1
|
Liu Y, Peng Y, Chen L, Xiang Y, Zhang X, Song J. Single-cell sequencing systematically analyzed the mechanism of Emdogain on the restoration of delayed replantation periodontal membrane. Int J Oral Sci 2025; 17:33. [PMID: 40246878 PMCID: PMC12006293 DOI: 10.1038/s41368-024-00345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 04/19/2025] Open
Abstract
The repair of the periodontal membrane is essential for the successful management of periodontal disease and dental trauma. Emdogain® (EMD) is widely used in periodontal therapy due to its ability to promote repair. Despite substantial research, the cellular and molecular mechanisms underlying EMD's effects, particularly at the single-cell resolution, remain incompletely understood. This study established a delayed tooth replantation model in rats to investigate these aspects. Tooth loss rate and degree of loosening were evaluated at 4 and 8 weeks. Micro-CT, HE staining, TRAP staining, and immunofluorescence staining were evaluated to assess EMD's efficacy. Single-cell sequencing analyses generated single-cell maps that explored enrichment pathways, cell communication, and potential repair mechanisms. Findings indicated that EMD could reduce the rate of tooth loss, promote periodontal membrane repair, and reduce root and bone resorption. Single-cell analysis revealed that EMD promotes the importance of Vtn+ fibroblasts, enhancing matrix and tissue regeneration functions. Additionally, EMD stimulated osteogenic pathways, reduced osteoclastic activity, and promoted angiogenesis-related pathways, particularly bone-related H-type vessel expression in endothelial cells. Gene modules associated with angiogenesis, osteogenesis, and odontoblast differentiation were identified, suggesting EMD might facilitate osteogenesis and odontoblast differentiation by upregulating endothelium-related genes. Immune cell analysis indicated that EMD did not elicit a significant immune response. Cell communication analysis suggested that EMD fostered pro-regenerative networks driven by interactions between mesenchymal stem cells, fibroblasts, and endothelial cells. In conclusion, EMD proves to be an effective root surface therapy agent that supports the restoration of delayed replantation teeth.
Collapse
Affiliation(s)
- Yanyi Liu
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, China
| | - Yuhao Peng
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, China
| | - Lanhui Chen
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, China
| | - Yangfan Xiang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, China
| | - Ximu Zhang
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, China.
| | - Jinlin Song
- The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
- Chongqing Municipal Health Commission Key Laboratory of Oral Biomedical Engineering, Chongqing, China.
| |
Collapse
|
2
|
Patel A, Mahapatra S, Bishoyi AK, Sharma A, Makwana A, Swarnkar T, Gupta A, Sahoo PK, Shah S. Harnessing machine learning technique to authenticate differentially expressed genes in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2025; 139:211-219. [PMID: 39505585 DOI: 10.1016/j.oooo.2024.10.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE Advancements in early detection of the disease, prognosis and the development of therapeutic strategies necessitate tumor-specific biomarkers. Despite continuous efforts, no molecular marker has been proven to be an effective therapeutic tool for the early detection of cancer. The study aims to determine diagnostic and prognostic signature genes that may be involved in cancer pathology and hence, may serve as molecular markers. STUDY DESIGN Eight candidate genes were selected based on our prior study of transcriptomic sequencing and validated in 100 matched pair samples of oral squamous cell carcinoma (OSCC). We further utilized machine learning approaches and examined the diagnostic presentation and predictive ability of the OSCC genes retrieved from publicly available The Cancer Genome Atlas (TCGA) database and compared with our results. RESULTS We conducted qPCR analysis to validate the expression of each gene and observed that each gene was present in the majority of OSCC samples. The predictive ability of selected genes was stable (with an average accuracy of 84%) across different classifiers. However, on validation with our dataset, it showed 75% accuracy, which might be because of the demographic variation of the samples. CONCLUSIONS The present research outlines cancer-associated molecular biomarkers that might eventually contribute to an enhanced prognosis of cancer patient by identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Amisha Patel
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat 360020, India
| | - Saswati Mahapatra
- Department of Computer Application, Faculty of Technology, Siksha 'O' Anusandhan University, Bhubaneshwar, Odisha 751030, India
| | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - Abhishek Sharma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Abhijit Makwana
- Shree Nathalal Parekh Cancer Institute, Rajkot Cancer Society, Rajkot, Gujarat 360003, India
| | - Tripti Swarnkar
- Department of Computer Application, National Institute of Technology, Raipur CG (NITRR), Chhattisgarh 492010, India
| | - Anubha Gupta
- SBILab, Department of ECE, and Centre of Excellence in Healthcare, IIIT, Delhi, 110020, India
| | - Prasan Kumar Sahoo
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Sejal Shah
- Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat, 360003, India.
| |
Collapse
|
3
|
Fischer A, Han W, Hu S, Mück-Häusl M, Wannemacher J, Kadri S, Lin Y, Dai R, Christ S, Su Y, Dasgupta B, Sardogan A, Deisenhofer C, Dutta S, Kadri A, Güney TG, Correa-Gallegos D, Mayr CH, Hatz R, Stoleriu MG, Lindner M, Hilgendorff A, Adler H, Machens HG, Schiller HB, Hauck SM, Rinkevich Y. Targeting pleuro-alveolar junctions reverses lung fibrosis in mice. Nat Commun 2025; 16:173. [PMID: 39747171 PMCID: PMC11696612 DOI: 10.1038/s41467-024-55596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Lung fibrosis development utilizes alveolar macrophages, with mechanisms that are incompletely understood. Here, we fate map connective tissue during mouse lung fibrosis and observe disassembly and transfer of connective tissue macromolecules from pleuro-alveolar junctions (PAJs) into deep lung tissue, to activate fibroblasts and fibrosis. Disassembly and transfer of PAJ macromolecules into deep lung tissue occurs by alveolar macrophages, activating cysteine-type proteolysis on pleural mesothelium. The PAJ niche and the disassembly cascade is active in patient lung biopsies, persists in chronic fibrosis models, and wanes down in acute fibrosis models. Pleural-specific viral therapeutic carrying the cysteine protease inhibitor Cystatin A shuts down PAJ disassembly, reverses fibrosis and regenerates chronic fibrotic lungs. Targeting PAJ disassembly by targeting the pleura may provide a unique therapeutic avenue to treat lung fibrotic diseases.
Collapse
Affiliation(s)
- Adrian Fischer
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
| | - Wei Han
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany.
- Member of the German Center of Lung Research (DZL), Munich, Germany.
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Shaoping Hu
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- Zhangzhou Health Vocational College, Zhangzhou, China
| | - Martin Mück-Häusl
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Juliane Wannemacher
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Safwen Kadri
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yue Lin
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Simon Christ
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Yiqun Su
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Bikram Dasgupta
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Aydan Sardogan
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Christoph Deisenhofer
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Subhasree Dutta
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Amal Kadri
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Tankut Gökhan Güney
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Donovan Correa-Gallegos
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Christoph H Mayr
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Rudolf Hatz
- Asklepios Fachkliniken in Munich-Gauting, Munich, Germany
| | | | - Michael Lindner
- Asklepios Fachkliniken in Munich-Gauting, Munich, Germany
- University Department of Visceral and Thoracic Surgery Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anne Hilgendorff
- Helmholtz Zentrum München, Institute of Lung Biology & Disease, Group Mechanism of Neonatal Chronic Lung Disease, Member of the German Center of Lung Research (DZL), Munich, Germany
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Heiko Adler
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Munich, Germany
| | - Herbert B Schiller
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Chinese Institutes for Medical Research, Beijing, China.
- Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Farahani N, Alimohammadi M, Raei M, Nabavi N, Aref AR, Hushmandi K, Daneshi S, Razzaghi A, Taheriazam A, Hashemi M. Exploring the dual role of endoplasmic reticulum stress in urological cancers: Implications for tumor progression and cell death interactions. J Cell Commun Signal 2024; 18:e12054. [PMID: 39691874 PMCID: PMC11647052 DOI: 10.1002/ccs3.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 12/19/2024] Open
Abstract
The endoplasmic reticulum (ER) is crucial for maintaining calcium balance, lipid biosynthesis, and protein folding. Disruptions in ER homeostasis, often due to the accumulation of misfolded or unfolded proteins, lead to ER stress, which plays a significant role in various diseases, especially cancer. Urological cancers, which account for high male mortality worldwide, pose a persistent challenge due to their incurability and tendency to develop drug resistance. Among the numerous dysregulated biological mechanisms, ER stress is a key factor in the progression and treatment response of these cancers. This review highlights the dual role of aberrant ER stress activation in urologic cancers, affecting both tumor growth and therapeutic outcomes. While ER stress can support tumor growth through pro-survival autophagy, it primarily inhibits cancer progression via apoptosis and pro-death autophagy. Interestingly, ER stress can paradoxically aid cancer progression through mechanisms such as exosome-mediated immune evasion. Additionally, the review examines how pharmacological interventions, particularly with phytochemicals, can stimulate ER stress-mediated tumor suppression. Key regulators, including PERK, IRE1α, and ATF6, are discussed for their roles in upregulating CHOP levels and triggering apoptosis. In conclusion, a deeper understanding of ER stress in urological cancers not only clarifies the complex interactions between cellular stress and cancer progression but also provides new opportunities for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mina Alimohammadi
- Department of ImmunologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Raei
- Health Research CenterLife Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Department of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kiavash Hushmandi
- Nephrology and Urology Research CenterClinical Sciences InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Salman Daneshi
- Department of Public HealthSchool of HealthJiroft University of Medical SciencesJiroftIran
| | - Alireza Razzaghi
- Social Determinants of Health Research CenterResearch Institute for Prevention of Non‐Communicable DiseasesQazvin University of Medical SciencesQazvinIran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of OrthopedicsFaculty of MedicineTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
5
|
Kajdaniuk D, Hudy D, Strzelczyk JK, Młynarek K, Słomian S, Potyka A, Szymonik E, Strzelczyk J, Foltyn W, Kos-Kudła B, Marek B. Transforming growth factors β and their signaling pathway in renal cell carcinoma and peritumoral space-transcriptome analysis. Clin Transl Oncol 2024; 26:1229-1239. [PMID: 38085441 PMCID: PMC11026247 DOI: 10.1007/s12094-023-03350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/03/2023] [Indexed: 04/20/2024]
Abstract
PURPOSE The aim of the study was to verify hypotheses: Are transforming growth factors TGFβ1-3, their receptors TGFβI-III, and intracellular messenger proteins Smad1-7 involved in the pathogenesis of kidney cancer? What is the expression of genes of the TGFβ/Smads pathway in renal cell carcinoma (RCC) tissues, peritumoral tissues (TME; tumor microenvironment), and in normal kidney (NK) tissue?. METHODS Twenty patients with RCC who underwent total nephrectomy were included into the molecular analysis. The mRNA expression of the genes was quantified by RT-qPCR. RESULTS The study showed that the expression of the genes of TGFβ/Smads pathway is dysregulated in both RCC and the TME: TGFβ1, TGFβ3 expression is increased in the TME in comparison to the NK tissues; TGFβ2, TGFβ3, TGFβRI, TGFβRIII, Smad1, Smad2, Smad3, and Smad6 are underexpressed in RCC comparing to the TME tissues; TGFβRI, TGFβRIII, and Smad2 are underexpressed in RCC in comparison to the NK tissues. CONCLUSION On the one hand, the underexpression of the TGFβ signaling pathway genes within the malignant tumor may result in the loss of the antiproliferative and pro-apoptotic activity of this cytokine. On the other hand, the overexpression of the TGFβ/Smads pathway genes in the TME than in tumor or NK tissues most probably results in an immunosuppressive effect in the space surrounding the tumor and may have an antiproliferative and pro-apoptotic effect on non-neoplastic cells present in the TME. The functional and morphological consistency of this area may determine the aggressiveness of the tumor and the time in which the neoplastic process will spread.
Collapse
Affiliation(s)
- Dariusz Kajdaniuk
- Department of Pathophysiology, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, H. Jordana 19, Zabrze, 41-808, Katowice, Poland.
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Krystyna Młynarek
- Department of Urology, Regional Specialist Hospital No. 3, Rybnik, Poland
| | - Szymon Słomian
- Department of Urology, Regional Specialist Hospital No. 3, Rybnik, Poland
| | - Andrzej Potyka
- Department of Urology, Regional Specialist Hospital No. 3, Rybnik, Poland
| | - Ewa Szymonik
- Department of Anesthesiology and Intensive Care, Brothers Hospitallers of Saint John of God Hospital in Katowice, Katowice, Poland
| | - Janusz Strzelczyk
- Department of Endocrinology and Neuroendocrine Tumors, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wanda Foltyn
- Department of Endocrinology and Neuroendocrine Tumors, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Bogdan Marek
- Department of Pathophysiology, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, H. Jordana 19, Zabrze, 41-808, Katowice, Poland
| |
Collapse
|
6
|
Chen Q, Guo H, Jiang H, Hu Z, Yang X, Yuan Z, Gao Y, Zhang G, Bai Y. S100A2 induces epithelial-mesenchymal transition and metastasis in pancreatic cancer by coordinating transforming growth factor β signaling in SMAD4-dependent manner. Cell Death Discov 2023; 9:356. [PMID: 37758734 PMCID: PMC10533899 DOI: 10.1038/s41420-023-01661-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumor and is associated with a poor prognosis. Treatment strategies for PDAC are largely ineffective primarily because of delay in its diagnosis and limited efficacy of systematic treatment. S100A2 is associated with the proliferation, migration, and differentiation of several tumors; however, its effects on PDAC and the associated molecular mechanisms remain to be explored. We studied the mechanisms underlying the effect of S100A2 on epithelial-mesenchymal transition (EMT) and metastasis in PDAC cells. We found that the level of S100A2 remarkably increased and was associated with poor PDAC prognosis. The overexpression of S100A2 in PANC-1 cells also induced EMT, in addition to increasing the invasion and migration of PDAC cells, whereas the knockdown of S100A2 markedly inhibited cell metastasis. Furthermore, S100A2 was found to enhance metastatic abilities in vivo. The overexpression of S100A2 increased SMAD4 expression, whereas the knockdown of S100A2 reduced SMAD4 expression. SMAD4 overexpression could effectively rescue the effects of S100A2 knockdown on EMT. S100A2 mechanistically activated the transforming growth factor (TGF)-β/Smad2/3 signaling pathway, upregulated SMAD4 expression, induced EMT, and increased PANC-1 cell metastasis. In conclusion, the S100A2/SMAD4 axis modulates EMT to accelerate PDAC development. Our results supplement and enrich the understanding of the pathogenesis underlying PDAC and provide a new theoretical basis and strategy targeting S100A2 for the diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Qinbo Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Haojie Jiang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Ge Zhang
- Department of Orthopedics, The First Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| |
Collapse
|
7
|
Wu X, Xie W, Gong B, Fu B, Chen W, Zhou L, Luo L. Development of a TGF-β signaling-related genes signature to predict clinical prognosis and immunotherapy responses in clear cell renal cell carcinoma. Front Oncol 2023; 13:1124080. [PMID: 36776317 PMCID: PMC9911835 DOI: 10.3389/fonc.2023.1124080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Background Transforming growth factor (TGF)-β signaling is strongly related to the development and progression of tumor. We aimed to construct a prognostic gene signature based on TGF-β signaling-related genes for predicting clinical prognosis and immunotherapy responses of patients with clear cell renal cell carcinoma (ccRCC). Methods The gene expression profiles and corresponding clinical information of ccRCC were collected from the TCGA and the ArrayExpress (E-MTAB-1980) databases. LASSO, univariate and multivariate Cox regression analyses were conducted to construct a prognostic signature in the TCGA cohort. The E-MTAB-1980 cohort were used for validation. Kaplan-Meier (K-M) survival and time-dependent receiver operating characteristic (ROC) were conducted to assess effectiveness and reliability of the signature. The differences in gene enrichments, immune cell infiltration, and expression of immune checkpoints in ccRCC patients showing different risks were investigated. Results We constructed a seven gene (PML, CDKN2B, COL1A2, CHRDL1, HPGD, CGN and TGFBR3) signature, which divided the ccRCC patients into high risk group and low risk group. The K-M analysis indicated that patients in the high risk group had a significantly shorter overall survival (OS) time than that in the low risk group in the TCGA (p < 0.001) and E-MTAB-1980 (p = 0.012). The AUC of the signature reached 0.77 at 1 year, 0.7 at 3 years, and 0.71 at 5 years in the TCGA, respectively, and reached 0.69 at 1 year, 0.72 at 3 years, and 0.75 at 5 years in the E-MTAB-1980, respectively. Further analyses confirmed the risk score as an independent prognostic factor for ccRCC (p < 0.001). The results of ssGSEA that immune cell infiltration degree and the scores of immune-related functions were significantly increased in the high risk group. The CIBERSORT analysis indicated that the abundance of immune cell were significantly different between two risk groups. Furthermore, The risk score was positively related to the expression of PD-1, CTLA4 and LAG3.These results indicated that patients in the high risk group benefit more from immunotherapy. Conclusion We constructed a novel TGF-β signaling-related genes signature that could serve as an promising independent factor for predicting clinical prognosis and immunotherapy responses in ccRCC patients.
Collapse
|
8
|
Che X, Li J, Xu Y, Wang Q, Wu G. Analysis of genomes and transcriptomes of clear cell renal cell carcinomas identifies mutations and gene expression changes in the TGF-beta pathway. Front Genet 2022; 13:953322. [PMID: 36186427 PMCID: PMC9519989 DOI: 10.3389/fgene.2022.953322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The occurrence of clear cell renal cell carcinoma (ccRCC) is related to changes in the transforming growth factor-β (TGF-β) signaling pathway. In this study, we adopted an integrated approach to identify and verify the effects of changes in this pathway on ccRCC and provide a guide for identifying new therapeutic targets. We performed transcriptome analysis of 539 ccRCC cases from The Cancer Genome Atlas (TCGA) and divided the samples into different TGF-β clusters according to unsupervised hierarchical clustering. We found that 76 of the 85 TGF-β pathway genes were dysregulated, and 55 genes were either protective or risk factors affecting the prognosis of ccRCC. The survival time of patients with tumors with low TGF-β scores was shorter than that of patients with tumors with high TGF-β scores. The overall survival (OS) of patients with ccRCC with high TGF-β scores was better than that of patients with low TGF-β scores. The TGF-β score correlated with the expression of key ccRCC and deacetylation genes. The sensitivity of tumor patients to targeted drugs differed between the high and low TGF-β score groups. Therefore, a prognostic model based on the TGF-β gene pathway can predict the prognosis of ccRCC patients. Grouping patients with ccRCC according to their TGF-β score is of great significance for evaluating the prognosis of patients, selecting targeted drugs, and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jianyi Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
9
|
Ehata S, Miyazono K. Bone Morphogenetic Protein Signaling in Cancer; Some Topics in the Recent 10 Years. Front Cell Dev Biol 2022; 10:883523. [PMID: 35693928 PMCID: PMC9174896 DOI: 10.3389/fcell.2022.883523] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, are multifunctional cytokines. BMPs have a broad range of functions, and abnormalities in BMP signaling pathways are involved in cancer progression. BMPs activate the proliferation of certain cancer cells. Malignant phenotypes of cancer cells, such as increased motility, invasiveness, and stemness, are enhanced by BMPs. Simultaneously, BMPs act on various cellular components and regulate angiogenesis in the tumor microenvironment. Thus, BMPs function as pro-tumorigenic factors in various types of cancer. However, similar to TGF-β, which shows both positive and negative effects on tumorigenesis, BMPs also act as tumor suppressors in other types of cancers. In this article, we review important findings published in the recent decade and summarize the pro-oncogenic functions of BMPs and their underlying mechanisms. The current status of BMP-targeted therapies for cancers is also discussed.
Collapse
Affiliation(s)
- Shogo Ehata
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Shogo Ehata,
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Momoi Y, Nishida J, Miyakuni K, Kuroda M, Kubota SI, Miyazono K, Ehata S. Heterogenous expression of endoglin marks advanced renal cancer with distinct tumor microenvironment fitness. Cancer Sci 2021; 112:3136-3149. [PMID: 34091990 PMCID: PMC8353946 DOI: 10.1111/cas.15007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Intratumoral heterogeneity, including in clear cell renal cell carcinoma, is a potential cause of drug resistance and metastatic cancer progression. We specified the heterogeneous population marked by endoglin (also known as CD105) in a preclinical model of clear cell renal cell carcinoma progression. Highly malignant derivatives of human clear cell renal cell carcinoma OS‐RC‐2 cells were established as OS5Ks by serial orthotopic inoculation in our previous study. Expression of both ENG (encoding endoglin) mRNA and protein were heterogeneously upregulated in OS5Ks, and the endoglin‐positive (ENG+) population exhibited growth dependency on endoglin in anchorage‐independent cultures. Despite the function of endoglin as a type III receptor, transforming growth factor β and bone morphogenetic protein‐9 signaling were unlikely to contribute to the proliferative phenotype. Although endoglin has been proposed as a marker for renal cancer‐initiating cells, the OS5K‐3 ENG+ population did not enrich other reported cancer‐initiating cell markers or differentiate into the ENG– population. Mouse tumor inoculation models revealed that the tumor‐forming capabilities of OS5K‐3 ENG+ and ENG– cells in vivo were highly dependent on the microenvironment, with the renal microenvironment most preferable to ENG+ cells. In conclusion, the renal microenvironment, rather than the hypothesized ENG+ cell‐centered hierarchy, maintains cellular heterogeneity in clear cell renal cell carcinoma. Therefore, the effect of the microenvironment should be considered when evaluating the proliferative capability of renal cancer cells in the experimental settings.
Collapse
Affiliation(s)
- Yusaku Momoi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Jun Nishida
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Kosuke Miyakuni
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Masafumi Kuroda
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Japan
| | - Shimpei I Kubota
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan.,Environmental Science Center, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
11
|
Miyakuni K, Nishida J, Koinuma D, Nagae G, Aburatani H, Miyazono K, Ehata S. Genome-wide analysis of DNA methylation identifies the apoptosis-related gene UQCRH as a tumor suppressor in renal cancer. Mol Oncol 2021; 16:732-749. [PMID: 34133843 PMCID: PMC8807364 DOI: 10.1002/1878-0261.13040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
DNA hypermethylation is frequently observed in clear cell renal cell carcinoma (ccRCC) and correlates with poor clinical outcomes. However, the detailed function of DNA hypermethylation in ccRCC has not been fully uncovered. Here, we show the role of DNA methylation in ccRCC progression through the identification of a target(s) of DNA methyltransferases (DNMT). Our preclinical model of ccRCC using the serial orthotopic inoculation model showed the upregulation of DNMT3B in advanced ccRCC. Pretreatment of advanced ccRCC cells with 5-aza-deoxycytidine, a DNMT inhibitor, attenuated the formation of primary tumors through the induction of apoptosis. DNA methylated sites were analyzed genome-wide using methylation array in reference to RNA-sequencing data. The gene encoding ubiquinol cytochrome c reductase hinge protein (UQCRH), one of the components of mitochondrial complex III, was extracted as a methylation target in advanced ccRCC. Immunohistochemical analysis revealed that the expression of UQCRH in human ccRCC tissues was lower than normal adjacent tissues. Silencing of UQCRH attenuated the cytochrome c release in response to apoptotic stimuli and resulted in enhancement of primary tumor formation in vivo, implying the tumor-suppressive role of UQCRH. Moreover, 5-aza-deoxycytidine enhanced the therapeutic efficiency of mammalian target of rapamycin inhibitor everolimus in vivo. These findings suggested that the DNMT3B-induced methylation of UQCRH may contribute to renal cancer progression and implicated clinical significance of DNMT inhibitor as a therapeutic option for ccRCC.
Collapse
Affiliation(s)
- Kosuke Miyakuni
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Jun Nishida
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Environmental Science Center, The University of Tokyo, Japan
| |
Collapse
|
12
|
Kubota SI, Takahashi K, Mano T, Matsumoto K, Katsumata T, Shi S, Tainaka K, Ueda HR, Ehata S, Miyazono K. Whole-organ analysis of TGF-β-mediated remodelling of the tumour microenvironment by tissue clearing. Commun Biol 2021; 4:294. [PMID: 33674758 PMCID: PMC7935961 DOI: 10.1038/s42003-021-01786-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023] Open
Abstract
Tissue clearing is one of the most powerful strategies for a comprehensive analysis of disease progression. Here, we established an integrated pipeline that combines tissue clearing, 3D imaging, and machine learning and applied to a mouse tumour model of experimental lung metastasis using human lung adenocarcinoma A549 cells. This pipeline provided the spatial information of the tumour microenvironment. We further explored the role of transforming growth factor-β (TGF-β) in cancer metastasis. TGF-β-stimulated cancer cells enhanced metastatic colonization of unstimulated-cancer cells in vivo when both cells were mixed. RNA-sequencing analysis showed that expression of the genes related to coagulation and inflammation were up-regulated in TGF-β-stimulated cancer cells. Further, whole-organ analysis revealed accumulation of platelets or macrophages with TGF-β-stimulated cancer cells, suggesting that TGF-β might promote remodelling of the tumour microenvironment, enhancing the colonization of cancer cells. Hence, our integrated pipeline for 3D profiling will help the understanding of the tumour microenvironment.
Collapse
Affiliation(s)
- Shimpei I Kubota
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kei Takahashi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Mano
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Matsumoto
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Osaka, Japan
| | - Takahiro Katsumata
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoi Shi
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuki Tainaka
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Osaka, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Environmental Science Center, The University of Tokyo, Tokyo, Japan.
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Takahashi K, Ehata S, Miyauchi K, Morishita Y, Miyazawa K, Miyazono K. Neurotensin receptor 1 signaling promotes pancreatic cancer progression. Mol Oncol 2021; 15:151-166. [PMID: 33034134 PMCID: PMC7782081 DOI: 10.1002/1878-0261.12815] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is one of the cancers with the poorest prognosis, with a 5-year survival rate of approximately 5-10%. Thus, it is urgent to identify molecular targets for the treatment of pancreatic cancer. Using serial transplantations in a mouse pancreatic orthotopic inoculation model, we previously produced highly malignant pancreatic cancer sublines with increased tumor-forming abilities in vivo. Here, we used these sublines to screen molecular targets for the treatment of pancreatic cancer. Among the genes with increased expression levels in the sublines, we focused on those encoding cell surface receptors that may be involved in the interactions between cancer cells and the tumor microenvironment. Based on our previous RNA-sequence analysis, we found increased expression levels of neurotensin (NTS) receptor 1 (NTSR1) in highly malignant pancreatic cancer sublines. Furthermore, re-analysis of clinical databases revealed that the expression level of NTSR1 was increased in advanced pancreatic cancer and that high NTSR1 levels were correlated with a poor prognosis. Overexpression of NTSR1 in human pancreatic cancer cells Panc-1 and SUIT-2 accelerated their tumorigenic and metastatic abilities in vivo. In addition, RNA-sequence analysis showed that MAPK and NF-κB signaling pathways were activated upon NTS stimulation in highly malignant cancer sublines and also revealed many new target genes for NTS in pancreatic cancer cells. NTS stimulation increased the expression of MMP-9 and other pro-inflammatory cytokines and chemokines in pancreatic cancer cells. Moreover, the treatment with SR48692, a selective NTSR1 antagonist, suppressed the activation of the MAPK and NF-κB signaling pathways and induction of target genes in pancreatic cancer cells in vitro, while the administration of SR48692 attenuated the tumorigenicity of pancreatic cancer cells in vivo. These findings suggest that NTSR1 may be a prognostic marker and a molecular target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Shogo Ehata
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
- Environmental Science CenterThe University of TokyoBunkyo‐kuJapan
| | - Kensuke Miyauchi
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Yasuyuki Morishita
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Keiji Miyazawa
- Department of BiochemistryGraduate School of MedicineUniversity of YamanashiChuoJapan
| | - Kohei Miyazono
- Department of Molecular PathologyGraduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| |
Collapse
|
14
|
Wu ZH, Tang Y, Niu X, Cheng Q. Expression and gene regulation network of INHBA in Head and neck squamous cell carcinoma based on data mining. Sci Rep 2019; 9:14341. [PMID: 31586103 PMCID: PMC6778107 DOI: 10.1038/s41598-019-50865-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Inhibin subunit beta A(INHBA) encodes an individual from the TGF-β superfamily of proteins and the ligand could be further homo-dimerized to shape activin A or hetero-dimerized to frame inhibin with inhibin beta B. We studied INHBA expression, mutations, regulation, function networks and immune infiltrates in data from patients with Head and neck squamous cell carcinoma (HNSCC) based on different open databases by utilizing multi-dimensional investigation techniques. This study gives staggered evidence for the significance of INHBA in head and neck squamous cell carcinoma and its potential role as a novel biomarker. Our outcomes propose that INHBA overexpression in HNSCC has profound impacts in the center hub of post-transcriptional regulation, which is firmly identified with protein translation. Meanwhile, we also examine the function of the identified miRNAs that were related to INHBA and molecular function of these miRNAs were mainly enhanced in transcription factor activity, transcription regulator activity. In addition, B cells of immune infiltrates affecting the prognosis and might have a prognostic significance related to INHBA in HNSCC. Our outcomes show that data mining efficiently uncovers information about INHBA expression in HNSCC and more importance establishing a foundation for further investigation of the role of INHBA in carcinogenesis.
Collapse
Affiliation(s)
- Zeng-Hong Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Tang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xun Niu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Cheng
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Dituri F, Cossu C, Mancarella S, Giannelli G. The Interactivity between TGFβ and BMP Signaling in Organogenesis, Fibrosis, and Cancer. Cells 2019; 8:E1130. [PMID: 31547567 PMCID: PMC6829314 DOI: 10.3390/cells8101130] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The Transforming Growth Factor beta (TGFβ) and Bone Morphogenic Protein (BMP) pathways intersect at multiple signaling hubs and cooperatively or counteractively participate to bring about cellular processes which are critical not only for tissue morphogenesis and organogenesis during development, but also for adult tissue homeostasis. The proper functioning of the TGFβ/BMP pathway depends on its communication with other signaling pathways and any deregulation leads to developmental defects or diseases, including fibrosis and cancer. In this review we explore the cellular and physio-pathological contexts in which the synergism or antagonism between the TGFβ and BMP pathways are crucial determinants for the normal developmental processes, as well as the progression of fibrosis and malignancies.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Carla Cossu
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
16
|
Taguchi L, Miyakuni K, Morishita Y, Morikawa T, Fukayama M, Miyazono K, Ehata S. c-Ski accelerates renal cancer progression by attenuating transforming growth factor β signaling. Cancer Sci 2019; 110:2063-2074. [PMID: 30972853 PMCID: PMC6550129 DOI: 10.1111/cas.14018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 12/11/2022] Open
Abstract
Although transforming growth factor beta (TGF‐β) is known to be involved in the pathogenesis and progression of many cancers, its role in renal cancer has not been fully investigated. In the present study, we examined the role of TGF‐β in clear cell renal carcinoma (ccRCC) progression in vitro and in vivo. First, expression levels of TGF‐β signaling pathway components were examined. Microarray and immunohistochemical analyses showed that the expression of c‐Ski, a transcriptional corepressor of Smad‐dependent TGF‐β and bone morphogenetic protein (BMP) signaling, was higher in ccRCC tissues than in normal renal tissues. Next, a functional analysis of c‐Ski effects was carried out. Bioluminescence imaging of renal orthotopic tumor models demonstrated that overexpression of c‐Ski in human ccRCC cells promoted in vivo tumor formation. Enhancement of tumor formation was also reproduced by the introduction of a dominant‐negative mutant TGF‐β type II receptor into ccRCC cells. In contrast, introduction of the BMP signaling inhibitor Noggin failed to accelerate tumor formation, suggesting that the tumor‐promoting effect of c‐Ski depends on the inhibition of TGF‐β signaling rather than of BMP signaling. Finally, the molecular mechanism of the tumor‐suppressive role of TGF‐β was assessed. Although TGF‐β signaling did not affect tumor angiogenesis, apoptosis of ccRCC cells was induced by TGF‐β. Taken together, these findings suggest that c‐Ski suppresses TGF‐β signaling in ccRCC cells, which, in turn, attenuates the tumor‐suppressive effect of TGF‐β.
Collapse
Affiliation(s)
- Luna Taguchi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Miyakuni
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Teppei Morikawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Environmental Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|