1
|
Liu Y, Zhang X, Gu W, Su H, Wang X, Wang X, Zhang J, Xu M, Sheng W. Unlocking the crucial role of cancer-associated fibroblasts in tumor metastasis: Mechanisms and therapeutic prospects. J Adv Res 2025; 71:399-413. [PMID: 38825314 DOI: 10.1016/j.jare.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Tumor metastasis represents a stepwise progression and stands as a principal determinant of unfavorable prognoses among cancer patients. Consequently, an in-depth exploration of its mechanisms holds paramount clinical significance. Cancer-associated fibroblasts (CAFs), constituting the most abundant stromal cell population within the tumor microenvironment (TME), have garnered robust evidence support for their pivotal regulatory roles in tumor metastasis. AIM OF REVIEW This review systematically explores the roles of CAFs at eight critical stages of tumorigenic dissemination: 1) extracellular matrix (ECM) remodeling, 2) epithelial-mesenchymal transition (EMT), 3) angiogenesis, 4) tumor metabolism, 5) perivascular migration, 6) immune escape, 7) dormancy, and 8) premetastatic niche (PMN) formation. Additionally, we provide a compendium of extant strategies aimed at targeting CAFs in cancer therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW This review delineates a structured framework for the interplay between CAFs and tumor metastasis while furnishing insights for the potential therapeutic developments. It contributes to a deeper understanding of cancer metastasis within the TME, facilitating the utilization of CAF-targeting therapies in anti-metastatic approaches.
Collapse
Affiliation(s)
- Yingxue Liu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan
| | - Hui Su
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Jiayu Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Zeng W, Zhang R, Huang P, Chen M, Chen H, Zeng X, Liu J, Zhang J, Huang D, Lao L. Ferroptotic Neutrophils Induce Immunosuppression and Chemoresistance in Breast Cancer. Cancer Res 2025; 85:477-496. [PMID: 39531510 PMCID: PMC11786957 DOI: 10.1158/0008-5472.can-24-1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Inducing ferroptosis in tumor cells is emerging as a strategy for treating malignancies that are refractory to traditional treatment modalities. However, the consequences of ferroptosis of immune cells in the tumor microenvironment need to be better understood in order to realize the potential of this approach. In this study, we discovered that neutrophils in chemoresistant breast cancer are highly sensitive to ferroptosis. Reduction of the acyltransferase MOAT1 in chemoresistance-associated neutrophils induced phospholipid reprogramming, switching the preference from monounsaturated fatty acids to polyunsaturated fatty acids, which increased their susceptibility to ferroptosis. Ferroptotic neutrophils secreted PGE2, IDO, and oxidized lipids that suppressed the proliferation and cytotoxicity of antitumor CD8+ T cells. Furthermore, neutrophil ferroptosis was closely related to a distinct subset of IL1β+CXCL3+CD4+ (Fer-CD4) T lymphocytes, which were enriched in chemoresistant tumors. Fer-CD4 T cells orchestrated neutrophil ferroptosis by modulating MOAT1 expression via IL1β/IL1R1/NF-κB signaling. Moreover, Fer-CD4 T cells secreted CXCL3, IL8, and S100A9 to replenish the neutrophil pool in the tumor microenvironment. Ferroptotic neutrophils in turn fostered Fer-CD4 T-cell differentiation. In spontaneous tumorigenesis mouse models, targeting IL1β+ CD4+ T cells or IL1R1+ neutrophils broke the cross-talk, restraining neutrophil ferroptosis, enhancing antitumor immunity, and overcoming chemoresistance. Overall, these findings uncover the role of neutrophil ferroptosis in shaping the immune landscape and propose appealing targets for restoring immunosurveillance and chemosensitivity in breast cancer. Significance: In chemoresistant breast cancer, IL1β+CXCL3+CD4+ T cells mediate neutrophil ferroptosis that suppresses antitumor immunity, indicating that interfering with this intercellular cross-talk could be an attractive strategy to reverse chemoresistance.
Collapse
Affiliation(s)
- Wenfeng Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruihua Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Penghan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minxia Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Houying Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiahui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liyan Lao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Zhang X, Zhang M, Sun H, Wang X, Wang X, Sheng W, Xu M. The role of transcription factors in the crosstalk between cancer-associated fibroblasts and tumor cells. J Adv Res 2025; 67:121-132. [PMID: 38309692 PMCID: PMC11725164 DOI: 10.1016/j.jare.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Transcription factors (TFs) fulfill a critical role in the formation and maintenance of different cell types during the developmental process as well as disease. It is believed that cancer-associated fibroblasts (CAFs) are activation status of tissue-resident fibroblasts or derived from form other cell types via transdifferentiation or dedifferentiation. Despite a subgroup of CAFs exhibit anti-cancer effects, most of them are reported to exert effects on tumor progression, further indicating their heterogeneous origin. AIM OF REVIEW This review aimed to summarize and review the roles of TFs in the reciprocal crosstalk between CAFs and tumor cells, discuss the emerging mechanisms, and their roles in cell-fate decision, cellular reprogramming and advancing our understanding of the gene regulatory networks over the period of cancer initiation and progression. KEY SCIENTIFIC CONCEPTS OF REVIEW This manuscript delves into the key contributory factors of TFs that are involved in activating CAFs and maintaining their unique states. Additionally, it explores how TFs play a pivotal and multifaceted role in the reciprocal crosstalk between CAFs and tumor cells. This includes their involvement in processes such as epithelial-mesenchymal transition (EMT), proliferation, invasion, and metastasis, as well as metabolic reprogramming. TFs also have a role in constructing an immunosuppressive microenvironment, inducing resistance to radiation and chemotherapy, facilitating angiogenesis, and even 'educating' CAFs to support the malignancies of tumor cells. Furthermore, this manuscript delves into the current status of TF-targeted therapy and considers the future directions of TFs in conjunction with anti-CAFs therapies to address the challenges in clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Mannewitz M, Kolben T, Perleberg C, Meister S, Hahn L, Mitter S, Schmoeckel E, Mahner S, Corradini S, Trillsch F, Kessler M, Jeschke U, Beyer S. CCL22 as an independent prognostic factor in endometrial cancer patients. Transl Oncol 2024; 50:102116. [PMID: 39232378 PMCID: PMC11404215 DOI: 10.1016/j.tranon.2024.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVES The chemokine CCL22 is recognized for recruiting immunosuppressive regulatory T-cells (Treg) that contribute to disease progression in various tumor entities helping them to evade the host immune response. Our study aims to identify the expressing cell types and to evaluate the prognostic significance of CCL22 secretion and its association with Treg invasion in endometrial cancer (EC), an immunogenic cancer. METHODS Specimens from 275 patients with EC and 28 healthy controls were screened immunohistochemically for CCL22. Immunofluorescence double-staining for CCL22 and different immune cell markers was performed. In vitro regulation of CCL22-expression was examined in EC cell lines (Ishikawa+, RL95-2) and human PBMCs in coculture settings via qPCR and ELISA. RESULTS Elevated CCL22 staining in tumor cells and CCL22-positive M1-macrophages in tumordistant areas were significantly associated with increased overall survival (OS). Conversely, high, secretory-appearing staining in the peritumoral and intratumoral stroma correlated with reduced OS. Although the analysis of the in vitro coculture model of epithelial tumor- and immune cells revealed PBMCs as the primary source of CCL22, we could confirm expression of the chemokine also in the EC epithelial cells. CONCLUSION Our study suggests that CCL22 in EC is associated with OS, dependent on its location and the cell type producing it. Intracellular upregulation and extracellular secretion must be considered separately when investigating CCL22 expressing cell types in EC. These results may provide evidence for CCL22-mediated Treg recruitment in EC as a potential future therapeutic target.
Collapse
Affiliation(s)
- Mareike Mannewitz
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany.
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Carolin Perleberg
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Laura Hahn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Sophie Mitter
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | | | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation-Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Zhang L, Tian S, Chang J, Quan S, Yang T, Zhao M, Wang L, Yang X. Activation of the CCL22/CCR4 causing EMT process remodeling under EZH2-mediated epigenetic regulation in cervical carcinoma. J Cancer 2024; 15:6299-6314. [PMID: 39513112 PMCID: PMC11540513 DOI: 10.7150/jca.101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/21/2024] [Indexed: 11/15/2024] Open
Abstract
Cervical cancer (CC) is an important public health problem for women, gene expression patterns which were governed by epigenetic modifications can result in CC, CC-chemokine receptor 4 (CCR4) interacts with C-C-motif ligand 22 (CCL22) is associated with tumor progression or metastasis. A previous study by the present authors revealed the levels of chemokine CCL22 and its receptor CCR4 are increased in CC tissues, nevertheless, the regulatory mechanisms governing its expression remain poorly understood. The present study aimed to investigate the potential role of enhancer of zeste homolog 2 (EZH2)-induced epigenetic activation of CCL22/CCR4 and caused epithelial-to-mesenchymal transition (EMT) remodeling in CC. CCL22 and CCR4 were significantly up-regulated in CC samples compared with normal cervix tissues, and obvious induction of promoter DNA methylation levels of CCL22 and CCR4 was found in CC tissues. Demethylation reactivated the transcription of CCL22 and CCR4. DNA methyltransferase 3A (DNMT3A) was found to directly bind to the CCL22 and CCR4 promoter regions in vitro. Downregulation of the expression of EZH2 in CC cell lines altered DNMT3A expression and induced CCL22 and CCR4 promoters' methylation levels, while CCL22 and CCR4 mRNA expression decreased. An in vivo assay showed that EZH2 regulated the expression of CCL22/CCR4 components through DNMT3A, consistent with the in vitro results. In EZH2-silenced CC cells, migration was reduced, levels of EMT-related markers, including vimentin, slug, snail and β-catenin, were all reduced and zona occludens 1 (ZO-1) increased. In DNMT3A-silenced CC cells, migration was induced, vimentin, slug, snail and β-catenin were all induced and ZO-1 was reduced. Inhibition of CCL22 protein significantly decreased migration of CC cells and vimentin, slug, snail and β-catenin levels, while ZO-1 increased. In conclusion, EZH2 appears to regulate CCL22/CCR4 expression via epigenetic activation, causing EMT process remodeling in CC progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 West Yanta Road, Xi'an 710061, China
| |
Collapse
|
6
|
Hu J, Xu H, Ma X, Bai M, Zhou Y, Miao R, Wang F, Li X, Cheng B. Modulating PCGF4/BMI1 Stability Is an Efficient Metastasis-Regulatory Strategy Used by Distinct Subtypes of Cancer-Associated Fibroblasts in Intrahepatic Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1388-1404. [PMID: 38670529 DOI: 10.1016/j.ajpath.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/17/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm prone to metastasis. Whether cancer-associated fibroblasts (CAFs) affect the metastasis of ICC is unclear. Herein, ICC patient-derived CAF lines and related cancerous cell lines were established and the effects of CAFs on the tumor progressive properties of the ICC cancerous cells were analyzed. CAFs could be classified into cancer-restraining or cancer-promoting categories based on distinct tumorigenic effects. The RNA-sequencing analyses of ICC cancerous cell lines identified polycomb group ring finger 4 (PCGF4; alias BMI1) as a potential metastasis regulator. The changes of PCGF4 levels in ICC cells mirrored the restraining or promoting effects of CAFs on ICC migration. Immunohistochemical analyses on the ICC tissue microarrays indicated that PCGF4 was negatively correlated with overall survival of ICC. The promoting effects of PCGF4 on cell migration, drug resistance activity, and stemness properties were confirmed. Mechanistically, cancer-restraining CAFs triggered the proteasome-dependent degradation of PCGF4, whereas cancer-promoting CAFs enhanced the stability of PCGF4 via activating the IL-6/phosphorylated STAT3 pathway. In summary, the current data identified the role of CAFs in ICC metastasis and revealed a new mechanism of the CAFs on ICC progression in which PCGF4 acted as the key effector by both categories of CAFs. These findings shed light on developing comprehensive therapeutic strategies for ICC.
Collapse
Affiliation(s)
- Jinjing Hu
- School of Life Sciences, Lanzhou University, Lanzhou, China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Hao Xu
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaojun Ma
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mingzhen Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yongqiang Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ruidong Miao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fanghong Wang
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Bo Cheng
- School of Life Sciences, Lanzhou University, Lanzhou, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China.
| |
Collapse
|
7
|
Mahale A, Routholla G, Lavanya S, Sharma P, Ghosh B, Kulkarni OP. Pharmacological blockade of HDAC6 attenuates cancer progression by inhibiting IL-1β and modulating immunosuppressive response in OSCC. Int Immunopharmacol 2024; 132:111921. [PMID: 38547770 DOI: 10.1016/j.intimp.2024.111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
Interleukin-1-beta (IL-1β) one of the biomarkers for oral squamous cell carcinoma (OSCC), is upregulated in tumor-microenvironment (TME) and associated with poor patient survival. Thus, a novel modulator of IL-1β would be of great therapeutic value for OSCC treatment. Here we report regulation of IL-1β and TME by histone deacetylase-6 (HDAC6)-inhibitor in OSCC. We observed significant upregulation of HDAC6 in 4-nitroquniline (4-NQO)-induced OSCC in mice and 4-NQO & Lipopolysaccharide (LPS) stimulated OSCC and fibroblast cells. Tubastatin A (TSA)-attenuated the OSCC progression in mice as observed improvement in the histology over tongue and esophagus, with reduced tumor burden. TSA treatment to 4-NQO mice attenuated protein expression of HDAC6, pro-and-mature-IL-1β and pro-and-cleaved-caspase-1 and ameliorated acetylated-tubulin. In support of our experimental work, human TCGA analysis revealed HDAC6 and IL-1β were upregulated in the primary tumor, with different tumor stages and grades. We found TSA modulate TME, indicated by downregulation of CD11b+Gr1+-Myeloid-derived suppressor cells, CD11b+F4/80+CD206+ M2-macrophages and increase in CD11b+F4/80+MHCII+ M1-macrophages. TSA significantly reduced the gene expression of HDAC6, IL-1β, Arginase-1 and iNOS in isolated splenic-MDSCs. FaDu-HTB-43 and NIH3T3 cells stimulated with LPS and 4-NQO exhibit higher IL-1β levels in the supernatant. Interestingly, immunoblot analysis of the cell lysate, we observed that TSA does not alter the expression as well as activation of IL-1β and caspase-1 but the acetylated-tubulin was found to be increased. Nocodazole pre-treatment proved that TSA inhibited the lysosomal exocytosis of IL-1β through tubulin acetylation. In conclusion, HDAC6 inhibitors attenuated TME and cancer progression through the regulation of IL-1β in OSCC.
Collapse
Affiliation(s)
- Ashutosh Mahale
- Metabolic Disorders and Neuroscience Research laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India
| | - Ganesh Routholla
- Epigenetic Research Laboratory, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India
| | - S Lavanya
- Metabolic Disorders and Neuroscience Research laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India
| | - Pravesh Sharma
- Metabolic Disorders and Neuroscience Research laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India
| | - Onkar Prakash Kulkarni
- Metabolic Disorders and Neuroscience Research laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India.
| |
Collapse
|
8
|
Wang K, Yan T, Guo D, Sun S, Liu Y, Liu Q, Wang G, Chen J, Du J. Identification of key immune cells infiltrated in lung adenocarcinoma microenvironment and their related long noncoding RNA. iScience 2024; 27:109220. [PMID: 38433921 PMCID: PMC10907860 DOI: 10.1016/j.isci.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/31/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
LncRNA associated with immune cell infiltration in tumor microenvironment (TME) may be a potential therapeutic target for lung adenocarcinoma. We established a machine learning (ML) model based on 3896 samples characterized by the degree of immune cell infiltration, and further screened the key lncRNA. In vitro experiments were applied to validate the prediction. Treg is the key immune cell in the TME of lung adenocarcinoma, and the degree of infiltration is negatively correlated with the prognosis. PCBP1-AS1 may affect the infiltration of Tregs by regulating the TGF-β pathway, which is a potential predictor of clinical response to immunotherapy. PCBP1-AS1 regulates cell proliferation, cell cycle, invasion, migration, and apoptosis in lung adenocarcinoma. The results of clinical sample staining and in vitro experiments showed that PCBP1-AS1 was negatively correlated with Treg infiltration and TGF-β expression. Tregs and related lncRNA PCBP1-AS1 can be used as targets for the diagnosis and treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Healthcare Respiratory Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Tao Yan
- Lung Transplantation Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Deyu Guo
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shijie Sun
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yong Liu
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qiang Liu
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Guanghui Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jingyu Chen
- Lung Transplantation Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
9
|
Kim J, Pena JV, McQueen HP, Kong L, Michael D, Lomashvili EM, Cook PR. Downstream STING pathways IRF3 and NF-κB differentially regulate CCL22 in response to cytosolic dsDNA. Cancer Gene Ther 2024; 31:28-42. [PMID: 37990062 DOI: 10.1038/s41417-023-00678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Double-stranded DNA (dsDNA) in the cytoplasm of eukaryotic cells is abnormal and typically indicates the presence of pathogens or mislocalized self-DNA. Multiple sensors detect cytosolic dsDNA and trigger robust immune responses via activation of type I interferons. Several cancer immunotherapy treatments also activate cytosolic nucleic acid sensing pathways, including oncolytic viruses, nucleic acid-based cancer vaccines, and pharmacological agonists. We report here that cytosolic dsDNA introduced into malignant cells can robustly upregulate expression of CCL22, a chemokine responsible for the recruitment of regulatory T cells (Tregs). Tregs in the tumor microenvironment are thought to repress anti-tumor immune responses and contribute to tumor immune evasion. Surprisingly, we found that CCL22 upregulation by dsDNA was mediated primarily by interferon regulatory factor 3 (IRF3), a key transcription factor that activates type I interferons. This finding was unexpected given previous reports that type I interferon alpha (IFN-α) inhibits CCL22 and that IRF3 is associated with strong anti-tumor immune responses, not Treg recruitment. We also found that CCL22 upregulation by dsDNA occurred concurrently with type I interferon beta (IFN-β) upregulation. IRF3 is one of two transcription factors downstream of the STimulator of INterferon Genes (STING), a hub adaptor protein through which multiple dsDNA sensors transmit their signals. The other transcription factor downstream of STING, NF-κB, has been reported to regulate CCL22 expression in other contexts, and NF-κB has also been associated with multiple pro-tumor functions, including Treg recruitment. However, we found that NF-κB in the context of activation by cytosolic dsDNA contributed minimally to CCL22 upregulation compared with IRF3. Lastly, we observed that two strains of the same cell line differed profoundly in their capacity to upregulate CCL22 and IFN-β in response to dsDNA, despite apparent STING activation in both cell lines. This finding suggests that during tumor evolution, cells can acquire, or lose, the ability to upregulate CCL22. This study adds to our understanding of factors that may modulate immune activation in response to cytosolic DNA and has implications for immunotherapy strategies that activate DNA sensing pathways in cancer cells.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jocelyn V Pena
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Hannah P McQueen
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Dina Michael
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Elmira M Lomashvili
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Pamela R Cook
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
10
|
Einhaus J, Gaudilliere DK, Hedou J, Feyaerts D, Ozawa MG, Sato M, Ganio EA, Tsai AS, Stelzer IA, Bruckman KC, Amar JN, Sabayev M, Bonham TA, Gillard J, Diop M, Cambriel A, Mihalic ZN, Valdez T, Liu SY, Feirrera L, Lam DK, Sunwoo JB, Schürch CM, Gaudilliere B, Han X. Spatial subsetting enables integrative modeling of oral squamous cell carcinoma multiplex imaging data. iScience 2023; 26:108486. [PMID: 38125025 PMCID: PMC10730356 DOI: 10.1016/j.isci.2023.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC), a prevalent and aggressive neoplasm, poses a significant challenge due to poor prognosis and limited prognostic biomarkers. Leveraging highly multiplexed imaging mass cytometry, we investigated the tumor immune microenvironment (TIME) in OSCC biopsies, characterizing immune cell distribution and signaling activity at the tumor-invasive front. Our spatial subsetting approach standardized cellular populations by tissue zone, improving feature reproducibility and revealing TIME patterns accompanying loss-of-differentiation. Employing a machine-learning pipeline combining reliable feature selection with multivariable modeling, we achieved accurate histological grade classification (AUC = 0.88). Three model features correlated with clinical outcomes in an independent cohort: granulocyte MAPKAPK2 signaling at the tumor front, stromal CD4+ memory T cell size, and the distance of fibroblasts from the tumor border. This study establishes a robust modeling framework for distilling complex imaging data, uncovering sentinel characteristics of the OSCC TIME to facilitate prognostic biomarkers discovery for recurrence risk stratification and immunomodulatory therapy development.
Collapse
Affiliation(s)
- Jakob Einhaus
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Dyani K. Gaudilliere
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Hedou
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael G. Ozawa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaki Sato
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward A. Ganio
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy S. Tsai
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ina A. Stelzer
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Karl C. Bruckman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonas N. Amar
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maximilian Sabayev
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A. Bonham
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Gillard
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maïgane Diop
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Amelie Cambriel
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Zala N. Mihalic
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tulio Valdez
- Division of Pediatrics, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stanley Y. Liu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Division of Sleep Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, USA
| | - Leticia Feirrera
- Department of Oral and Maxillofacial Surgery, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| | - David K. Lam
- Department of Oral and Maxillofacial Surgery, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| | - John B. Sunwoo
- Division of Head and Neck Surgery, Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M. Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoyuan Han
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA
| |
Collapse
|
11
|
Awasthi S, Ahmad S, Gupta R, Iqbal MS, Ahmad A. Differential expression of cancer stem cell markers and pro-inflammatory cytokine IL-1β in the oral squamous cell carcinoma and oral submucosal fibrosis. Int J Health Sci (Qassim) 2023; 17:28-38. [PMID: 37929238 PMCID: PMC10624801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Objectives The poor prognosis of oral squamous cell carcinoma (OSCC) is vastly due to late diagnosis. The oral submucosal fibrosis (OSMF) is often unnoticed pathology linked with high risk of malignancy. Recently, we demonstrated that the clinicopathological alterations in OSMF and OSCC patients were correlated with cancer stem cell (CSCs) markers (CD133 and CD44). However, the parallel alterations of interleukin-1 beta (IL-1β) with CSCs expression are largely unexplored. Thus, we aimed to investigate the relationship between IL-1β alterations and CSC marker expression in both OSMF and OSCC situations. Materials and Methods A total of 135 people have signed up for the study. There were sixty each in OSMF and OSCC groups, as well as 15 healthy controls. Levels of serum IL-1β were examined by ELISA. Immunohistochemistry (IHC) was used to examine the expression of CD133 and CD44. For evaluating differential CSCs expression, IHC scoring (0-4) was utilized. Results The IHC results showed maximum subjects in the OSMF and OSCC displaying CD44 and CD133 positivity, although the extent of expression in terms of IHC scoring found variable. CD133 and CD44-positive subjects showed increased levels of IL-1β in the OSMF and OSCC group. Nevertheless, the enhancement of IL-1β is more pronounced in the OSCC cases. Further, we observed a direct link of IL-1β levels with IHC scoring. Multivariate regression analysis demonstrated a significant role for CD44 and CD133 positivity in the increase of IL-1β levels. Conclusion We concluded that concurrent simultaneous changes in CSC biomarkers and IL-1β may help with early detection of OSMF and OSCC conditions.
Collapse
Affiliation(s)
- Shriddha Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow-226028, India
- Department of Pathology, Era’s Lucknow Medical College and Hospital, Era University, Uttar Pradesh, Lucknow, India
| | - Sharique Ahmad
- Department of Pathology, Era’s Lucknow Medical College and Hospital, Era University, Uttar Pradesh, Lucknow, India
| | - Rahul Gupta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow-226028, India
| | - Mohammed Shariq Iqbal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow-226028, India
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow-226028, India
| |
Collapse
|
12
|
Su L, Zhang F, Liu MX, Li H, Li Q, Zhu YZ, Hou YF, Chen X, Wang XY, Qian CM, Yao C, Wang LX, Jiao XN, Zhu XD, Xu ZH, Zou CP. The Tian-Men-Dong decoction suppresses the tumour-infiltrating G-MDSCs via IL-1β-mediated signalling in lung cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116491. [PMID: 37072091 DOI: 10.1016/j.jep.2023.116491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine (TCM) Tian-Men-Dong decoction (TD) has been able to effectively treat lung cancer in China for thousands of years. TD improves the quality of life in lung cancer patients by promoting nourishment of yin and reducing dryness, clearing the lung and removing toxins. Pharmacological studies show that TD contains active antitumour ingredients, but its underlying mechanism remains unknown. AIM OF THE STUDY This study aims at exploring potential mechanisms of TD in the treatment of lung cancer by regulating granulocytic-myeloid-derived suppressor cells (G-MDSCs). MATERIALS AND METHODS An orthotopic lung cancer mouse model was generated by intrapulmonary injection with LLC-luciferase cells in immunocompetent C57BL/6 mice or immunodeficient nude mice. TD/saline was orally administered once to the model mice daily for 4 weeks. Live imaging was conducted to monitor tumour growth. Immune profiles were detected by flow cytometry. H&E and ELISA were applied to test the cytotoxicity of the TD treatment. RT-qPCR and western blotting were performed to detect apoptosis-related proteins in G-MDSCs. A neutralizing antibody (anti-Ly6G) was utilized to exhaust the G-MDSCs via intraperitoneal injection. G-MDSCs were adoptively transferred from wild-type tumour-bearing mice. Immunofluorescence, TUNEL and Annexin V/PI staining were conducted to analyse apoptosis-related markers. A coculture assay of purified MDSCs and T cells labelled with CFSE was performed to test the immunosuppressive activity of MDSCs. The presence of TD/IL-1β/TD + IL-1β in purified G-MDSCs cocultured with the LLC system was used for ex vivo experiments to detect IL-1β-mediated apoptosis of G-MDSCs. RESULTS TD prolonged the survival of immune competent C57BL/6 mice in an orthotopic lung cancer model, but did not have the same effect in immunodeficient nude mice, indicating that its antitumour properties of TD are exerted by regulating immunity. TD induced G-MDSC apoptosis via the IL-1β-mediated NF-κB signalling cascade leading to effectively weaken the immunosuppressive activity of G-MDSCs and promote CD8+ T-cell infiltration, which was supported by both the depletion and adoptive transfer of G-MDSCs assays. In addition, TD also showed minimal cytotoxicity both in vivo and in vitro. CONCLUSION This study reveals for the first time that TD, a classic TCM prescription, is able to regulate G-MDSC activity and trigger its apoptosis via the IL-1β-mediated NF-κB signalling pathway, reshaping the tumour microenvironment and demonstrating antitumour effects. These findings provide a scientific foundation the clinical treatment of lung cancer with TD.
Collapse
Affiliation(s)
- Lin Su
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Zhang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
| | - Ming-Xi Liu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong Li
- Department of Pulmonary Diseases, Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, 518001, China
| | - Qiang Li
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 518109, China
| | - Yang-Zhuangzhuang Zhu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi-Fei Hou
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Chen
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Yu Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chun-Mei Qian
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Chao Yao
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Xin Wang
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Ning Jiao
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xian-Dan Zhu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zi-Hang Xu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chun-Pu Zou
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
13
|
Zhang Y, Lv N, Li M, Liu M, Wu C. Cancer-associated fibroblasts: tumor defenders in radiation therapy. Cell Death Dis 2023; 14:541. [PMID: 37607935 PMCID: PMC10444767 DOI: 10.1038/s41419-023-06060-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment that are involved in multiple aspects of cancer progression and considered contributors to tumor immune escape. CAFs exhibit a unique radiation resistance phenotype, and can survive clinical radiation doses; however, ionizing radiation can induce changes in their secretions and influence tumor progression by acting on tumor and immune cells. In this review, we describe current knowledge of the effects of radiation therapies on CAFs, as well as summarizing understanding of crosstalk among CAFs, tumor cells, and immune cells. We highlight the important role of CAFs in radiotherapy resistance, and discuss current and future radiotherapy strategies for targeting CAFs.
Collapse
Affiliation(s)
- Yalin Zhang
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Na Lv
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Manshi Li
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Ming Liu
- Department of Clinical Epidemiology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| | - Chunli Wu
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Liaoning, China.
| |
Collapse
|
14
|
Vattai A, Kremer N, Meister S, Beyer S, Keilmann L, Buschmann C, Corradini S, Schmoeckel E, Kessler M, Mahner S, Jeschke U, Hertlein L, Kolben T. Increase of the T-reg-recruiting chemokine CCL22 expression in a progressive course of cervical dysplasia. J Cancer Res Clin Oncol 2023; 149:6613-6623. [PMID: 36792811 DOI: 10.1007/s00432-023-04638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE An increasing infiltration of FoxP3-positive T-regs is associated with a higher grade of cervical intraepithelial neoplasia. The T-reg-recruiting chemokine CCL22 is expressed in various tumour entities. Aim of our study was to investigate the role of CCL22 in the progression and regression of cervical intraepithelial neoplasias, especially in patients with intermediate cervical intraepithelial neoplasias (CIN II). Furthermore, our aim was to characterize the CCL22-producing cells and explore the role of innate immunity in the process of cells recruitment. METHODS CCL22 expression was analyzed immunohistochemically in 169 patient samples. The immunoreactive score as well as the median numbers of positive cells were calculated in each slide and correlated with the histological CIN grade and FoxP3 expression. Additionally, CD68/CCL22 as well as CD68/PPARγ and CD68/FoxP3 expression were examined by double immunofluorescence. Statistical analysis was performed by SPSS 26. RESULTS A significantly higher expression of epithelial CCL22 in CIN II with progression in comparison to CIN II with regression (p = 0.006) could be detected. CCL22 was correlated with FoxP3 (Spearman's Rho: 0.308; p < 0.01). In 88%, CCL22-positive cells were positive for CD68, and 71% of CD68-positive macrophages expressed PPARγ. Colocalization of CD68 and FoxP3 was detected in 12%. CONCLUSION We could demonstrate that increased expression of CCL22, mainly produced by macrophages, correlates with elevated potential of malignancy. CCL22 expression could act as a predictor for regression and progression in cervical intraepithelial neoplasia, and it may help in the decision process regarding surgical treatment versus watchful waiting strategy in order to prevent conisation-associated risks. Furthermore, our findings support the potential of CCL22-producing cells as a target for immune therapy in cervical cancer patients.
Collapse
Affiliation(s)
- Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany.
- Kinderwunsch Centrum Muenchen, 81241, Munich, Germany.
| | - Nadine Kremer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Lucia Keilmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Christina Buschmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Elisa Schmoeckel
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337, Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156, Augsburg, Germany
| | - Linda Hertlein
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| |
Collapse
|
15
|
Prieto-Fernández L, Montoro-Jiménez I, de Luxan-Delgado B, Otero-Rosales M, Rodrigo JP, Calvo F, García-Pedrero JM, Álvarez-Teijeiro S. Dissecting the functions of cancer-associated fibroblasts to therapeutically target head and neck cancer microenvironment. Biomed Pharmacother 2023; 161:114502. [PMID: 37002578 DOI: 10.1016/j.biopha.2023.114502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Head and neck cancers (HNC) are a diverse group of aggressive malignancies with high morbidity and mortality, leading to almost half-million deaths annually worldwide. A better understanding of the molecular processes governing tumor formation and progression is crucial to improve current diagnostic and prognostic tools as well as to develop more personalized treatment strategies. Tumors are highly complex and heterogeneous structures in which growth and dissemination is not only governed by the cancer cells intrinsic mechanisms, but also by the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) emerge as predominant TME components and key players in the generation of permissive conditions that ultimately impact in tumor progression and metastatic dissemination. Although CAFs were initially considered a consequence of tumor development, it is now well established that they actively contribute to numerous cancer hallmarks i.e., tumor cell growth, migration and invasion, cancer cell stemness, angiogenesis, metabolic reprograming, inflammation, and immune system modulation. In this scenario, therapeutic strategies targeting CAF functions could potentially have a major impact in cancer therapeutics, providing avenues for new treatment options or for improving efficacy in established approaches. This review is focused on thoroughly dissecting existing evidences supporting the contribution of CAFs in HNC biology with an emphasis on current knowledge of the key molecules and pathways involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effectively interfere the tumor-stroma crosstalk for HNC patients benefit. involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effec- tively interfere the tumor-stroma crosstalk for HNC patients benefit.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz de Luxan-Delgado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
16
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 282] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
17
|
Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel) 2023; 15:1642. [PMID: 36980527 PMCID: PMC10046400 DOI: 10.3390/cancers15061642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and heterogeneous groups of human neoplasms. HNSCC is characterized by high morbidity, accounting for 3% of all cancers, and high mortality with ~1.5% of all cancer deaths. It was the most common cancer worldwide in 2020, according to the latest GLOBOCAN data, representing the seventh most prevalent human malignancy. Despite great advances in surgical techniques and the application of modern combinations and cytotoxic therapies, HNSCC remains a leading cause of death worldwide with a low overall survival rate not exceeding 40-60% of the patient population. The most common causes of death in patients are its frequent nodal metastases and local neoplastic recurrences, as well as the relatively low response to treatment and severe drug resistance. Much evidence suggests that the tumour microenvironment (TME), tumour infiltrating lymphocytes (TILs) and circulating various subpopulations of immunocompetent cells, such regulatory T cells (CD4+CD25+Foxp3+Tregs), cytotoxic CD3+CD8+ T cells (CTLs) and CD3+CD4+ T helper type 1/2/9/17 (Th1/Th2/Th9/Th17) lymphocytes, T follicular helper cells (Tfh) and CD56dim/CD16bright activated natural killer cells (NK), carcinoma-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (N1/N2 TANs), as well as tumour-associated macrophages (M1/M2 phenotype TAMs) can affect initiation, progression and spread of HNSCC and determine the response to immunotherapy. Rapid advances in the field of immuno-oncology and the constantly growing knowledge of the immunosuppressive mechanisms and effects of tumour cancer have allowed for the use of effective and personalized immunotherapy as a first-line therapeutic procedure or an essential component of a combination therapy for primary, relapsed and metastatic HNSCC. This review presents the latest reports and molecular studies regarding the anti-tumour role of selected subpopulations of immunocompetent cells in the pathogenesis of HNSCC, including HPV+ve (HPV+) and HPV-ve (HPV-) tumours. The article focuses on the crucial regulatory mechanisms of pro- and anti-tumour activity, key genetic or epigenetic changes that favour tumour immune escape, and the strategies that the tumour employs to avoid recognition by immunocompetent cells, as well as resistance mechanisms to T and NK cell-based immunotherapy in HNSCC. The present review also provides an overview of the pre- and clinical early trials (I/II phase) and phase-III clinical trials published in this arena, which highlight the unprecedented effectiveness and limitations of immunotherapy in HNSCC, and the emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
18
|
Wang Y, Wang S, Wang H, Yang J, Zhou H. Identification and Biological Validation of a Chemokine/Chemokine Receptor-Based Risk Model for Predicting Immunotherapeutic Response and Prognosis in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24043317. [PMID: 36834729 PMCID: PMC9963044 DOI: 10.3390/ijms24043317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Over 80% of head and neck squamous cell carcinoma (HNSCC) patients failed to respond to immunotherapy, which can likely be attributed to the tumor microenvironment (TME) remolding mediated by chemokines/chemokine receptors (C/CR). This study aimed to establish a C/CR-based risk model for better immunotherapeutic responses and prognosis. After assessing the characteristic patterns of the C/CR cluster from the TCGA-HNSCC cohort, a six-gene C/CR-based risk model was developed to stratify patients by LASSO Cox analysis. The screened genes were multidimensionally validated by RT-qPCR, scRNA-seq, and protein data. A total of 30.4% of patients in the low-risk group had better responses to anti-PD-L1 immunotherapy. A Kaplan-Meier analysis showed that patients in the low-risk group had longer overall survival. A time-dependent receiver operating characteristic curve and Cox analyses indicated that risk score served as an independent predictive indicator. The robustness of the immunotherapy response and prognosis prediction was also validated in independent external datasets. Additionally, the TME landscape revealed that the low-risk group was immune activated. Furthermore, the cell communication analysis on the scRNA-seq dataset revealed that cancer-associated fibroblasts were the main communicators within the C/CR ligand-receptor network of TME. Collectively, The C/CR-based risk model simultaneously predicted immunotherapeutic response and prognosis, potentially optimizing personalized therapeutic strategies of HNSCC.
Collapse
|
19
|
Malkova AM, Gubal AR, Petrova AL, Voronov E, Apte RN, Semenov KN, Sharoyko VV. Pathogenetic role and clinical significance of interleukin-1β in cancer. Immunology 2023; 168:203-216. [PMID: 35462425 DOI: 10.1111/imm.13486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/28/2022] [Indexed: 01/21/2023] Open
Abstract
In recent years, pro-oncogenic mechanisms of the tumour microenvironment (ТМЕ) have been actively discussed. One of the main cytokines of the TМЕ is interleukin-1 beta (IL-1β), which exhibits proinflammatory properties. Some studies have shown an association between an increase in IL-1β levels and tumour progression. The purpose of this review is to analyse the pathogenic mechanisms induced by IL-1β in the TМЕ, as well as the diagnostic significance of the presence of IL-1β in patients with cancer and the efficacy of treatment with IL-1β inhibitors. According to the literature, IL-1β can induce an increase in tumour angiogenesis due to its effects on the differentiation of epithelial cells, pro-angiogenic molecule secretion and expression of adhesion molecules, thus increasing tumour growth and metastasis. IL-1β is also involved in the suppression of anti-tumour immune responses. The expression and secretion of IL-1β has been noted in various types of tumours. In some clinical studies, an elevated level of IL-1β was found to be associated with low efficacy of anti-cancer therapy and a poor prognosis. In most experimental and clinical studies, the use of IL-1β inhibitors contributed to a decrease in tumour mass and an increase in the response to anti-tumour drugs.
Collapse
Affiliation(s)
- Anna M Malkova
- Saint Petersburg State University, Saint Petersburg, Russia.,Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Anna R Gubal
- Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ron N Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Konstantin N Semenov
- Saint Petersburg State University, Saint Petersburg, Russia.,Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Vladimir V Sharoyko
- Saint Petersburg State University, Saint Petersburg, Russia.,Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia.,Medicinal Chemistry Center, Togliatti State University, Togliatti, Russia
| |
Collapse
|
20
|
Gorvel L, Olive D. Tumor associated macrophage in HPV + tumors: Between immunosuppression and inflammation. Semin Immunol 2023; 65:101671. [PMID: 36459926 DOI: 10.1016/j.smim.2022.101671] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
Abstract
Over the past few decades, with the rise of immunotherapies, tumor infiltrating immune cells were increasingly investigated. Indeed, they may represent biomarkers for patient outcome prediction, they may bear immune checkpoint markers that can be targeted by therapeutic antibodies and mechanistic studies may reveal how to tweak their activation profile so that we can re-direct them towards tumor cells. Macrophages possess a central place in tissue homeostasis for tissue remodeling and cleaning, transformed cell elimination, phagocytosis and regulation of inflammation via cytokine production. All these functions allow the discovery of approaches to target Tumor Associated Macrophages (TAMs) using immunotherapies. Indeed, TAMs express known immune checkpoint markers such as PD-L1, CD40, Sirp-α and markers such as CD163, CD204, TREM2, TREM1 associated with prognosis. In the context of therapies TAM may participate to antibody dependent cell phagocytosis (ADCP) thanks to FCγ-Receptors. Here, we will review the recent literature on TAMs in the specific context of HPV+ tumors. Indeed, HPV infection of mucosal tissue may lead to head and neck, cervical, penile, anal and vaginal cancers. HPV+ tumors exhibit a higher immune cell infiltrate, which relies on inflammation, immunosuppression and anti-viral response. In this context, and considering the many functions on macrophages, we will show the versatility of TAMs in a tumor microenvironment with viral infection features.
Collapse
Affiliation(s)
- Laurent Gorvel
- Tumor immunology laboratory, IBISA immunomonitoring platform, Cancer Research Center of Marseille, Marseille, France.
| | - Daniel Olive
- Tumor immunology laboratory, IBISA immunomonitoring platform, Cancer Research Center of Marseille, Marseille, France
| |
Collapse
|
21
|
Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Zhao Y, Yu X, Shi S. Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives. Cancer Commun (Lond) 2023; 43:3-41. [PMID: 36424360 PMCID: PMC9859735 DOI: 10.1002/cac2.12392] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022] Open
Abstract
As a critical component of the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) play important roles in cancer initiation and progression. Well-known signaling pathways, including the transforming growth factor-β (TGF-β), Hedgehog (Hh), Notch, Wnt, Hippo, nuclear factor kappa-B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/AKT pathways, as well as transcription factors, including hypoxia-inducible factor (HIF), heat shock transcription factor 1 (HSF1), P53, Snail, and Twist, constitute complex regulatory networks in the TME to modulate the formation, activation, heterogeneity, metabolic characteristics and malignant phenotype of CAFs. Activated CAFs remodel the TME and influence the malignant biological processes of cancer cells by altering the transcriptional and secretory characteristics, and this modulation partially depends on the regulation of signaling cascades. The results of preclinical and clinical trials indicated that therapies targeting signaling pathways in CAFs demonstrated promising efficacy but were also accompanied by some failures (e.g., NCT01130142 and NCT01064622). Hence, a comprehensive understanding of the signaling cascades in CAFs might help us better understand the roles of CAFs and the TME in cancer progression and may facilitate the development of more efficient and safer stroma-targeted cancer therapies. Here, we review recent advances in studies of signaling pathways in CAFs and briefly discuss some future perspectives on CAF research.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Qingcai Meng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jin Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Wei Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Bo Zhang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jiang Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Chen Liang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jie Hua
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Yingjun Zhao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Si Shi
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| |
Collapse
|
22
|
Israr M, DeVoti JA, Papayannakos CJ, Bonagura VR. Role of chemokines in HPV-induced cancers. Semin Cancer Biol 2022; 87:170-183. [PMID: 36402301 DOI: 10.1016/j.semcancer.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Human papillomaviruses (HPVs) cause cancers of the uterine cervix, oropharynx, anus, and vulvovaginal tract. Low-risk HPVs, such as HPV6 and 11, can also cause benign mucosal lesions including genital warts, and in patients with recurrent respiratory papillomatosis, lesions in the larynx, and on occasion, in the lungs. However, both high and less tumorigenic HPVs share a striking commonality in manipulating both innate and adaptive immune responses in HPV- infected keratinocytes, the natural host for HPV infection. In addition, immune/inflammatory cell infiltration into the tumor microenvironment influences cancer growth and prognosis, and this process is tightly regulated by different chemokines. Chemokines are small proteins and exert their biological effects by binding with G protein-coupled chemokine receptors (GPCRs) that are found on the surfaces of select target cells. Chemokines are not only involved in the establishment of a pro-tumorigenic microenvironment and organ-directed metastases but also involved in disease progression through enhancing tumor cell growth and proliferation. Therefore, having a solid grasp on chemokines and immune checkpoint modulators can help in the treatment of these cancers. In this review, we discuss the recent advances on the expression patterns and regulation of the main chemokines found in HPV-induced cancers, and their effects on both immune and non-immune cells in these lesions. Importantly, we also present the current knowledge of therapeutic interventions on the expression of specific chemokine and their receptors that have been shown to influence the development and progression of HPV-induced cancers.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - James A DeVoti
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Christopher J Papayannakos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent R Bonagura
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
23
|
Shive C, Pandiyan P. Inflammation, Immune Senescence, and Dysregulated Immune Regulation in the Elderly. FRONTIERS IN AGING 2022; 3:840827. [PMID: 35821823 PMCID: PMC9261323 DOI: 10.3389/fragi.2022.840827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
An optimal immune response requires the appropriate interaction between the innate and the adaptive arms of the immune system as well as a proper balance of activation and regulation. After decades of life, the aging immune system is continuously exposed to immune stressors and inflammatory assaults that lead to immune senescence. In this review, we will discuss inflammaging in the elderly, specifically concentrating on IL-6 and IL-1b in the context of T lymphocytes, and how inflammation is related to mortality and morbidities, specifically cardiovascular disease and cancer. Although a number of studies suggests that the anti-inflammatory cytokine TGF-b is elevated in the elderly, heightened inflammation persists. Thus, the regulation of the immune response and the ability to return the immune system to homeostasis is also important. Therefore, we will discuss cellular alterations in aging, concentrating on senescent T cells and CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) in aging
Collapse
Affiliation(s)
- Carey Shive
- Louis Stokes Cleveland VA Medical Center, United States Department of Veterans Affairs, Cleveland, OH, United States.,Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
24
|
Zhang L, Wang X. An Immune-Related Gene Signature Can Predict Clinical Outcomes and Immunotherapeutic Response in Oral Squamous Cell Carcinoma. Front Genet 2022; 13:870133. [PMID: 35860473 PMCID: PMC9289552 DOI: 10.3389/fgene.2022.870133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Immune landscape is a key feature that affects cancer progression, survival, and treatment response. Herein, this study sought to comprehensively characterize the immune-related genes (IRGs) in oral squamous cell carcinoma (OSCC) and conduct an immune-related risk score (IRS) model for prognosis and therapeutic response prediction.Methods: Transcriptome profiles and follow-up data of OSCC cohorts were curated from TCGA, GSE41613, and IMvigor210 datasets. An IRS model was established through univariate Cox, Random Survival Forest, and multivariate Cox analyses. Prognostic significance was evaluated with Kaplan–Meier curves, ROC, uni- and multivariate Cox, and subgroup analyses. A nomogram was conducted and assessed with C-index, ROC, calibration curves, and decision curve analyses. Immune cell infiltration and immune response were estimated with ESTIMATE and ssGSEA methods.Results: An IRS model was constructed for predicting the overall survival and disease-free survival of OSCC, containing MASP1, HBEGF, CCL22, CTSG, LBP, and PLAU. High-risk patients displayed undesirable prognosis, and the predictive efficacy of this model was more accurate than conventional clinicopathological indicators. Multivariate Cox analyses demonstrated that this model was an independent risk factor. The nomogram combining IRS, stage, and age possessed high clinical application values. The IRS was positively associated with a nonflamed tumor microenvironment. Moreover, this signature enabled to predict immunotherapeutic response and sensitivity to chemotherapeutic agents (methotrexate and paclitaxel).Conclusion: Collectively, our study developed a robust IRS model with machine learning method to stratify OSCC patients into subgroups with distinct prognosis and benefits from immunotherapy, which might assist identify biomarkers and targets for immunotherapeutic schemes.
Collapse
|
25
|
Kondoh N, Mizuno-Kamiya M. The Role of Immune Modulatory Cytokines in the Tumor Microenvironments of Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2022; 14:cancers14122884. [PMID: 35740551 PMCID: PMC9221278 DOI: 10.3390/cancers14122884] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Malignant phenotypes of head and neck squamous cell carcinomas (HNSCCs) are regulated by the pro- and anti-tumoral activities of immune modulatory cytokines associated with tumor microenvironments (TMEs). We first present the immune modulatory effects of pro-inflammatory cytokines, pro- and anti- (pro-/anti-) inflammatory cytokines, and anti-inflammatory cytokines upon HNSCC phenotypes. We then report our evaluation of the functions of cytokines and chemokines that mediate the crosstalk between tumors and stromal cells, including cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), plasmacytoid dendritic cells (pDCs), and tumor-associated macrophages (TAMs). In HNSCCs, the status of lymph node metastasis is an important hallmark of a worse prognosis. Several chemokines mediate lymph node metastases in HNSCC patients. There are therapeutic approaches, using antitumoral cytokines or immunotherapies, that target cytokines, chemokines, or signal molecules essential for the immune evasion of HNSCCs. Finally, modulation by human papilloma virus (HPV) infection in HNSCC phenotypes and the prognostic significance of serum cytokine levels in HNSCC patients are discussed. Abstract HNSCCs are the major progressive malignancy of the upper digestive and respiratory organs. Malignant phenotypes of HNSCCs are regulated by the pro- and anti-tumoral activities of the immune modulatory cytokines associated with TMEs, i.e., a representative pro-inflammatory cytokine, interferon (IFN)-γ, plays a role as an anti-tumor regulator against HNSCCs; however, IFN-γ also drives programmed death-ligand (PD-L) 1 expression to promote cancer stem cells. Interleukin (IL)-2 promotes the cytotoxic activity of T cells and natural killer cells; however, endogenous IL-2 can promote regulatory T cells (Tregs), resulting in the protection of HNSCCs. In this report, we first classified and mentioned the immune modulatory aspects of pro-inflammatory cytokines, pro-/anti-inflammatory cytokines, and anti-inflammatory cytokines upon HNSCC phenotypes. In the TME of HNSCCs, pro-tumoral immune modulation is mediated by stromal cells, including CAFs, MDSCs, pDCs, and TAMs. Therefore, we evaluated the functions of cytokines and chemokines that mediate the crosstalk between tumor cells and stromal cells. In HNSCCs, the status of lymph node metastasis is an important hallmark of a worse prognosis. We therefore evaluated the possibility of chemokines mediating lymph node metastases in HNSCC patients. We also mention therapeutic approaches using anti-tumoral cytokines or immunotherapies that target cytokines, chemokines, or signal molecules essential for the immune evasion of HNSCCs. We finally discuss modulation by HPV infection upon HNSCC phenotypes, as well as the prognostic significance of serum cytokine levels in HNSCC patients.
Collapse
Affiliation(s)
- Nobuo Kondoh
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho 501-0296, Gifu, Japan
- Correspondence: ; Tel.: +81-58-329-1416; Fax: +81-58-329-1417
| | - Masako Mizuno-Kamiya
- Chemistry Laboratory, Department of Business Administration, Asahi University School of Business Administration, Mizuho 501-0296, Gifu, Japan;
| |
Collapse
|
26
|
[Research Status of Tumor-associated Fibroblasts Regulating Immune Cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:207-213. [PMID: 35340164 PMCID: PMC8976201 DOI: 10.3779/j.issn.1009-3419.2022.101.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cancer-associated fibroblasts (CAFs) and tumor-infiltrating immune cells are the most essential components of the tumor microenvironment (TME). They communicate with each other in tumor microenvironment and play a critical role in tumorigenesis and development. CAFs are very heterogeneous and different subtypes of CAFs display different functions. At the same time, it can contribute to the regulation of the function of tumor-infiltrating immune cells and eventually result in the carcinogenesis, tumor progression, invasion, metastasis and other biological behaviors of tumors by producting various growth factors and cytokines etc. Based on the current research results at home and abroad, this paper reviews the recent research progress on the regulation of CAFs on infiltrating immune cells in tumor microenvironment.
.
Collapse
|
27
|
Dholariya S, Singh RD, Radadiya M, Parchwani D, Sharma G, Mir R. Role of the Tumor Microenvironment and the Influence of Epigenetics on the Tumor Microenvironment in Oral Carcinogenesis: Potential Implications. Crit Rev Oncog 2022; 27:47-64. [PMID: 37199302 DOI: 10.1615/critrevoncog.2022047088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Oral cancer has become a significant problem throughout the world, particularly in countries that are still developing. Recent literature supports the contribution of components of the tumor microenvironment (TME) and the effect of epigenetic changes happening in the cells of the TME on oral cancer development and progression. In this review, we comprehensively examine the significance of TME in the development of OC along with the current understanding of the epigenetic modifications that regulate the TME and their cohesive impact on tumor traits and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | | | | | - Rashid Mir
- Department of Medical Lab Technology, University of Tabuk, Kingdom of Saudi Arabia, Tabuk, India
| |
Collapse
|
28
|
Gao K, Zhu Y, Wang H, Gong X, Yue Z, Lv A, Zhou X. Network pharmacology reveals the potential mechanism of Baiying Qinghou decoction in treating laryngeal squamous cell carcinoma. Aging (Albany NY) 2021; 13:26003-26021. [PMID: 34986125 PMCID: PMC8751612 DOI: 10.18632/aging.203786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023]
Abstract
Context: Baiying Qinghou as a traditional Chinese medicine decoction shows anticancer property on laryngeal squamous cell carcinoma. However, little is known about the precise mechanism of Baiying Qinghou detection against laryngeal squamous cell carcinoma. Objective: This study was aimed to explore potential mechanism of therapeutic actions of Baiying Qinghou decoction on laryngeal squamous cell carcinoma. Materials and Methods: The active chemical components of Baiying Qinghou decoction were predicted, followed by integrated analysis of network pharmacology and molecular docking approach. The network pharmacology approach included target protein prediction, protein-protein interaction network construction and functional enrichment analysis. Results: Sitosterol and quercetin were predicted to be the overlapped active ingredients among three Chinese herbs of Baiying Qinghou decoction. The target proteins were closely associated with response to chemical, response to drug related biological process and cancer related pathways such as PI3K-Akt signaling, HIF-1 signaling and Estrogen signaling pathway. The target proteins of TP53, EGFR, PTGS2, NOS3 and IL1B as the key nodes in PPI network were cross-validated, among which EGFR, IL1B, NOS3 and TP53 were significantly correlated with the prognosis of patients with laryngeal squamous cell carcinoma. Finally, the binding modes of EGFR, IL1B, NOS3 and TP53 with quercetin were visualized. Discussion and Conclusion: Quercetin of Baiying Qinghou decoction showed therapeutic effect against laryngeal squamous cell carcinoma by regulating TP53, EGFR, NOS3 and IL1B involved with drug resistance and PI3K-AKT signaling pathway. TP53, EGFR, NOS3 and IL1B may be the candidate targets for the treatment of laryngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Kun Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.,Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Yanan Zhu
- Department of Internal Medicine, Shandong Provincial Chest Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| | - Hui Wang
- Department of Ultrasound, The Fifth People's Hospital of Jinan, Jinan 250022, Shandong, China
| | - Xianwei Gong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Zhiyong Yue
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.,Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| | - Aiai Lv
- Department of Internal Medicine, Shandong Provincial Chest Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| | - Xuanchen Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.,Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
| |
Collapse
|
29
|
Shetty SS, Padam KSR, Hunter KD, Kudva A, Radhakrishnan R. Biological implications of the immune factors in the tumour microenvironment of oral cancer. Arch Oral Biol 2021; 133:105294. [PMID: 34735925 DOI: 10.1016/j.archoralbio.2021.105294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this review is to decipher the biological implications of the immune factors in the tumour microenvironment in oral cancer. The restoration of balance between tumour tolerance and tumour eradication by the host immune cells is critical to provide effective therapeutic strategies. DESIGN The specific role of the stromal and the immune components in oral cancer was reviewed with a tailored search strategy using relevant keywords. The articles were retrieved from bibliometric databases indexed in PubMed, Scopus, and Embase. An in silico analysis was performed to identify potential drug candidates for immunotherapy, by accessing the Drug-Gene Interactions Database (DGIdb) using the rDGIdb package. RESULTS There is compelling evidence for the role of the cellular and extracellular components of the tumour microenvironment in inducing immunosuppression and progression of oral cancer. The druggable candidates specifically targeting the immune system are a viable option in the treatment of oral cancer as they can regulate the tumour microenvironment. CONCLUSION A complex interaction between the tumour and the immunological microenvironment influences the disease outcome in oral cancer. Targeting specific components of the immune system might be relevant, as immunotherapy may become the new standard of care for oral cancer.
Collapse
Affiliation(s)
- Smitha Sammith Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Kanaka Sai Ram Padam
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Adarsh Kudva
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
30
|
Niklander SE, Murdoch C, Hunter KD. IL-1/IL-1R Signaling in Head and Neck Cancer. FRONTIERS IN ORAL HEALTH 2021; 2:722676. [PMID: 35048046 PMCID: PMC8757896 DOI: 10.3389/froh.2021.722676] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023] Open
Abstract
Decades ago, the study of cancer biology was mainly focused on the tumor itself, paying little attention to the tumor microenvironment (TME). Currently, it is well recognized that the TME plays a vital role in cancer development and progression, with emerging treatment strategies focusing on different components of the TME, including tumoral cells, blood vessels, fibroblasts, senescent cells, inflammatory cells, inflammatory factors, among others. There is a well-accepted relationship between chronic inflammation and cancer development. Interleukin-1 (IL-1), a potent pro-inflammatory cytokine commonly found at tumor sites, is considered one of the most important inflammatory factors in cancer, and has been related with carcinogenesis, tumor growth and metastasis. Increasing evidence has linked development of head and neck squamous cell carcinoma (HNSCC) with chronic inflammation, and particularly, with IL-1 signaling. This review focuses on the most important members of the IL-1 family, with emphasis on how their aberrant expression can promote HNSCC development and metastasis, highlighting possible clinical applications.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar, Chile
| | - Craig Murdoch
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- Oral Biology and Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
31
|
Affolter A, Lammert A, Kern J, Scherl C, Rotter N. Precision Medicine Gains Momentum: Novel 3D Models and Stem Cell-Based Approaches in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:666515. [PMID: 34307351 PMCID: PMC8296983 DOI: 10.3389/fcell.2021.666515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the current progress in the development of new concepts of precision medicine for head and neck squamous cell carcinoma (HNSCC), in particular targeted therapies and immune checkpoint inhibition (CPI), overall survival rates have not improved during the last decades. This is, on the one hand, caused by the fact that a significant number of patients presents with late stage disease at the time of diagnosis, on the other hand HNSCC frequently develop therapeutic resistance. Distinct intratumoral and intertumoral heterogeneity is one of the strongest features in HNSCC and has hindered both the identification of specific biomarkers and the establishment of targeted therapies for this disease so far. To date, there is a paucity of reliable preclinical models, particularly those that can predict responses to immune CPI, as these models require an intact tumor microenvironment (TME). The "ideal" preclinical cancer model is supposed to take both the TME as well as tumor heterogeneity into account. Although HNSCC patients are frequently studied in clinical trials, there is a lack of reliable prognostic biomarkers allowing a better stratification of individuals who might benefit from new concepts of targeted or immunotherapeutic strategies. Emerging evidence indicates that cancer stem cells (CSCs) are highly tumorigenic. Through the process of stemness, epithelial cells acquire an invasive phenotype contributing to metastasis and recurrence. Specific markers for CSC such as CD133 and CD44 expression and ALDH activity help to identify CSC in HNSCC. For the majority of patients, allocation of treatment regimens is simply based on histological diagnosis and on tumor location and disease staging (clinical risk assessments) rather than on specific or individual tumor biology. Hence there is an urgent need for tools to stratify HNSCC patients and pave the way for personalized therapeutic options. This work reviews the current literature on novel approaches in implementing three-dimensional (3D) HNSCC in vitro and in vivo tumor models in the clinical daily routine. Stem-cell based assays will be particularly discussed. Those models are highly anticipated to serve as a preclinical prediction platform for the evaluation of stable biomarkers and for therapeutic efficacy testing.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
32
|
Zhang Y, Guo J, Jia R. Treg: A Promising Immunotherapeutic Target in Oral Diseases. Front Immunol 2021; 12:667862. [PMID: 34177907 PMCID: PMC8222692 DOI: 10.3389/fimmu.2021.667862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
With the pandemic of COVID-19, maintenance of oral health has increasingly become the main challenge of global health. Various common oral diseases, such as periodontitis and oral cancer, are closely associated with immune disorders in the oral mucosa. Regulatory T cells (Treg) are essential for maintaining self-tolerance and immunosuppression. During the process of periodontitis and apical periodontitis, two typical chronic immune-inflammatory diseases, Treg contributes to maintain host immune homeostasis and minimize tissue damage. In contrast, in the development of oral precancerous lesions and oral cancer, Treg is expected to be depleted or down-regulated to enhance the anti-tumor immune response. Therefore, a deeper understanding of the distribution, function, and regulatory mechanisms of Treg cells may provide a prospect for the immunotherapy of oral diseases. In this review, we summarize the distribution and multiple roles of Treg in different oral diseases and discuss the possible mechanisms involved in Treg cell regulation, hope to provide a reference for future Treg-targeted immunotherapy in the treatment of oral diseases.
Collapse
Affiliation(s)
- Yujing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6:218. [PMID: 34108441 PMCID: PMC8190181 DOI: 10.1038/s41392-021-00641-0] [Citation(s) in RCA: 381] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
To flourish, cancers greatly depend on their surrounding tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in TME are critical for cancer occurrence and progression because of their versatile roles in extracellular matrix remodeling, maintenance of stemness, blood vessel formation, modulation of tumor metabolism, immune response, and promotion of cancer cell proliferation, migration, invasion, and therapeutic resistance. CAFs are highly heterogeneous stromal cells and their crosstalk with cancer cells is mediated by a complex and intricate signaling network consisting of transforming growth factor-beta, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase, Wnt, Janus kinase/signal transducers and activators of transcription, epidermal growth factor receptor, Hippo, and nuclear factor kappa-light-chain-enhancer of activated B cells, etc., signaling pathways. These signals in CAFs exhibit their own special characteristics during the cancer progression and have the potential to be targeted for anticancer therapy. Therefore, a comprehensive understanding of these signaling cascades in interactions between cancer cells and CAFs is necessary to fully realize the pivotal roles of CAFs in cancers. Herein, in this review, we will summarize the enormous amounts of findings on the signals mediating crosstalk of CAFs with cancer cells and its related targets or trials. Further, we hypothesize three potential targeting strategies, including, namely, epithelial-mesenchymal common targets, sequential target perturbation, and crosstalk-directed signaling targets, paving the way for CAF-directed or host cell-directed antitumor therapy.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuzhi Deng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
34
|
Kawakita E, Koya D, Kanasaki K. CD26/DPP-4: Type 2 Diabetes Drug Target with Potential Influence on Cancer Biology. Cancers (Basel) 2021; 13:cancers13092191. [PMID: 34063285 PMCID: PMC8124456 DOI: 10.3390/cancers13092191] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Dipeptidyl peptidase (DPP)-4 inhibitor is widely used for type 2 diabetes. Although DPP-4/CD26 has been recognized as both a suppressor and inducer in tumor biology due to its various functions, how DPP-4 inhibitor affects cancer progression in diabetic patients is still unknown. The aim of this review is to summarize one unfavorable aspect of DPP-4 inhibitor in cancer-bearing diabetic patients. Abstract DPP-4/CD26, a membrane-bound glycoprotein, is ubiquitously expressed and has diverse biological functions. Because of its enzymatic action, such as the degradation of incretin hormones, DPP-4/CD26 is recognized as the significant therapeutic target for type 2 diabetes (T2DM); DPP-4 inhibitors have been used as an anti-diabetic agent for a decade. The safety profile of DPP-4 inhibitors for a cardiovascular event in T2DM patients has been widely analyzed; however, a clear association between DPP-4 inhibitors and tumor biology is not yet established. Previous preclinical studies reported that DPP-4 suppression would impact tumor progression processes. With regard to this finding, we have shown that the DPP-4 inhibitor induces breast cancer metastasis and chemoresistance via an increase in its substrate C-X-C motif chemokine 12, and the consequent induction of epithelial-mesenchymal transition in the tumor. DPP-4/CD26 plays diverse pivotal roles beyond blood glucose control; thus, DPP-4 inhibitors can potentially impact cancer-bearing T2DM patients either favorably or unfavorably. In this review, we primarily focus on the possible undesirable effect of DPP-4 inhibition on tumor biology. Clinicians should note that the safety of DPP-4 inhibitors for diabetic patients with an existing cancer is an unresolved issue, and further mechanistic analysis is essential in this field.
Collapse
Affiliation(s)
- Emi Kawakita
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan;
| | - Daisuke Koya
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada 920-0293, Japan;
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan;
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
- Correspondence: ; Tel.: +81-853-20-2183
| |
Collapse
|
35
|
Nisar S, Yousuf P, Masoodi T, Wani NA, Hashem S, Singh M, Sageena G, Mishra D, Kumar R, Haris M, Bhat AA, Macha MA. Chemokine-Cytokine Networks in the Head and Neck Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22094584. [PMID: 33925575 PMCID: PMC8123862 DOI: 10.3390/ijms22094584] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are aggressive diseases with a dismal patient prognosis. Despite significant advances in treatment modalities, the five-year survival rate in patients with HNSCC has improved marginally and therefore warrants a comprehensive understanding of the HNSCC biology. Alterations in the cellular and non-cellular components of the HNSCC tumor micro-environment (TME) play a critical role in regulating many hallmarks of cancer development including evasion of apoptosis, activation of invasion, metastasis, angiogenesis, response to therapy, immune escape mechanisms, deregulation of energetics, and therefore the development of an overall aggressive HNSCC phenotype. Cytokines and chemokines are small secretory proteins produced by neoplastic or stromal cells, controlling complex and dynamic cell-cell interactions in the TME to regulate many cancer hallmarks. This review summarizes the current understanding of the complex cytokine/chemokine networks in the HNSCC TME, their role in activating diverse signaling pathways and promoting tumor progression, metastasis, and therapeutic resistance development.
Collapse
Affiliation(s)
- Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
| | - Parvaiz Yousuf
- Department of Zoology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India;
| | - Tariq Masoodi
- Department of Genomic Medicine, Genetikode 400102, India;
| | - Nissar A. Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India;
| | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
| | - Mayank Singh
- Departmental of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | - Deepika Mishra
- Centre for Dental Education and Research, Department of Oral Pathology and Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rakesh Kumar
- Centre for Advanced Research, School of Biotechnology and Indian Council of Medical Research, Shri Mata Vaishno Devi University, Katra 182320, India;
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Ajaz A. Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
- Correspondence: (A.A.B.); or (M.A.M.); Tel.: +974-40037703 (A.A.B.); +91-8082326900 (M.A.M.)
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora 192122, India
- Correspondence: (A.A.B.); or (M.A.M.); Tel.: +974-40037703 (A.A.B.); +91-8082326900 (M.A.M.)
| |
Collapse
|
36
|
Recruitment and Expansion of Tregs Cells in the Tumor Environment-How to Target Them? Cancers (Basel) 2021; 13:cancers13081850. [PMID: 33924428 PMCID: PMC8069615 DOI: 10.3390/cancers13081850] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The immune response against cancer is generated by effector T cells, among them cytotoxic CD8+ T cells that destroy cancer cells and helper CD4+ T cells that mediate and support the immune response. This antitumor function of T cells is tightly regulated by a particular subset of CD4+ T cells, named regulatory T cells (Tregs), through different mechanisms. Even if the complete inhibition of Tregs would be extremely harmful due to their tolerogenic role in impeding autoimmune diseases in the periphery, the targeted blockade of their accumulation at tumor sites or their targeted depletion represent a major therapeutic challenge. This review focuses on the mechanisms favoring Treg recruitment, expansion and stabilization in the tumor microenvironment and the therapeutic strategies developed to block these mechanisms. Abstract Regulatory T cells (Tregs) are present in a large majority of solid tumors and are mainly associated with a poor prognosis, as their major function is to inhibit the antitumor immune response contributing to immunosuppression. In this review, we will investigate the mechanisms involved in the recruitment, amplification and stability of Tregs in the tumor microenvironment (TME). We will also review the strategies currently developed to inhibit Tregs’ deleterious impact in the TME by either inhibiting their recruitment, blocking their expansion, favoring their plastic transformation into other CD4+ T-cell subsets, blocking their suppressive function or depleting them specifically in the TME to avoid severe deleterious effects associated with Treg neutralization/depletion in the periphery and normal tissues.
Collapse
|
37
|
Chen SH, Hsiao SY, Chang KY, Chang JY. New Insights Into Oral Squamous Cell Carcinoma: From Clinical Aspects to Molecular Tumorigenesis. Int J Mol Sci 2021; 22:ijms22052252. [PMID: 33668218 PMCID: PMC7956378 DOI: 10.3390/ijms22052252] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (SCC) is a prevalent malignant disease worldwide, especially so in Taiwan. Early- or even preclinical-stage detection is critical for reducing morbidity and mortality from oral SCC. Epidemiological and genome association studies are useful for identifying clinicopathological risk factors for preventive, diagnostic, and therapeutic approaches of oral SCC. For advanced oral SCC, effective treatments are critical to prolonging survival and enhancing quality of life. As oral SCC is characteristic of regional invasion with lymph node metastases, understanding the aggressive features of oral SCC, particularly in lymphangiogenesis, is essential for determining effective treatments. Emerging evidence has demonstrated that the tumor microenvironment (TME) plays a pivotal role in tumor growth, invasion, and metastases. Recent clinical successes in immune checkpoint inhibitors either alone or combined with chemotherapy have also supported the therapeutic value of immunotherapy in oral SCC. This review summarizes critical advances in basic knowledge of oral SCC from the perspective of clinicopathological risk factors, molecular tumorigenesis, and the TME. We also highlight our recent investigations on the microbiome, genome association studies, lymphangiogenesis, and immunomodulation in oral SCC. This review may provide new insights for oral SCC treatment by systematically interpreting emerging evidence from various preclinical and clinical studies.
Collapse
Affiliation(s)
- Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan; (S.-H.C.); (K.-Y.C.)
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
| | - Sheng-Yen Hsiao
- Division of Hematology-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan 736402, Taiwan;
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan; (S.-H.C.); (K.-Y.C.)
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
| | - Jang-Yang Chang
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
- Correspondence:
| |
Collapse
|
38
|
Mechanism of tumour microenvironment in the progression and development of oral cancer. Mol Biol Rep 2021; 48:1773-1786. [PMID: 33492572 DOI: 10.1007/s11033-020-06054-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023]
Abstract
Oral cancer has been a major problem all across the globe, majorly in the developing countries. With a growing emphasis in the field of cancer research, the contribution of the tumour microenvironment has been gaining a lot of importance in identifying the role of components other than the tumour cells that cause the development of cancer, thus changing the outlook. The review will shed light on the studies that describe the role of microenvironment, its components as well as summarize the studies related to their mechanism in the progression of oral cancer. The literature for the review was derived mainly from Google Scholar and PubMed, in particular concentrating on the most recent papers published in 2019 and 2020, by using the keywords "Cancer, Oral Cancer, Metastasis, OSCC, Tumour microenvironment, CAFs, ECM, Cytokines, Hypoxia, Therapeutics targeting the microenvironment". The study provides insight into the world of micro-environmental regulation of oral cancer, the mechanism by which they interact and how to exploit it as a potential therapeutic haven for treating the disease. The components Cancer-Associated Fibroblasts (CAFs), Tumour-associated Macrophages (TAMs), Tumour-associated neutrophils (TANs), Hypoxic environment, myeloid-derived stem cells (MDSCs) and T regulatory (Tregs) cells and underlying mechanisms that control them will be the targets of study to understand the microenvironment.
Collapse
|
39
|
Yin Y, Li F, Tong L, Chen C, Yuan B. Effects of in IL-1B/IL-1RN variants on the susceptibility to head and neck cancer in a chinese Han population. Cancer Cell Int 2021; 21:59. [PMID: 33472637 PMCID: PMC7816368 DOI: 10.1186/s12935-021-01750-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/02/2021] [Indexed: 02/01/2023] Open
Abstract
Background The study aimed to evaluate the relationship of IL-1B/IL-1RN polymorphisms to the predisposition of head and neck cancer (HNC) in a Chinese Han population. Methods Nine single-nucleotide polymorphisms (SNPs) in IL-1B/IL-1RN were genotyped based on Agena MassARRAY platform. Logistic regression models were used to analyze the genetic association between these SNPs and HNC risk by calculating odds ratios (ORs) and 95% confidence intervals (CI). Haplotype analysis were performed using Haploview program and logistic regression model. Results The genetic association between rs1143643 in IL-1B and the higher risk of HNC was found (OR = 1.23, 95% CI 1.04–1.46) in the overall. IL-1RN rs17042888 was related to a reduced risk of HNC in the subjects aged > 46 years (OR = 0.70, 95% CI: 0.50–0.98) and in females (OR = 0.71, 95% CI 0.52–0.98), while rs1143643 increased the predisposition of HNC among females (OR = 1.76, 95% CI 1.13–2.74). Furthermore, rs1143643 had an increased susceptibility to thyroid carcinoma (OR = 1.61, 95% CI 1.10–2.34). Moreover, compared with stage I–II, the frequency of IL-1RN rs452204-AG genotype was lower in patients with stage III–IV. Conclusions IL-1B (rs1143643) and IL-1RN (rs17042888 and rs452204) polymorphisms might be related to the individual susceptibility of HNC in the Chinese Han population. These results might help to improve the understanding of IL-1B and IL-1RN genes in the occurrence of HNC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01750-0.
Collapse
Affiliation(s)
- Yanhai Yin
- Department of Nuclear medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan general Hospital, Haikou, Hainan Province, China
| | - Fen Li
- Department of Nuclear medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan general Hospital, Haikou, Hainan Province, China
| | - Liangqian Tong
- Department of Nuclear medicine, Haikou general Hospital, Haikou, Hainan Province, China
| | - Chunru Chen
- Department of Nuclear medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan general Hospital, Haikou, Hainan Province, China
| | - Bo Yuan
- Department of General surgery, Hainan Affiliated Hospital of Hainan Medical University, Hainan general Hospital, #19 Xiuhua Road, Xiuying District, Haikou, Hainan Province, 570311, China.
| |
Collapse
|
40
|
Li Y, Chen Y, Miao L, Wang Y, Yu M, Yan X, Zhao Q, Cai H, Xiao Y, Huang G. Stress-induced upregulation of TNFSF4 in cancer-associated fibroblast facilitates chemoresistance of lung adenocarcinoma through inhibiting apoptosis of tumor cells. Cancer Lett 2020; 497:212-220. [PMID: 33132120 DOI: 10.1016/j.canlet.2020.10.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Stress conditions induced by routine treatments might affect cancer-associated fibroblasts in lung adenocarcinoma. The present study tried to explore transcriptome changes in lung fibroblasts under chemotherapeutics, irradiation, and hypoxia, which were induced by chemotherapy, radiotherapy, and anti-angiogenesis therapy, respectively. We established three in vitro models to mimic the stress conditions for lung fibroblasts. Interestingly, one of the secretory molecules, tumor necrosis factor superfamily member 4 (TNFSF4, also known as OX40L), was significantly up-regulated in lung fibroblasts under stress environments. Lung adenocarcinoma patients received chemotherapy and radiotherapy had a higher expression level of TNFSF4 in serum and tumor tissues. There was a negative correlation between the increase of serum TNFSF4 levels and the shrink of the tumor after chemotherapy. TNFSF4 could promote cisplatin resistance and inhibit the apoptosis of lung adenocarcinoma cells. Furthermore, TNFSF4 could significantly increase the activity of NF-κB/BCL-XL pathway in lung adenocarcinoma cells, which could be counteracted by knocking down the expression of TNFRSF4 (receptor of TNFSF4). In conclusion, TNFSF4, secreted by cancer-associated fibroblasts under stress conditions, could facilitate chemoresistance of lung adenocarcinoma through inhibiting apoptosis of tumor cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Ying Chen
- Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Liyun Miao
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Yongsheng Wang
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Min Yu
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xin Yan
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Qi Zhao
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Hourong Cai
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Yonglong Xiao
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Guichun Huang
- Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
41
|
Custódio M, Biddle A, Tavassoli M. Portrait of a CAF: The story of cancer-associated fibroblasts in head and neck cancer. Oral Oncol 2020; 110:104972. [PMID: 33011636 DOI: 10.1016/j.oraloncology.2020.104972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Complex interactions take place during cancer formation and progression. In this regard, there has been increasing focus on the non-malignant cells that make up the tumour microenvironment (TME), and how they interact with malignant tumour cells. TME is highly heterogeneous and has a major influence on tumour behaviour and therapy response. Cancer-associated fibroblasts (CAFs), one of the main components of the TME, establish dangerous liaisons with cancer cells and other components of the TME to shape a tumour-supportive environment in many types of cancer. Head and neck squamous cell carcinoma (HNSCC) encompass the malignant neoplasms arising from the mucosal lining of the oral cavity, pharynx and larynx. The TME of HNSCC contributes to tumour progression and this stromal compartment may be an interesting target for treatment. There is an emerging picture of the behaviour of CAFs in HNSCC; how they affect and are affected by the TME. We aim to summarise and discuss the current understanding of CAFs in head and neck cancer, exploring CAF activation and heterogeneity, and interaction with cancer cells and other cells within the TME.
Collapse
Affiliation(s)
- Marcos Custódio
- Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Adrian Biddle
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London SE1 1UL, UK.
| |
Collapse
|
42
|
Water-Pipe Smoking Exposure Deregulates a Set of Genes Associated with Human Head and Neck Cancer Development and Prognosis. TOXICS 2020; 8:toxics8030073. [PMID: 32961854 PMCID: PMC7560251 DOI: 10.3390/toxics8030073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
Water-pipe smoking (WPS) is becoming the most popular form of tobacco use among the youth, especially in the Middle East, replacing cigarettes rapidly and becoming a major risk of tobacco addiction worldwide. Smoke from WPS contains similar toxins as those present in cigarette smoke and is linked directly with different types of cancers including lung and head and neck (HN) carcinomas. However, the underlying molecular pathways and/or target genes responsible for the carcinogenic process are still unknown. In this study, human normal oral epithelial (HNOE) cells, NanoString PanCancer Pathways panel of 770 gene transcripts and quantitative real-time polymerase chain reaction (qRT-PCR) analysis were applied to discover differentially expressed genes (DEG) modulated by WPS. In silico analysis was performed to analyze the impact of these genes in HN cancer patient’s biology and outcome. We found that WPS can induce the epithelial–mesenchymal transition (EMT: hallmark of cancer progression) of HNOE cells. More significantly, our analysis of NanoString revealed 23 genes deregulated under the effect of WPS, responsible for the modulation of cell cycle, proliferation, migration/invasion, apoptosis, signal transduction, and inflammatory response. Further analysis was performed using qRT-PCR of HNOE WPS-exposed and unexposed cells supported the reliability of our NanoString data. Moreover, we demonstrate those DEG to be upregulated in cancer compared with normal tissue. Using the Kaplan–Meier analysis, we observed a significant association between WPS-deregulated genes and relapse-free survival/overall survival in HN cancer patients. Our findings imply that WPS can modulate EMT as well as a set of genes that are directly involved in human HN carcinogenesis, thereby affecting HN cancer patients’ survival.
Collapse
|
43
|
Shoucair I, Weber Mello F, Jabalee J, Maleki S, Garnis C. The Role of Cancer-Associated Fibroblasts and Extracellular Vesicles in Tumorigenesis. Int J Mol Sci 2020; 21:ijms21186837. [PMID: 32957712 PMCID: PMC7555043 DOI: 10.3390/ijms21186837] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play a key role in the communication between cancer cells and stromal components of the tumor microenvironment (TME). In this context, cancer cell-derived EVs can regulate the activation of a CAF phenotype in TME cells, which can be mediated by several EV cargos (e.g., miRNA, proteins, mRNA and lncRNAs). On the other hand, CAF-derived EVs can mediate several processes during tumorigenesis, including tumor growth, invasion, metastasis, and therapy resistance. This review aimed to discuss the molecular aspects of EV-based cross-talk between CAFs and cancer cells during tumorigenesis, in addition to assessing the roles of EV cargo in therapy resistance and pre-metastatic niche formation.
Collapse
Affiliation(s)
- Issraa Shoucair
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Fernanda Weber Mello
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis 88.040-370, Brazil
| | - James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Saeideh Maleki
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Cathie Garnis
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence:
| |
Collapse
|
44
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
45
|
Rébé C, Ghiringhelli F. Interleukin-1β and Cancer. Cancers (Basel) 2020; 12:E1791. [PMID: 32635472 PMCID: PMC7408158 DOI: 10.3390/cancers12071791] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Within a tumor, IL-1β is produced and secreted by various cell types, such as immune cells, fibroblasts, or cancer cells. The IL1B gene is induced after "priming" of the cells and a second signal is required to allow IL-1β maturation by inflammasome-activated caspase-1. IL-1β is then released and leads to transcription of target genes through its ligation with IL-1R1 on target cells. IL-1β expression and maturation are guided by gene polymorphisms and by the cellular context. In cancer, IL-1β has pleiotropic effects on immune cells, angiogenesis, cancer cell proliferation, migration, and metastasis. Moreover, anti-cancer treatments are able to promote IL-1β production by cancer or immune cells, with opposite effects on cancer progression. This raises the question of whether or not to use IL-1β inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
46
|
Ansems M, Span PN. The tumor microenvironment and radiotherapy response; a central role for cancer-associated fibroblasts. Clin Transl Radiat Oncol 2020; 22:90-97. [PMID: 32337377 PMCID: PMC7177030 DOI: 10.1016/j.ctro.2020.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022] Open
Abstract
Tumor growth is not only dictated by events involving tumor cells, but also by the environment they reside in, the so-called tumor microenvironment (TME). In the TME, cancer-associated fibroblasts (CAFs) are often the predominant cell type. CAFs were long considered to be of limited importance in the TME, but are now recognized for their pivotal role in cancer progression. Recently, it has become evident that different subsets of CAFs exist, with certain CAF subtypes having protumorigenic properties, whereas others show more antitumorigenic characteristics. Currently, the intricate interaction between the different subsets of CAFs with tumor cells, but also with immune cells that reside in the TME, is still poorly understood. This crosstalk of CAFs with tumor and immune cells in the TME largely dictates how a tumor responds to therapy and whether the tumor will eventually be eliminated, stay dormant or will progress and metastasize. Radiotherapy (RT) is a widely used and mostly very effective local cancer treatment, but CAFs are remarkably RT resistant. Although radiation does cause persistent DNA damage, CAFs do not die upon clinically applied doses of RT, but rather become senescent. Through the secretion of cytokines and growth factors they have been implicated in the induction of tumor radioresistance and recruitment of specific immune cells to the TME, thereby affecting local immune responses. In this review we will discuss the versatile role of CAFs in the TME and their influence on RT response.
Collapse
|
47
|
Pan Z, Yang G, He H, Gao P, Jiang T, Chen Y, Zhao G. Identification of Cerebrospinal Fluid MicroRNAs Associated With Leptomeningeal Metastasis From Lung Adenocarcinoma. Front Oncol 2020; 10:387. [PMID: 32328453 PMCID: PMC7152668 DOI: 10.3389/fonc.2020.00387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/04/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Leptomeningeal metastasis (LM) has frequently been observed in patients with lung adenocarcinoma. So far, its diagnosis and disease course monitoring are still extremely difficult. Moreover, there is no effective treatment regimen for LM due to a lack knowledge on the molecular mechanism of LM. This study aimed to identify LM-related cerebrospinal fluid (CSF) miRNAs, which have potential value for diagnosing and monitoring LM and exploring the molecular mechanism. Methods: CSF miRNAs were screened and verified by microarray analysis and quantitative real-time PCR (qRT-PCR) in LM patients with lung adenocarcinoma and non-LM controls, and the diagnostic performance of candidate miRNAs was evaluated. Then, candidate miRNAs in matched CSF samples from LM patients at diagnosis, after initial therapy, at relapse, and after salvage therapy, were analyzed to assess the relationship between CSF miRNAs and LM disease course. The effect of candidate miRNAs on proliferation, invasion, and migration of lung adenocarcinoma cell lines was assessed. The targeted genes of the candidate miRNA were predicted by TargetScan, miRDB, and miRTarbase online analysis tools. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the functional categories of predicted target genes. Results: CSF miR-7975, miR-7977, and miR-7641 were screened and verified to be statistically significantly up-regulated in LM patients compared to non-LM controls. The three miRNAs, when combined, exhibited optimal diagnostic performance. Longitudinal data of CSF miR-7975 and miR-7977 correlated well with clinical courses of LM. Overexpression of miR-7977 promoted proliferation, migration, and invasion of lung adenocarcinoma cells. Moreover, 385 targeted genes of miR-7977 were predicted and were involved in various pathways related to cancer metastasis. Conclusions: This study offers insights for future research of CSF miRNAs as robust tools for diagnosing and monitoring LM. It also reveals a novel pathway for exploration of underlying mechanisms of LM.
Collapse
Affiliation(s)
- Zhenyu Pan
- Department of Neuro-Oncological Surgery, The First Hospital of Jilin University, Changchun, China
- Department of Radiation-Oncology, The First Hospital of Jilin University, Changchun, China
- VA Palo Alto Health Care System, Stanford University Medical School, Palo Alto, CA, United States
| | - Guozi Yang
- Department of Radiation-Oncology, The First Hospital of Jilin University, Changchun, China
- VA Palo Alto Health Care System, Stanford University Medical School, Palo Alto, CA, United States
| | - Hua He
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Pengxiang Gao
- Department of Radiation-Oncology, The First Hospital of Jilin University, Changchun, China
| | - Tongchao Jiang
- Department of Radiation-Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neuro-Oncological Surgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neuro-Oncological Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Zhao X, Ding L, Lu Z, Huang X, Jing Y, Yang Y, Chen S, Hu Q, Ni Y. Diminished CD68 + Cancer-Associated Fibroblast Subset Induces Regulatory T-Cell (Treg) Infiltration and Predicts Poor Prognosis of Oral Squamous Cell Carcinoma Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:886-899. [PMID: 32035062 DOI: 10.1016/j.ajpath.2019.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/14/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022]
Abstract
Although cancer-associated fibroblasts (CAFs) are crucial stromal cells, characterizing their heterogeneity is far from complete. This study reports a novel subset of CAFs in oral squamous cell carcinoma (OSCC), which positively expressed CD68, the classic marker of macrophages. The spatial and temporal distribution of the CD68+ CAF subset of OSCC (n = 104) was determined by CD68/actin alpha 2, smooth muscle (ACTA2+; α-SMA) immunohistochemistry of serial sections. The CD68+ α-SMA+ CAF subset was elevated from dysplasia to OSCC. Moreover, although both the tumor center and invasive front harbor an abundant CD68+ CAF subset, patients with low-CD68+ CAFs in the tumor center showed more recurrence after operation and shorter survival time, indicating the different function of CD68+ CAFs in tumor initiation and progression. Functional analysis in the OSCC-CAF co-culture system found knockdown of CD68 did not change the phenotype of CAFs, tumor growth, or migration. Unexpectedly, low-CD68+ CAFs were associated with aberrant immune balance. A high proportion of tumor-supportive Tregs was found in patients with low-CD68+ CAFs. Mechanistically, knockdown of CD68 in CAFs contributed to the up-regulation of chemokine CCL17 and CCL22 of tumor cells to enhance Treg recruitment. Thus, up-regulated CD68+ fibroblasts participate in tumor initiation, but the low-CD68+ CAF subset in OSCC is conducive to regulatory T-cell (Treg) recruitment in the tumor microenvironment and contribute to poor prognosis of OSCC patients.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Cancer-Associated Fibroblasts/immunology
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/pathology
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Middle Aged
- Mouth Neoplasms/immunology
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Stromal Cells/immunology
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Survival Rate
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Xingxing Zhao
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhanyi Lu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaofeng Huang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yan Yang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sheng Chen
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
49
|
Wang Q, Schmoeckel E, Kost BP, Kuhn C, Vattai A, Vilsmaier T, Mahner S, Mayr D, Jeschke U, Heidegger HH. Higher CCL22+ Cell Infiltration is Associated with Poor Prognosis in Cervical Cancer Patients. Cancers (Basel) 2019; 11:cancers11122004. [PMID: 31842422 PMCID: PMC6966573 DOI: 10.3390/cancers11122004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
The chemokine CCL22 recruits regulatory T (T-reg) cells into tumor tissues and is expressed in many human tumors. However, the prognostic role of CCL22 in cervical cancer (CC) has not been determined. This study retrospectively analyzed the clinical significance of the expression of CCL22 and FOXP3 in 230 cervical cancer patients. Immunohistochemical staining analyses of CCL22 and FOXP3 were performed with a tissue microarray. Double immunofluorescence staining, cell coculture, and ELISA were used to determine CCL22 expressing cells and mechanisms. The higher number of infiltrating CCL22+ cells (CCL22high) group was associated with lymph node metastasis (p = 0.004), Fédération Internationale de Gynécologie et d’Obstétrique (FIGO) stages (p = 0.010), therapeutic strategies (p = 0.007), and survival status (p = 0.002). The number of infiltrating CCL22+ cells was positively correlated with that of infiltrating FOXP3+ cells (r = 0.210, p = 0.001). The CCL22high group had a lower overall survival rate (OS), compared to the CCL22low group (p = 0.001). However, no significant differences in progression free survival (PFS) were noted between the two groups. CCL22high was an independent predictor of shorter OS (HR, 4.985; p = 0.0001). The OS of the combination group CCL22highFOXP3high was significantly lower than that of the combination group CCL22lowFOXP3low regardless of the FIGO stage and disease subtype. CCL22highFOXP3high was an independent indictor of shorter OS (HR, 5.284; p = 0.009). The PFS of group CCL22highFOXP3high was significantly lower than that of group CCL22lowFOXP3low in cervical adenocarcinoma, but CCL22highFOXP3high was not an independent indicator (HR, 3.018; p = 0.068). CCL22 was primarily expressed in M2-like macrophages in CC and induced by cervical cancer cells. The findings of our study indicate that cervical cancer patients with elevated CCL22+ infiltrating cells require more aggressive treatment. Moreover, the results provide a basis for subsequent, comprehensive studies to advance the design of immunotherapy for cervical cancer.
Collapse
Affiliation(s)
- Qun Wang
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, 80377 Munich, Germany; (E.S.); (D.M.)
| | - Bernd P. Kost
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Doris Mayr
- Department of Pathology, LMU Munich, 80377 Munich, Germany; (E.S.); (D.M.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
- Correspondence:
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| |
Collapse
|
50
|
Huang YH, Chang CY, Kuo YZ, Fang WY, Kao HY, Tsai ST, Wu LW. Cancer-associated fibroblast-derived interleukin-1β activates protumor C-C motif chemokine ligand 22 signaling in head and neck cancer. Cancer Sci 2019; 110:2783-2793. [PMID: 31325403 PMCID: PMC6726685 DOI: 10.1111/cas.14135] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Oral cancer, a subtype of head and neck cancer, is characterized by increased infiltrating regulatory T cells (Treg); however, the pathological significance of the increase in Tregs in disease prognosis and progression and their underlying mechanism remain unestablished. C-C motif chemokine ligand 22 (CCL22) has been implicated in the recruitment of Tregs. We used RT-qPCR to determine CCL22 mRNA expression in clinical specimens and cultured cells. Loss-of-function and gain-of-function studies were carried out to analyze the effects of CCL22 modulations on cell proliferation, migration, invasion, and tumorigenesis and the mechanism involved in the deregulation of CCL22. In oral cancer specimens, CCL22 mRNA was upregulated. The increase was not only associated with reduced disease-free survival but also strongly correlated with an increase in FOXP3 mRNA, a master regulator of Treg development and functions. Silencing CCL22 expression reduced cell proliferation, migration, and invasion, whereas ectopic overexpression showed opposite effects. Manipulation of CCL22 expression in cancer cells altered tumorigenesis in both immune-compromised and -competent mice, supporting both autonomous and non-autonomous actions of CCL22. Release of interleukin 1β (IL-1β) from cancer-associated fibroblasts (CAF) induces CCL22 mRNA expression in oral cancer cells by activating transcription factor nuclear factor kappa B (NF-κB). Our data support a model in which CAF-derived IL-1β, CCL22, and its receptor CCR4 foster a protumor environment by promoting cell transformation and Treg infiltration. Intervention of the IL-1β-CCL22-CCR4 signaling axis may offer a novel therapeutic strategy for oral cancer treatment.
Collapse
Affiliation(s)
- Yu-Hsuan Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Che-Ying Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Zih Kuo
- Department of Otolaryngology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Fang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Sen-Tien Tsai
- Department of Otolaryngology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Cancer Center, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Laboratory Science and Technology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|