to CIBERSORT (Cell-type Identification by Estimating Relative Subsets of RNA Transcript), the expression of TP53I13 correlates with macrophages, neutrophils, and dendritic cells. GSEA shows a close correlation between TP53I13 and p53 signaling pathways, DNA replication, and the pentose phosphate pathway. Conclusion Our results reveal a close correlation between TP53I13 and gliomas. Further, TP53I13 expression could affect the survival outcomes in glioma patients. In addition, TP53I13 was an independent marker that was crucial in regulating the infiltration of immune cells into tumors. As a result of these findings, TP53I13 might represent a new biomarker of immune infiltration and prognosis in patients with gliomas.
Collapse
Affiliation(s)
- Xinqi Ge
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Manyu Xu
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Tong Cheng
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Nan Hu
- Medical School of Nantong University, Nantong, China
| | - Pingping Sun
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Bing Lu
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Ziheng Wang
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- *Correspondence: Jian Li, ; Ziheng Wang,
| | - Jian Li
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- *Correspondence: Jian Li, ; Ziheng Wang,
| |
Collapse
|
18
|
Zhu Y, Wang A, Zhang S, Kim J, Xia J, Zhang F, Wang D, Wang Q, Wang J. Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells. J Adv Res 2022:S2090-1232(22)00209-0. [PMID: 36167294 DOI: 10.1016/j.jare.2022.09.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Inherent or acquired resistance to paclitaxel (PTX) is a pivotal challenge for chemotherapy treatment of multidrug-resistant (MDR) breast cancer. Although various targeted drug-delivery systems, including nanoparticles and liposomes, are effective for MDR cancer treatment, their efficacy is restricted by immunosuppressive tumor microenvironment (TME). METHODS Ginsenosides Rg3 was used to formulate unique Rg3-based liposomes loaded with PTX to establish Rg3-PTX-LPs, which were prepared by the thin-film hydration method. The stability of the Rg3-PTX-LPs was evaluated by particle size analysis through dynamic light scattering. The active targeting effect of Rg3-based liposomes was examined in an MCF-7/T xenograft model by an in a vivo imaging system. To evaluate the antitumor activity and mechanism of Rg3-PTX-LP, MTT, apoptosis assays, TAM regulation, and TME remodeling were performed in MCF-7/T cells in vitro and in vivo. RESULTS Rg3-PTX-LPs could specifically distribute to MCF7/T cancer cells and TME simultaneously, mainly through the recognition of GLUT-1. The drug resistance reversing capability and in vivo antitumor effect of Rg3-PTX-LPs were significantly improved compared with conventional cholesterol liposomes. The TME remodeling mechanisms of Rg3-PTX-LPs included inhibiting IL-6/STAT3/p-STAT3 pathway activation to repolarize protumor M2 macrophages to antitumor M1 phenotype, suppressing myeloid-derived suppressor cells (MDSCs), decreasing tumor-associated fibroblasts (TAFs) and collagen fibers in TME, and promoting apoptosis of tumor cells. Hence, through the dual effects of targeting tumor cells and TME remodeling, Rg3-PTX-LPs achieved a high tumor inhibition rate of 90.3%. CONCLUSION Our multifunctional Rg3-based liposome developed in the present study offered a promising strategy for rescuing the drug resistance tumor treatment.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, PR China; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Anni Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, PR China
| | - Shuya Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, PR China
| | - Jisu Kim
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, PR China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, PR China
| | - Fengxue Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dan Wang
- Xiamen Ginposome Pharmaceutical Co., Ltd., Xiamen 361026, People's Republic of China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, PR China; Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai 200040, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
19
|
Ng CX, Affendi MM, Chong PP, Lee SH. The Potential of Plant-Derived Extracts and Compounds to Augment Anticancer Effects of Chemotherapeutic Drugs. Nutr Cancer 2022; 74:3058-3076. [PMID: 35675271 DOI: 10.1080/01635581.2022.2069274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plant extracts comprise a complex mixture of natural compounds with diverse biological activities including anticancer activities. This has made the use of plant extracts a trending strategy in cancer treatment. In addition, plants' active constituents such as polyphenols could confer protective effects on normal cells against damage by free radicals as well as lessen the toxicity of chemotherapeutic drugs. Recently, many emerging studies revealed the combinatory uses of plant extracts and individual therapeutic compounds that could be a promising panacea in hampering multiple signaling pathways involved in cancer development and progression. Besides enhancing the therapeutic efficacy, this has also been proven to reduce the dosage of chemotherapeutic drugs used, and hence overcome multiple drug resistance and minimize treatment side effects. Notably, combined use of plant extracts with chemotherapeutics drugs was shown to enhance anticancer effects through modulating various signaling pathways, such as P13K/AKT, NF-κB, JNK, ERK, WNT/β-catenin, and many more. Hence, this review aims to comprehensively summarize both In Vitro and In Vivo mechanisms of actions of well-studied plant extracts, such as Ganoderma Lucidum, Korean red ginseng, Garcinia sp., curcumin, and luteolin extracts in augmenting anticancer properties of the conventional chemotherapeutic drugs from an extensive literature search of recent publications.
Collapse
Affiliation(s)
- Chu Xin Ng
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Muzaira Mazrul Affendi
- School of Health Sciences, Faculty of Medicine and Health Sciences, International Medical University, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| |
Collapse
|
20
|
El-Banna MA, Hendawy OM, El-Nekeety AA, Abdel-Wahhab MA. Efficacy of ginsenoside Rg3 nanoparticles against Ehrlich solid tumor growth in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43814-43825. [PMID: 35118592 DOI: 10.1007/s11356-022-19019-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Solid tumors are fairly common and face many clinical difficulties since they are hardly surgically resectable and broadly do not respond to radiation and chemotherapy. The current study aimed to fabricate ginsenoside Rg3 nanoparticles (Rg3-NPs) and evaluate their antitumor effect against Ehrlich solid tumors (EST) in mice. Rg3-NPs were fabricated using whey protein isolates (WPI), maltodextrin (MD), and gum Arabic (GA). EST was developed by the injection of mice with Ehrlich ascites cells (2.5 × 106). The mice were divided into a control group, EST group, and the EST groups that were treated orally 2 weeks for with normal Rg3 (3 mg/kg b.w.), Rg3-NPs at a low dose (3 mg/kg b.w.), and Rg3-NPs at a high dose (6 mg/kg b.w.). Serum and solid tumors were collected for different assays. The results revealed that synthesized Rg3-NPs showed a spherical shape with an average particle size of 20 nm and zeta potential of -5.58 mV. The in vivo study revealed that EST mice showed a significant increase in AFP, Casp3, TNF-α, MMP-9, VEGF, MDA, and DNA damage accompanied by a significant decrease in SOD and GPx. Treatment with Rg3 or Rg3-NPs decreased the tumor weight and size and induced a significant improvement in all the biochemical parameters. Rg3-NPs were more effective than Rg3, and the improvement was dose-dependent. It could be concluded that fabrication of Rg3-NPs enhanced the protective effect against EST development which may be due to the synergistic effect of Rg3 and MD, GA, and WPI.
Collapse
Affiliation(s)
- Mona A El-Banna
- Medical Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Omnia M Hendawy
- Clinical Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
21
|
Yang C, Mai Z, Liu C, Yin S, Cai Y, Xia C. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113513. [PMID: 35684449 PMCID: PMC9181879 DOI: 10.3390/molecules27113513] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
Abstract
Drug resistance is still an obstacle in cancer therapy, leading to the failure of tumor treatment. The emergence of tumor drug resistance has always been a main concern of oncologists. Therefore, overcoming tumor drug resistance and looking for new strategies for tumor treatment is a major focus in the field of tumor research. Natural products serve as effective substances against drug resistance because of their diverse chemical structures and pharmacological effects. We reviewed the signaling pathways involved in the development of tumor drug resistance, including Epidermal growth factor receptor (EGFR), Renin-angiotensin system (Ras), Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), Wnt, Notch, Transforming growth factor-beta (TGF-β), and their specific signaling pathway inhibitors derived from natural products. This can provide new ideas for the prevention of drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People’s Hospital of Shantou University, Shaoguan 512027, China;
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- Correspondence: (Y.C.); (C.X.)
| | - Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Y.C.); (C.X.)
| |
Collapse
|
22
|
Fei YQ, Shi RT, Zhou YF, Wu JZ, Song Z. Mannose inhibits proliferation and promotes apoptosis to enhance sensitivity of glioma cells to temozolomide through Wnt/β-catenin signaling pathway. Neurochem Int 2022; 157:105348. [DOI: 10.1016/j.neuint.2022.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|
23
|
Jin L, Kiang KMY, Cheng SY, Leung GKK. Pharmacological inhibition of serine synthesis enhances temozolomide efficacy by decreasing O 6-methylguanine DNA methyltransferase (MGMT) expression and reactive oxygen species (ROS)-mediated DNA damage in glioblastoma. J Transl Med 2022; 102:194-203. [PMID: 34625658 DOI: 10.1038/s41374-021-00666-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant primary tumor in the central nervous system of adults. Temozolomide (TMZ), an alkylating agent, is the first-line chemotherapeutic agent for GBM patients. However, its efficacy is often limited by innate or acquired chemoresistance. Cancer cells can rewire their metabolic programming to support rapid growth and sustain cell survival against chemotherapies. An example is the de novo serine synthesis pathway (SSP), one of the main branches from glycolysis that is highly activated in multiple cancers in promoting cancer progression and inducing chemotherapy resistance. However, the roles of SSP in TMZ therapy for GBM patients remain unexplored. In this study, we employed NCT503, a highly selective inhibitor of phosphoglycerate dehydrogenase (PHGDH, the first rate-limiting enzyme of SSP), to study whether inhibition of SSP may enhance TMZ efficacy in MGMT-positive GBMs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flowcytometry and colony formation assays demonstrated that NCT503 worked synergistically with TMZ in suppressing GBM cell growth and inducing apoptosis in T98G and U118 cells in vitro. U118 and patient-derived GBM subcutaneous xenograft models showed that combined NCT503 and TMZ treatment inhibited GBM growth and promoted apoptosis more significantly than would each treatment alone in vivo. Mechanistically, we found that NCT503 treatment decreased MGMT expression possibly by modulating the Wnt/β-catenin pathway. Moreover, intracellular levels of reactive oxygen species were elevated especially when NCT503 and TMZ treatments were combined, and the synergistic effects could be partially negated by NAC, a classic scavenger of reactive oxygen species. Taken together, these results suggest that NCT503 may be a promising agent for augmenting TMZ efficacy in the treatment of GBM, especially in TMZ-resistant GBMs with high expression of MGMT.
Collapse
Affiliation(s)
- Lei Jin
- Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Karrie Mei-Yee Kiang
- Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Stephen Yin Cheng
- Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Lu J, Wang X, Wu A, Cao Y, Dai X, Liang Y, Li X. Ginsenosides in central nervous system diseases: Pharmacological actions, mechanisms, and therapeutics. Phytother Res 2022; 36:1523-1544. [PMID: 35084783 DOI: 10.1002/ptr.7395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
The nervous system is one of the most complex physiological systems, and central nervous system diseases (CNSDs) are serious diseases that affect human health. Ginseng (Panax L.), the root of Panax species, are famous Chinese herbs that have been used for various diseases in China, Japan, and Korea since ancient times, and remain a popular natural medicine used worldwide in modern times. Ginsenosides are the main active components of ginseng, and increasing evidence has demonstrated that ginsenosides can prevent CNSDs, including neurodegenerative diseases, memory and cognitive impairment, cerebral ischemia injury, depression, brain glioma, multiple sclerosis, which has been confirmed in numerous studies. Therefore, this review summarizes the potential pathways by which ginsenosides affect the pathogenesis of CNSDs mainly including antioxidant effects, anti-inflammatory effects, anti-apoptotic effects, and nerve protection, which provides novel ideas for the treatment of CNSDs.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anxin Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
P.K. S. Saponins -Uptake and Targeting issues for brain-specific delivery for enhanced cell death induction in glioblastoma. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220121145332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Saponins represent a category of diverse, natural glycoside molecules that belong to the triterpenoid or the steroid class. They vary in terms of their solubility and permeability characteristics and are classifiable based on the biopharmaceutics classification system. They have drug delivery potential as surfactants that can solubilize cholesterol in the plasma membrane of tumorigenic cells. Glioblastoma is an important malignancy that can aggressively afflict the brain of humans with a poor prognosis. Glioblastoma Stem Cells (GSCs), are an important subset of cancer cells and are major determinants for drug resistance and tumour relapse. These cells are quiescent and have been known to survive current therapeutic strategies. Certain saponins have shown potential to eliminate glioblastoma cells in a variety of model systems and hence provide a sound scientific basis for their development as a “stand-alone” drug or as part of a drug combination (from the existing arsenal of drugs) developed for the treatment of glioblastoma. However, due to their reactogenicity towards the immune system and hemolytic potential, selective delivery to the tumorigenic site is essential. Hence, nano-formulations (liposome/emulsion-based delivery systems/nano-structured lipid and calix[n]arenes-based carriers) and variants that are resistant to saponin may serve as delivery tools that can be functionalized to improve the selectivity. It is necessary to develop/validate/refine in vitro higher order models that replicate the features of the glioma microenvironment (BBB/BTB). Reproducible validation of the model as well as the drug/delivery system will help in the development of formulations that can augment cell death in this recalcitrant brain tumour.
Collapse
Affiliation(s)
- Suresh P.K.
- Department of Biomedical Sciences
School of Biosciences & Technology
VIT, Vellore, Vellore Dt, India
| |
Collapse
|
26
|
Xue YY, Lu YY, Sun GQ, Fang F, Ji YQ, Tang HF, Qiu PC, Cheng G. CN-3 increases TMZ sensitivity and induces ROS-dependent apoptosis and autophagy in TMZ-resistance glioblastoma. J Biochem Mol Toxicol 2021; 36:e22973. [PMID: 34967073 DOI: 10.1002/jbt.22973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Many glioma patients develop resistance to temozolomide (TMZ) treatment, resulting in reduced efficacy and survival rates. TMZ-resistant cell lines SHG44R and U87R, which highly express O6 -methylguanine DNA methyltransferase (MGMT) and P-gp, were established. CN-3, a new asterosaponin, showed cytotoxic effects on TMZ-resistant cells in a dose- and time-dependent manner via reactive oxygen species (ROS)-mediated apoptosis and autophagy. Transmission electron microscopy and monodansylcadaverine (MDC) staining showed turgidity of the mitochondria and autophagosomes in CN-3-treated SHG44R and U87R cells. The autophagy inhibitor 3-methyladenine was used to confirm the important role of autophagy in CN-3 cytotoxicity in TMZ-resistant cells. The ROS scavenger N-acetyl- l-cysteine (NAC) attenuated the levels of ROS induced by CN-3 and, therefore, rescued the CN-3 cytotoxic effect on the viability of SHG44R and U87R cells by Cell Counting Kit-8 assays and JuLI-Stage videos. MDC staining also confirmed that NAC rescued an autophagosome increase in CN-3-treated SHG44R and U87R cells. Western blotting revealed that CN-3 increased Bax, cleaved-caspase 3, cytochrome C, PARP-1, LC3-Ⅱ, and Beclin1, and decreased P-AKT, Bcl-2, and p62. Further rescue experiments revealed that CN-3 induced apoptosis and autophagy through ROS-mediated cytochrome C, cleaved-caspase 3, Bcl-2, P-AKT, PARP-1, and LC3-Ⅱ. In addition, CN-3 promoted SHG44R and U87R cells sensitive to TMZ by reducing the expression of P-gp, MGMT, and nuclear factor kappa B p65, and it had a synergistic cytotoxic effect with TMZ. Moreover, CN-3 disrupted the natural cycle arrest and inhibited the migration of SHG44R and U87R cells by promoting cyclin E1 and D1, and by decreasing P21, P27, N-cadherin, β-catenin, transforming growth factor beta 1, and Smad2.
Collapse
Affiliation(s)
- Yu-Ye Xue
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yun-Yang Lu
- Department of Chinese Materia Medica and Natural Medicines, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Guang-Qiang Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fei Fang
- Central Laboratory of Xi'an No. 1 Hospital, Xi'an, China
| | - Yu-Qiang Ji
- Central Laboratory of Xi'an No. 1 Hospital, Xi'an, China
| | - Hai-Feng Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Chinese Materia Medica and Natural Medicines, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Peng-Cheng Qiu
- Department of Chinese Materia Medica and Natural Medicines, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Guang Cheng
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Air Force Medical University, Xi'an, China
| |
Collapse
|
27
|
Zhang J, Yang Y, Dong Y, Liu C. Microrchidia family CW‑type zinc finger 2 promotes the proliferation, invasion, migration and epithelial‑mesenchymal transition of glioma by regulating PTEN/PI3K/AKT signaling via binding to N‑myc downstream regulated gene 1 promoter. Int J Mol Med 2021; 49:16. [PMID: 34913078 PMCID: PMC8711590 DOI: 10.3892/ijmm.2021.5071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/02/2021] [Indexed: 11/05/2022] Open
Abstract
Glioma is a common malignant tumor of the central nervous system with high incidence and mortality. The present study aimed to investigate the role of Microrchidia family CW‑type zinc finger 2 (MORC2) in the development of glioma. Firstly, MORC2 expression was detected in several glioma cell lines (U251, SHG44, LN229 and T98G). Following MORC2 silencing, cell proliferation was evaluated using the Cell Counting Kit‑8 assay and the expression of proliferation‑related proteins was assessed via immunofluorescence staining or western blotting. Cell invasion and migration were assessed using transwell and wound healing assays, respectively. Western blotting and immunofluorescence staining were employed to determine the expression of epithelial‑mesenchymal transition (EMT)‑associated proteins. The protein expression of N‑myc downstream regulated gene 1 (NDRG1) and PTEN/PI3K/AKT signaling was determined with western blot analysis. Then, the luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were employed to evaluate the binding between MORC2 and NDRG1 promoter. Subsequently, cellular functional experiments were performed to assess the effects of NDRG1 on the progression of glioma after NDRG1 and MORC2 overexpression. In addition, tumor‑bearing experiments were conducted using a U251 tumor‑bearing nude mice model to detect tumor growth. The expression of proliferation (proliferating cell nuclear antigen, cyclin‑dependent kinase 2 and cyclin E1), migration [matrix metalloproteinase (MMP)2 and MMP9], EMT (E‑cadherin, N‑cadherin and Vimentin) and PTEN/PI3K/AKT signaling proteins in tumor tissues was examined with immunohistochemistry assay or western blotting. Results revealed that MORC2 was notably unregulated in glioma cells compared with the normal human astrocyte. Loss‑function of MORC2 inhibited the proliferation, invasion, migration and EMT of glioma cells. Importantly, MORC2 silencing upregulated NDRG1 expression and inactivated PTEN/PI3K/AKT signaling. Additionally, the luciferase reporter‑ and ChIP assays confirmed that MORC2 could bind to the NDRG1 promoter. NDRG1 upregulation suppressed the progression of glioma and these effects were partially reversed by MORC2 overexpression. Results of tumor‑bearing experiments suggested that gain‑function of NDRG1 inhibited tumor growth and downregulated the expression of proliferation, migration and EMT‑related proteins in tumorous tissue in U251 tumor‑bearing mice, which was partially counteracted after MORC2 overexpression. In addition, MORC2 overexpression abrogated the inhibitory effect of NDRG1 on PTEN/PI3K/AKT signaling. In summary, MORC2 promoted the progression of glioma by inactivation of PTEN/PI3K/AKT signaling via binding to NDRG1 promoter, providing a novel and potent target for the treatment of glioma.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yunna Yang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Yipeng Dong
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Cang Liu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
28
|
Jiang M, Zhu Y, Yu H. Ginsenoside 20(S)-Rg3 suppresses cell viability in esophageal squamous cell carcinoma via modulating miR-324-5p-targeted PSME3. Hum Exp Toxicol 2021; 40:1974-1984. [PMID: 34002647 DOI: 10.1177/09603271211017311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ginsenoside 20(S)-Rg3 is identified as an active saponin monomer which derived from red ginseng and is demonstrated to play an anti-tumor role in diverse cancers. MicroRNAs (miRNAs) are important regulators in the progression of cancers, containing esophageal squamous cell carcinoma (ESCC). It was reported that microRNA 324-5p (miR-324-5p) exerted critical functions in some cancers; however, the detailed molecular mechanism of miR-324-5p mediated by 20(S)-Rg3 to suppress cell viability in ESCC has not been explored. Herein, we explored the function of 20(S)-Rg3 or miR-324-5p on ESCC cell viability by MTT assay, colony formation assay, flow cytometry analysis and western blot analysis. The binding of miR-324-5p to its target gene, proteasome activator subunit 3 (PSME3), was confirmed through RNA pull down and luciferase reporter assays. The results indicated that 20(S)-Rg3 significantly inhibited cell viability and the cell cycle and facilitated cell apoptosis. Furthermore, this effect was strengthened with the increased concentration of 20(S)-Rg3. Moreover, we found that miR-324-5p level was increased under 20(S)-Rg3 treatment. Additionally, overexpressed miR-324-5p inhibited ESCC cell viability, and downregulated miR-324-5p recovered inhibited cell viability caused by 20(S)-Rg3. Further exploration verified that miR-324-5p targeted PSME3, and PSME3 deficiency countervailed the effect of miR-324-5p inhibition on ESCC cell viability under 20(S)-Rg3 treatment. Conclusively, 20(S)-Rg3 suppresses cell viability in ESCC via mediating miR-324-5p-targeted PSME3.
Collapse
Affiliation(s)
- Min Jiang
- Department of Pathology, Taizhou People's Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, Jiangsu, China
- Institute of Clinical Medicine, Taizhou People's Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, Jiangsu, China
| | - Yinxing Zhu
- Institute of Clinical Medicine, Taizhou People's Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, Jiangsu, China
| | - Hong Yu
- Department of Pathology, Taizhou People's Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, Jiangsu, China
| |
Collapse
|
29
|
Hong J, Gwon D, Jang CY. Ginsenoside Rg1 suppresses cancer cell proliferation through perturbing mitotic progression. J Ginseng Res 2021; 46:481-488. [PMID: 35600766 PMCID: PMC9120780 DOI: 10.1016/j.jgr.2021.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 10/27/2022] Open
|
30
|
Liu W, Zhang SX, Ai B, Pan HF, Zhang D, Jiang Y, Hu LH, Sun LL, Chen ZS, Lin LZ. Ginsenoside Rg3 Promotes Cell Growth Through Activation of mTORC1. Front Cell Dev Biol 2021; 9:730309. [PMID: 34589493 PMCID: PMC8473834 DOI: 10.3389/fcell.2021.730309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/26/2021] [Indexed: 01/15/2023] Open
Abstract
Ginsenoside Rg3 is a steroidal saponin isolated from Panax ginseng. Previous studies have shown that Rg3 treatment downregulates the activity of rapamycin complex 1 (mTORC1) activity and inhibits the growth of cancer cells. However, the inhibitory effect of Rg3 on cancer cells is associated with high concentrations of Rg3 that are difficult to achieve in vivo. The human cervix adenocarcinoma HeLa cells were treated with Rg3. The protein levels of AMP-activated protein kinase alpha (AMPKα), protein kinase B(Akt), ribosomal S6 protein(S6), and Erk were determined by immunoblotting analyses. We used a fluorescent probe to detect reactive oxygen species (ROS) production in living cells. The oxygen consumption rate (OCR) was examined by the Seahorse Extracellular Flux Analyzer. The content of adenosine triphosphate (ATP) was measured by ATPlite kit and Mitotracker was applied to detect the mitochondria. We showed that at lower concentrations, Rg3 activates mTORC1 independent of AKT and AMP-activated protein kinase (AMPK). Rg3 promotes mitochondrial biogenesis and function, increases the oxygen consumption of mitochondria and the content of ATP. This effect is in contrast to that of high concentrations of Rg3, which inhibits cell growth. These findings demonstrate a pro-growth activity of Rg3 that acts through mTORC1 and mitochondrial biogenesis and suggest a dose-dependent effect of Rg3 on tumor cell growth.
Collapse
Affiliation(s)
- Wei Liu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | | | - Bo Ai
- Department of Thoracic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Feng Pan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Zhang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lei-Hao Hu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Ling-Ling Sun
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, Queens, NY, United States
| | - Li-Zhu Lin
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
He X, Sheng J, Yu W, Wang K, Zhu S, Liu Q. LncRNA MIR155HG Promotes Temozolomide Resistance by Activating the Wnt/β-Catenin Pathway Via Binding to PTBP1 in Glioma. Cell Mol Neurobiol 2021; 41:1271-1284. [PMID: 32529543 PMCID: PMC11448642 DOI: 10.1007/s10571-020-00898-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Temozolomide (TMZ) is widely used for glioma therapy in the clinic. Currently, the development of TMZ resistance has largely led to poor prognosis. However, very little is understood about the role of MIR155HG, as a long noncoding RNA, in TMZ resistance. In our study, MIR155HG level was markedly higher in glioma patients than in normal controls and that poor survival was positively correlated with MIR155HG expression. It was apparent that TMZ sensitivity was promoted by downregulation of MIR155HG, and this could be reversed by MIR155HG overexpression in vivo and in vitro. Furthermore, polypyrimidine tract binding protein 1 (PTBP1) was proven to bind with MIR155HG and to regulate MIR155HG-related TMZ resistance. Mechanistic investigation showed that the expression levels of both MIR155HG and PTBP1 influenced the expression of relevant proteins in the Wnt/β-catenin pathway. Collectively, the study demonstrated that the knockdown of MIR155HG increased glioma sensitivity to TMZ by inhibiting Wnt/β-catenin pathway activation via potently downregulating PTBP1.
Collapse
Affiliation(s)
- Xin He
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jie Sheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Wei Yu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Kejian Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shujuan Zhu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
32
|
Chen Z, Wei X, Wang X, Zheng X, Chang B, Shen L, Zhu H, Yang M, Li S, Zheng X. NDUFA4L2 promotes glioblastoma progression, is associated with poor survival, and can be effectively targeted by apatinib. Cell Death Dis 2021; 12:377. [PMID: 33828084 PMCID: PMC8027655 DOI: 10.1038/s41419-021-03646-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022]
Abstract
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex, 4-like 2 (NDUFA4L2) is a subunit of Complex I of the mitochondrial respiratory chain, which is important in metabolic reprogramming and oxidative stress in multiple cancers. However, the biological role and molecular regulation of NDUFA4L2 in glioblastoma (GBM) are poorly understood. Here, we found that NDUFA4L2 was significantly upregulated in GBM; the elevated levels were correlated with reduced patient survival. Gene knockdown of NDUFA4L2 inhibited tumor cell proliferation and enhanced apoptosis, while tumor cells initiated protective mitophagy in vitro and in vivo. We used lentivirus to reduce expression levels of NDUFA4L2 protein in GBM cells exposed to mitophagy blockers, which led to a significant enhancement of tumor cell apoptosis in vitro and inhibited the development of xenografted tumors in vivo. In contrast to other tumor types, NDUFA4L2 expression in GBM may not be directly regulated by hypoxia-inducible factor (HIF)-1α, because HIF-1α inhibitors failed to inhibit NDUFA4L2 in GBM. Apatinib was able to effectively target NDUFA4L2 in GBM, presenting an alternative to the use of lentiviruses, which currently cannot be used in humans. Taken together, our data suggest the use of NDUFA4L2 as a potential therapeutic target in GBM and demonstrate a practical treatment approach.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Xiangyu Wei
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Xueyi Wang
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Xuan Zheng
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Bowen Chang
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Lin Shen
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Hanshuo Zhu
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Min Yang
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China.,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China
| | - Shiting Li
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China. .,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China.
| | - Xuesheng Zheng
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, 200092, Shanghai, China. .,The Center for Diagnosis and Treatment of Cranial Nerve Diseases of Shanghai JiaoTong University, 200092, Shanghai, China.
| |
Collapse
|
33
|
Kim TJ, Kim HJ, Kang M, Cho JH, Kim YG, Lee SM, Byun JS, Kim DY. Ginsenoside F2 induces cellular toxicity to glioblastoma through the impairment of mitochondrial function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153483. [PMID: 33578358 DOI: 10.1016/j.phymed.2021.153483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive tumor residing within the central nervous system, with extremely poor prognosis. Although the cytotoxic effects of ginsenoside F2 (GF2) on GBM were previously suggested, the precise anti-GBM mechanism of GF2 remains unclear. The aim of this study was to explore the anti-cancer molecular mechanism of GF2 toward human GBM. METHODS GF2-driven cellular toxicity was confirmed in two different GBM cells, U373 and Hs683. To test mitochondrial impairment driven by GF2, we examined the mitochondrial membrane potential, OCR, and ATP production. An intracellular redox imbalance was identified by measuring the relative ratio of reduced glutathione to oxidized glutathione (GSH/GSSG), glutaredoxin (GLRX) mRNA expression, intracellular NAD+ level, and AMPK phosphorylation status. RESULTS GF2 increased the percentage of cleaved caspase 3-positive cells and γH2AX signal intensities, confirming that GF2 shows the cytotoxicity against GBM. GO enrichment analysis suggested that the mitochondrial function could be negatively influenced by GF2. GF2 reduced the mitochondrial membrane potential, basal mitochondrial respiratory rate, and ATP production capacity. Our results showed that GF2 downregulated the relative GSH/GSSG, intracellular NAD+ level, and GLRX expression, suggesting that GF2 may alter the intracellular redox balance that led to mitochondrial impairment. CONCLUSION GF2 reduces mitochondrial membrane potential, inhibits cellular oxygen consumption, activates AMPK signaling, and induces cell death. Our study examined the potential vulnerability of mitochondrial activity in GBM, and this may hold therapeutic promise.
Collapse
Affiliation(s)
- Tae-Jun Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Hyeon Ji Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Mingyu Kang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Hwa Cho
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Yu Gyung Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Sang Min Lee
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jin-Seok Byun
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea.
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41940, Republic of Korea.
| |
Collapse
|
34
|
Hong H, Baatar D, Hwang SG. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8858006. [PMID: 33623532 PMCID: PMC7875636 DOI: 10.1155/2021/8858006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Cancer incidence rate has been increasing drastically in recent years. One of the many cancer treatment methods is chemotherapy. Traditional medicine, in the form of complementary and alternative therapy, is actively used to treat cancer, and many herbs and active ingredients of such therapies are being intensely studied to integrate them into modern medicine. Ginseng is traditionally used as a nourishing tonic and for treating various diseases in Asian countries. The therapeutic potential of ginseng in modern medicine has been studied extensively; the main bioactive component of ginseng is ginsenosides, which have gathered attention, particularly for their prospects in the treatment of fatal diseases such as cancer. Ginsenosides displayed their anticancer and antimetastatic properties not only via restricting cancer cell proliferation, viability, invasion, and migration but also by promoting apoptosis, cell cycle arrest, and autophagy in several cancers, such as breast, brain, liver, gastric, and lung cancer. Additionally, ginsenosides can work synergistically with already existing cancer therapies. Thus, ginsenosides may be used alone or in combination with other pharmaceutical agents in new therapeutic strategies for cancer. To date however, there is little systematic summary available for the anticancer effects and therapeutic potential of ginsenosides. Therefore, we have reviewed and discussed all available literature in order to facilitate further research of ginsenosides in this manuscript.
Collapse
Affiliation(s)
- Heeok Hong
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Delgerzul Baatar
- Laboratory of Genetics, Institute of Biology, Mongolian Academy of Sciences, Peace Avenue 13330, Ulaanbaatar, Mongolia
| | - Seong Gu Hwang
- Department of Animal Life and Environmental Science, Hankyong National University, Anseong City 17579, Republic of Korea
| |
Collapse
|
35
|
Wang L, Han X, Zheng X, Zhou Y, Hou H, Chen W, Li X, Zhao L. [Ginsenoside 20(S)-Rg3 upregulates tumor suppressor VHL gene expression by suppressing DNMT3A-mediated promoter methylation in ovarian cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:100-106. [PMID: 33509760 DOI: 10.12122/j.issn.1673-4254.2021.01.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To explore the mechanism by which ginsenoside 20(S)-Rg3 upregulates the expression of tumor suppressor von Hippel-Lindau (VHL) gene in ovarian cancer cells. METHODS Ovarian cancer cell line SKOV3 treated with 20(S)-Rg3 were examined for mRNA and protein levels of VHL, DNMT1, DNMT3A and DNMT3B by real-time PCR and Western blotting, respectively. The changes in VHL mRNA expression in SKOV3 cells in response to treatment with 5-Aza-CdR, a DNA methyltransferase inhibitor, were detected using real-time PCR. VHL gene promoter methylation was examined with methylation-specific PCR and VHL expression levels were determined with real-time PCR and Western blotting in non-treated or 20(S)-Rg3-treated SKOV3 cells and in 20(S)-Rg3-treated DNMT3A-overexpressing SKOV3 cells. VHL and DNMT3A protein levels were detected by immunohistochemistry in subcutaneous SKOV3 cell xenografts in nude mice. RESULTS Treatment of SKOV3 cells with 20(S)-Rg3 significantly upregulated VHL and downregulated DNMT3A expressions at both the mRNA and protein levels (P < 0.05) and upregulated DNMT3B expression only at the mRNA level, but did not cause significant changes in either the mRNA or protein level of DNMT1. Treatment of the cells with 2 and 5 μmol/L 5-Aza-CdR obviously increased VHL mRNA expression by by over 3 folds (P < 0.05). 20(S)-Rg3 significantly decreased the methylation level in the promoter region of VHL gene, and this effect was abrogated by DNMT3A overexpression in the cells (P < 0.05). Immunohistochemisty showed a significantly increased VHL expression but a lowered DNMT3A expression in subcutaneous SKOV3 cell xenografts in 20 (S)-Rg3-treated nude mice. CONCLUSIONS Ginsenoside 20(S)-Rg3 upregulates VHL expression in ovarian cancer cells by suppressing DNMT3A-mediated DNA methylation.
Collapse
Affiliation(s)
- Lijie Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Gynecology, Lanzhou University Second Hospital, Lan Zhou 730030, China
| | - Xi Han
- Department of Obstetrics and Gynecology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xia Zheng
- the Second Affiliated Hospital of Zhejiang University School of medicine, Hangzhou 310009, China
| | - Yuanyuan Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huilian Hou
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Chen
- Center for Laboratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xu Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Le Zhao
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
36
|
Qu H, Song X, Song Z, Jiang X, Gao X, Bai L, Wu J, Na L, Yao Z. Berberine reduces temozolomide resistance by inducing autophagy via the ERK1/2 signaling pathway in glioblastoma. Cancer Cell Int 2020; 20:592. [PMID: 33298057 PMCID: PMC7727240 DOI: 10.1186/s12935-020-01693-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The ability to treat glioblastoma (GBM) using the chemotherapeutic agent temozolomide (TMZ) has been hampered by the development of therapeutic resistance. In this study, we assessed the ability of the isoquinoline alkaloid berberine to alter GBM TMZ resistance using two different TMZ-resistant cell lines to mimic a physiologically relevant GBM experimental system. METHODS By treating these resistant cell lines with berberine followed by TMZ, we were able to assess the chemosensitivity of these cells and their parental strains, based on their performance in the MTT and colony formation assays, as well as on the degree of detectable apoptosis that was detected in the strains. Furthermore, we used Western blotting to assess autophagic responses in these cell lines, and we extended this work into a xenograft mouse model to assess the in vivo efficacy of berberine. RESULTS Through these experiments, our findings indicated that berberine enhanced autophagy and apoptosis in TMZ-resistant cells upon TMZ treatment in a manner that was linked with ERK1/2 signaling. Similarly, when used in vivo, berberine increased GBM sensitivity to TMZ through ERK1/2 signaling pathways. CONCLUSIONS These findings demonstrate that berberine is an effective method of increasing the sensitization of GBM cells to TMZ treatment in a manner that is dependent upon the ERK1/2-mediated induction of autophagy, thus making berberine a potentially viable therapeutic agent for GBM treatment.
Collapse
Affiliation(s)
- Huiling Qu
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Xiaofu Song
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Zhuyin Song
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Xin Jiang
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Xin Gao
- Department of Laboratory Medicine, The People's Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Lijuan Bai
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Jiao Wu
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Li Na
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Zhicheng Yao
- Department of Neurology, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
37
|
20(S)-Rg3 upregulates FDFT1 via reducing miR-4425 to inhibit ovarian cancer progression. Arch Biochem Biophys 2020; 693:108569. [PMID: 32877662 DOI: 10.1016/j.abb.2020.108569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 01/15/2023]
Abstract
We previously found that ginsenoside 20(S)-Rg3 diminishes the proliferative and invasive capacities of ovarian cancer cells by decreasing miR-4425 level. Yet the mechanism of action of miR-4425 in ovarian cancer remains unclear. Here we report that miR-4425 is upregulated in ovarian cancer tissues relative to normal ovarian tissues, and transfection of miR-4425 inhibitor impairs the proliferation, migration and invasion of SKOV3 and 3AO ovarian cancer cells. Further, miR-4425 antagomiR reduces cell proliferation in a subcutaneous SKOV3 xenograft model using BALB/c nude mice. We identifies farnesyl-diphosphate farnesyltransferase 1 (FDFT1) as a direct target of miR-4425 by Western blotting and a luciferase reporter assay. Forced expression of FDFT1 via transfection of an FDFT1-expressing plasmid into ovarian cancer cells not only retards cell proliferation, motility and invasiveness, but also negates the tumorigenic properties of a miR-4425 mimic. By contrast, silencing of FDFT1 by siRNAs abrogates suppression of the proliferation, migration and invasion of ovarian cancer cells treated with a miR-4425 inhibitor. Finally, transfection of either a miR-4425 mimic or FDFT1 siRNAs into 20(S)-Rg3-treated ovarian cancer cells counteracts the tumor-inhibitory activity of the ginsenoside. In conclusion, 20(S)-Rg3 exerts anti-ovarian cancer activity by downregulating oncogenic miR-4425 that inhibits the expression of the tumor suppressor gene FDFT1. These results expand our current understanding of the molecular pathways leading to ovarian cancer progression, and unveil the mechanism of action of 20(S)-Rg3 in ovarian cancer inhibition.
Collapse
|
38
|
Tan Q, Lin S, Zeng Y, Yao M, Liu K, Yuan H, Liu C, Jiang G. Ginsenoside Rg3 attenuates the osimertinib resistance by reducing the stemness of non-small cell lung cancer cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:643-651. [PMID: 31916386 DOI: 10.1002/tox.22899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we found that Ginsenoside Rg3 attenuated the stemness of non-small cell lung cancer (NSCLC) cells, evident by decreasing spheroid formation ability, ALDH1 activity and stemness marker expression. Furthermore, osimertinib-resistant NSCLC cells displayed a stronger stemness than the parental cells. Ginsenoside Rg3 reduced the stemness and osimertinib resistance of osimertinib-resistant cells. RNA-sequencing revealed that Hippo signaling was shown on the top of the most upregulated pathways regulated by Ginsenoside Rg3 in NSCLC cells, and YAP/TAZ expression was suppressed by Ginsenoside Rg3. Notably, the inhibitor of Hippo signaling attenuated the effects of Ginsenoside Rg3 on the stemness of NSCLC cells. Therefore, Ginsenoside Rg3 attenuates the osimertinib resistance of NSCLC cells via suppressing the stemness, which is dependent on Hippo pathway.
Collapse
Affiliation(s)
- Qinquan Tan
- Department of medical oncology, Dongguan People's Hospital, Wanjiang Subdistrict, Guangdong Province, China
| | - Shunhuan Lin
- Department of medical oncology, Dongguan People's Hospital, Wanjiang Subdistrict, Guangdong Province, China
| | - Yihong Zeng
- Department of medical oncology, Dongguan People's Hospital, Wanjiang Subdistrict, Guangdong Province, China
| | - Mantian Yao
- Department of medical oncology, Dongguan People's Hospital, Wanjiang Subdistrict, Guangdong Province, China
| | - Kejun Liu
- Department of medical oncology, Dongguan People's Hospital, Wanjiang Subdistrict, Guangdong Province, China
| | - Haiji Yuan
- Department of medical oncology, Dongguan People's Hospital, Wanjiang Subdistrict, Guangdong Province, China
| | - Chun Liu
- Department of medical oncology, Dongguan People's Hospital, Wanjiang Subdistrict, Guangdong Province, China
| | - Guanming Jiang
- Department of medical oncology, Dongguan People's Hospital, Wanjiang Subdistrict, Guangdong Province, China
| |
Collapse
|
39
|
Cai HQ, Liu AS, Zhang MJ, Liu HJ, Meng XL, Qian HP, Wan JH. Identifying Predictive Gene Expression and Signature Related to Temozolomide Sensitivity of Glioblastomas. Front Oncol 2020; 10:669. [PMID: 32528873 PMCID: PMC7258082 DOI: 10.3389/fonc.2020.00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
Temozolomide (TMZ) is considered a standard chemotherapeutic agent for glioblastoma (GBM). Characterizing the biological molecules and signaling pathways involved in TMZ sensitivity would be helpful for selecting therapeutic schemes and evaluating prognosis for GBM. Thus, in the present study, we selected 34 glioma cell lines paired with specific IC50 values of TMZ obtained from CancerRxGene and RNA-seq data downloaded from the Cancer Cell Line Encyclopedia to identify genes related to TMZ sensitivity. The results showed that 1,373 genes were related to the response of GBM cells to TMZ. Biological function analysis indicated that epithelial–mesenchymal transition, Wnt signaling, and immune response were the most significantly activated functions in TMZ-resistant cell lines. Additionally, negative regulation of telomere maintenance via telomerase was enriched in TMZ-sensitive glioma cell lines. We also preliminarily observed a synergistic effect of combination treatment comprising TMZ and a telomerase inhibitor in vitro. We identified six genes (MROH8, BET1, PTPRN2, STC1, NKX3-1, and ARMC10) using the random survival forests variable hunting algorithm based on the minimum error rate of the gene combination and constructed a gene expression signature. The signature was strongly related to GBM clinical characteristics and exhibited good prognosis accuracy for both The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets. Patients in the high score group had a shorter survival time than those in the low score group (11.2 vs. 22.2 months, hazard ratio = 7.31, p = 4.59e−11) of the TCGA dataset. The CGGA dataset was selected as a validation group with 40 patients in the high score set and 43 patients in the low score set (12.5 vs. 28.8 months, hazard ratio = 3.42, p = 8.61e−5). Moreover, the signature showed a better prognostic value than MGMT promoter methylation in both datasets. We also developed a nomogram for clinical use that integrated the TMZ response signature and four other risk factors to individually predict patient survival after TMZ chemotherapy. Overall, our study provides promising therapeutic targets and potential guidance for adjuvant therapy of GBM.
Collapse
Affiliation(s)
- Hong-Qing Cai
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ang-Si Liu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min-Jie Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hou-Jie Liu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Li Meng
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Peng Qian
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Hai Wan
- Department of Neurosurgery, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
40
|
Chen Z, Li S, Shen L, Wei X, Zhu H, Wang X, Yang M, Zheng X. NF-kappa B interacting long noncoding RNA enhances the Warburg effect and angiogenesis and is associated with decreased survival of patients with gliomas. Cell Death Dis 2020; 11:323. [PMID: 32382013 PMCID: PMC7206073 DOI: 10.1038/s41419-020-2520-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023]
Abstract
In various malignant tumors, NF-kappa B interacting long noncoding RNA (NKILA) displays antitumor activity by inhibiting the NF-kappa B pathway. However, the role of NKILA in gliomas remains unclear. Surprisingly, this study showed that NKILA is significantly upregulated in gliomas, and the increased levels of NKILA were correlated with a decrease in patient survival time. NKILA increased the expression level of hypoxia-inducible factor-1α, and the activity of the hypoxia pathway in gliomas. Furthermore, we demonstrated that NKILA enhances the Warburg effect and angiogenesis in gliomas both in vitro and in vivo. Therefore, NKILA is a potential therapeutic target in gliomas. In addition, we showed that a 20(S)-Rg3 monomer suppresses NKILA accumulation and reverses its stimulation of the Warburg effect and angiogenesis in gliomas, both in vitro and in vivo. Therefore, this study not only identified NKILA as a potential therapeutic target in gliomas, but also demonstrated a practical approach to treatment.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China
| | - Shiting Li
- The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, 200092, China
| | - Lin Shen
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China
| | - Xiangyu Wei
- The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, 200092, China
| | - Hanshuo Zhu
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China
| | - Xueyi Wang
- The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, 200092, China
| | - Min Yang
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China.
| | - Xuesheng Zheng
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China.
| |
Collapse
|
41
|
Yang L, Zou H, Gao Y, Luo J, Xie X, Meng W, Zhou H, Tan Z. Insights into gastrointestinal microbiota-generated ginsenoside metabolites and their bioactivities. Drug Metab Rev 2020; 52:125-138. [PMID: 31984805 DOI: 10.1080/03602532.2020.1714645] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal microbiota and host co-evolve into a complex 'super-organism,' and this relationship plays a vital role in many physiological processes, such as drug metabolism. Ginseng is an important medicinal resource and the main ingredients are ginsenosides, which are less polar, difficult to absorb, and have low bioavailability. However, studies have shown that the biological activity of ginsenosides such as compound K (CK), ginsenoside Rg3 (Rg3), ginsenoside Rh2 (Rh2), 20(S)-protopanaxatriol (20(S)-PPT), and 20(S)-protopanaxadiol (20(S)-PPD) is closely related to the gastrointestinal microbiota. In this paper, the metabolic pathway of gastrointestinal microbiota-generated ginsenosides and the main pharmacological effects of these metabolites are discussed. Furthermore, our study provides a new insight into the discovery of novel drugs. Specifically, in new drug screening process, candidates with low biological activity and bioavailability should not be excluded. Because their metabolites may exhibit good pharmacological effects due to the involvement of the gastrointestinal microbiota. In addition, in further research studies to develop probiotics, a combination of agents could exert greater efficacy than single agents. Moreover, differences in lifestyle and diet lead to differences in the gastrointestinal microbiota in the human body. Therefore, administration of the same drug dose to different individuals could elicit different therapeutic effects, owing to the involvement of the gastrointestinal microbiota. Thus, treatment accuracy could be achieved by detecting the gastrointestinal microbiota before drug treatment.HighlightsGastrointestinal microbiota plays a decisive role in bioactivities of ginsenosides.The metabolic pathway and main pharmacological effects of ginsenoside metabolites are discussed.It provides new insights into novel drug discovery and further research to find probiotic, combinations to exert greater efficacy.Differences in lifestyle and diet, varies the gastrointestinal microbiota in the human body. However, the same dose of a drug producing different therapeutic effects may involve gastrointestinal microbiota.
Collapse
Affiliation(s)
- Li Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Hecun Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China.,Institute of Life Sciences, Chongqing Medical University, Chongqing, Hunan, PR China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Junjia Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Xiaonv Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Wenhui Meng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, PR China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| |
Collapse
|
42
|
Li JQ, Wang QT, Nie Y, Xiao YP, Lin T, Han RJ, Li Z, Fan YY, Yuan XH, Wang YM, Zhang J, He YW, Liao HX. A Multi-Element Expression Score Is A Prognostic Factor In Glioblastoma Multiforme. Cancer Manag Res 2019; 11:8977-8989. [PMID: 31695490 PMCID: PMC6805247 DOI: 10.2147/cmar.s228174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/09/2019] [Indexed: 11/25/2022] Open
Abstract
Purpose Glioblastoma multiforme (GBM) is a highly malignant tumor of the central nervous system. Although primary GBM patients receive extensive therapies, tumors may recur within months, and there is no objective and scientific method to predict prognosis. Adoptive immunotherapy holds great promise for GBM treatment. However, the expression profiles of the tumor-associated antigens (TAAs) and tumor immune microenvironment (TME) genes used in immunotherapy of GBM patients have not been fully described. The present study aimed to develop a predictive tool to evaluate patient survival based on full analysis of the expression levels of TAAs and TME genes. Methods Expression profiles of a panel of 87 TAAs and 8 TME genes significantly correlated with poor prognosis were evaluated in 44 GBM patients and 10 normal brain tissues using quantitative real-time polymerase chain reaction (qRT-PCR). A linear formula (the LASSO algorithm based in the R package) weighted by regression coefficients was used to develop a multi-element expression score to predict prognosis; this formula was cross-validated by the leave-one-out method in different GBM cohorts. Results After analysis of gene expression, clinical features, and overall survival (OS), a total of 8 TAAs (CHI3L1, EZH2, TRIOBP, PCNA, PIK3R1, PRKDC, SART3 and EPCAM), 1 TME gene (FOXP3) and 4 clinical features (neutrophil-to-lymphocyte (NLR), number of basophils (BAS), age and treatment with standard radiotherapy and chemotherapy) were included in the formula. There were significant differences between high and low scoring groups identified using the formula in different GBM cohorts (TCGA (n=732) and GEO databases (n=84)), implying poor and good prognosis, respectively. Conclusion The multi-element expression score was significantly associated with OS of GBM patients. The improve understanding of TAAs and TMEs and well-defined formula could be implemented in immunotherapy for GBM to provide better care.
Collapse
Affiliation(s)
- Jun-Qi Li
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou 510632, People's Republic of China
| | - Qian-Ting Wang
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou 510632, People's Republic of China.,Guangdong 999 Brain Hospital, Guangzhou 510510, People's Republic of China
| | - Ying Nie
- Guangdong 999 Brain Hospital, Guangzhou 510510, People's Republic of China
| | - Yun-Peng Xiao
- Guangzhou Trinomab Biotechnology Co., Ltd, Guangzhou 510632, People's Republic of China
| | - Tao Lin
- Guangdong 999 Brain Hospital, Guangzhou 510510, People's Republic of China
| | - Ru-Jin Han
- Guangdong 999 Brain Hospital, Guangzhou 510510, People's Republic of China
| | - Zhe Li
- Guangdong 999 Brain Hospital, Guangzhou 510510, People's Republic of China
| | - Yu-Ying Fan
- Guangdong 999 Brain Hospital, Guangzhou 510510, People's Republic of China
| | - Xiao-Hui Yuan
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou 510632, People's Republic of China
| | - Yue-Ming Wang
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, People's Republic of China
| | - Jian Zhang
- Guangdong 999 Brain Hospital, Guangzhou 510510, People's Republic of China
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hua-Xin Liao
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou 510632, People's Republic of China
| |
Collapse
|
43
|
Miroshnichenko S, Patutina O. Enhanced Inhibition of Tumorigenesis Using Combinations of miRNA-Targeted Therapeutics. Front Pharmacol 2019; 10:488. [PMID: 31156429 PMCID: PMC6531850 DOI: 10.3389/fphar.2019.00488] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
The search for effective strategies to inhibit tumorigenesis remains one of the most relevant scientific challenges. Among the most promising approaches is the direct modulation of the function of short non-coding RNAs, particularly miRNAs. These molecules are propitious targets for anticancer therapy, since they perform key regulatory roles in a variety of signaling cascades related to cell proliferation, apoptosis, migration, and invasion. The development of pathological states is often associated with deregulation of miRNA expression. The present review describes in detail the strategies aimed at modulating miRNA activity that invoke antisense oligonucleotide construction, such as small RNA zippers, miRNases (miRNA-targeted artificial ribonucleases), miRNA sponges, miRNA masks, anti-miRNA oligonucleotides, and synthetic miRNA mimics. The broad impact of developed miRNA-based therapeutics on the various events of tumorigenesis is also discussed. Above all, the focus of this review is to evaluate the results of the combined application of different miRNA-based agents and chemotherapeutic drugs for the inhibition of tumor development. Many studies indicate a considerable increase in the efficacy of anticancer therapy as a result of additive or synergistic effects of simultaneously applied therapies. Different drug combinations, such as a cocktail of antisense oligonucleotides or multipotent miRNA sponges directed at several oncogenic microRNAs belonging to the same/different miRNA families, a mixture of anti-miRNA oligonucleotides and cytostatic drugs, and a combination of synthetic miRNA mimics, have a more complex and profound effect on the various events of tumorigenesis as compared with treatment with a single miRNA-based agent or chemotherapeutic drug. These data provide strong evidence that the simultaneous application of several distinct strategies aimed at suppressing different cellular processes linked to tumorigenesis is a promising approach for cancer therapy.
Collapse
Affiliation(s)
- Svetlana Miroshnichenko
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Olga Patutina
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
44
|
Li H, Li J, Chen L, Qi S, Yu S, Weng Z, Hu Z, Zhou Q, Xin Z, Shi L, Ma L, Huang A, Lu Y. HERC3-Mediated SMAD7 Ubiquitination Degradation Promotes Autophagy-Induced EMT and Chemoresistance in Glioblastoma. Clin Cancer Res 2019; 25:3602-3616. [PMID: 30862693 DOI: 10.1158/1078-0432.ccr-18-3791] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/05/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastoma, a common malignant intracranial tumor, has the most dismal prognosis. Autophagy was reported to act as a survival-promoting mechanism in gliomas by inducing epithelial-to-mesenchymal transition (EMT). Here, we determined the critical molecules involved in autophagy-induced EMT and elucidated the possible mechanism of chemoradiotherapy resistance and tumor recurrence. EXPERIMENTAL DESIGN We used isobaric tags for relative and absolute quantitation to identify the critical proteins and pathway mediating EMT via autophagy inducer treatment, and tested the expression of these proteins using tissue microarray of gliomas and clinical glioblastoma samples as well as tissues and cells separated from the core lesion and tumor-peripheral region. Analysis of the Cancer Genome Atlas database and 110 glioblastoma cases revealed the prognostic value of these molecules. The functional role of these critical molecules was further confirmed by in vitro experiments and intracranial xenograft in nude mice. RESULTS Autophagy inducers significantly upregulated the expression of HERC3, which promotes ubiquitination-mediated degradation of SMAD7 in an autolysosome-dependent manner. The corresponding increase in p-SMAD2/3 level and TGFβ pathway activation finally induced EMT in cell lines and primary glioblastoma cells. Moreover, HERC3 overexpression was observed in pseudo-palisade cells surrounding tumor necrosis and in tumor-adjacent tissue; high HERC3 and low SMAD7 levels predicted poor clinical outcome in glioblastoma; xenograft of nude mice and in vitro experiments confirmed these findings. CONCLUSIONS Together, our findings reveal the indispensable role of HERC3 in regulating canonical SMAD2/3-dependent TGFβ pathway involvement in autophagy-induced EMT, providing insights toward a better understanding of the mechanism of resistance to temozolomide and peripheral recurrence of glioblastoma.
Collapse
Affiliation(s)
- Hong Li
- Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Junjie Li
- Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Lei Chen
- Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Southern Medical University, Guangzhou, China.,Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Nanfang Glioma Center, Guangzhou, China
| | - Shishi Yu
- Editorial Department of the Journal of Southern Medical University, Guangzhou, China
| | - Zhijian Weng
- Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Ziyou Hu
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Zhou
- Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Zong Xin
- Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Linyong Shi
- Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Liyi Ma
- Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Annie Huang
- Brain Tumor Research Center, SickKids Hospital, Toronto, Canada
| | - Yuntao Lu
- Department of Neurosurgery, Southern Medical University, Guangzhou, China. .,Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Nanfang Glioma Center, Guangzhou, China
| |
Collapse
|
45
|
Yang C, Sun J, Liu W, Yang Y, Chu Z, Yang T, Gui Y, Wang D. Long noncoding RNA HCP5 contributes to epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation and interacting with miR-139-5p. Am J Transl Res 2019; 11:953-963. [PMID: 30899394 PMCID: PMC6413275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) play key roles in various malignancy pathogenesis. However, the mechanisms remain poorly understood in the development and progression of colorectal cancer (CRC). Here, we focused on the specific role of human leukocyte antigen (HLA) Complex P5 (HCP5) in CRC. Quantitative real-time PCR (qRT-PCR) analysis and western blot were used to assess the expression of HCP5 in CRC tissues. The association between the expressions of HCP5 and miR-139-5p was assessed by Pearson's correlation analysis. The prognosis of CRC patients was analyzed by Kaplan-Meier survival analysis. Specific siRNAs were stably transfected into CRC cells with lentivirus approaches. The proliferative, migrative and invasive capacities of CRC cells were detected by Transwell, MTT and scratch assay, respectively. Dual-luciferase assay was performed to measure miR-139-5p-targeted relationship with lncRNA HCP5. HCP5 overexpression and of miR-139-5p downregulation were dramatically correlated with low TNM stage, poor differentiation, low tumor depth invasion in CRC patients (P < 0.05). Besides, HCP5 overexpression or ZEB1 knockdown repressed Snail family transcriptional repressor (SNAI) and vimentin expressions, upregulated E-cadherin expression, and inhibited cell proliferation and metastasis (P < 0.05). Moreover, luciferase reporter assay demonstrated that miR-139-5p was a directly target of HCP5 (P < 0.05). Overall, the present study indicated that HCP5 played a key regulator in CRC development and progression by targeting HCP5/miR-139-5p/ZEB1 axis, which may serve as a novel therapeutic target for CRC therapy.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Junjun Sun
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Weifeng Liu
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Yanhui Yang
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Zhijie Chu
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Tianbao Yang
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Yang Gui
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| | - Du Wang
- Department of Hepatobiliary, Henan University of Science and Technology First Affiliated Hospital Luoyang 471000, Henan Province, China
| |
Collapse
|
46
|
Chen Z, Wei X, Shen L, Zhu H, Zheng X. 20(S)-ginsenoside-Rg3 reverses temozolomide resistance and restrains epithelial-mesenchymal transition progression in glioblastoma. Cancer Sci 2018; 110:389-400. [PMID: 30431207 PMCID: PMC6317960 DOI: 10.1111/cas.13881] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/11/2018] [Accepted: 11/12/2018] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most malignant human intracranial tumors. Temozolomide (TMZ) is the primary alkylating agent for GBM patients. However, many GBM patients are resistant to TMZ. Therefore, patients with GBM urgently need more effective therapeutic options. 20(S)‐ginsenoside‐Rg3 (20(S)‐Rg3) is a natural chemical with anti‐tumor effects, but at present there is little understanding of its functional mechanism. Several research reports have demonstrated that O6‐methylguanine DNA‐methyltransferase (MGMT) repairs damaged DNA and contributes to TMZ resistance in gliomas. In addition, recent studies have shown that MGMT gene expression could be regulated by the Wnt/β‐catenin pathway. However, whether 20(S)‐Rg3 inhibits MGMT expression and augments chemosensitivity to Temozolomide (TMZ) in glioma cells remains unclear. In this study, we explored the modulating effects of 20(S)‐Rg3 on MGMT. We used glioma cell lines, primary cell strain (including T98G, U118 and GBM‐XX; all of them are MGMT‐positive glioma cell lines) and xenograft glioma models to examine whether 20(S)‐Rg3 increased the sensitivity to TMZ and to reveal the underlying mechanisms. We found that the MGMT expression was effectively downregulated by 20(S)‐Rg3 via the Wnt/β‐catenin pathway in glioma cell lines, and TMZ resistance was significantly reversed by 20(S)‐Rg3. Meanwhile, 20(S)‐Rg3 shows no obvious cytotoxicity at its effective dose and is well tolerated in vivo. In addition, we found that 20(S)‐Rg3 significantly restrains the epithelial‐mesenchymal transition (EMT) progression of glioma cells. Taken together, these results indicate that 20(S)‐Rg3 may be a novel agent to use in treatment of GBM, especially in TMZ‐resistant GBM with high MGMT expression.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiangyu Wei
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lin Shen
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hanshuo Zhu
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xuesheng Zheng
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|