1
|
Saroj N, Shanker S, Serrano-Hernández E, Manjarrez-Gutiérrez G, Mondragón JA, Moreno-Martínez S, Jarillo-Luna RA, López-Sánchez P, Terrón JA. Expression of tryptophan hydroxylase in rat adrenal glands: Upregulation of TPH2 by chronic stress. Psychoneuroendocrinology 2025; 171:107219. [PMID: 39467477 DOI: 10.1016/j.psyneuen.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
It has been shown that chronic restraint stress (CRS) increases adrenal 5-HT levels and turnover through a mechanism that appears unrelated to tryptophan hydroxylase (TPH). In the present study we re-analyzed the effects of CRS (20 min/day) for 14 days relative to control (CTRL) conditions on TPH expression, distribution, and activity in rat adrenal glands. On day 15, adrenal glands were collected for TPH1 and TPH2 immunohistochemistry, Western blot, and RT-PCR; TPH activity was estimated by quantification of 5-hydroxytryptophan (5-HTP) and, indirectly, through measurement of 5-HT and 5-hydroxindolacetic acid (5-HIAA) levels and turnover (5-HIAA/5-HT ratio) by HPLC. TPH expression and activity in the dorsal raphe nucleus (DRN) were also determined for comparison. TPH1 and TPH2 immunostaining was observed in the adrenal medulla, and measurable levels of TPH1 and TPH2 protein and mRNA were detected in rat adrenal glands from CTRL animals. CRS exposure noticeably increased TPH2- but not THP1-immunostaining in the medulla and the outer adrenocortical areas of left (LAG) but not of right adrenal glands (RAG). In addition, CRS exposure increased TPH2 protein and mRNA levels in LAG; however, both measures decreased in DRN. Finally, CRS treatment produced an increase and a decrease of TPH activity and 5-HT turnover in LAG and DRN, respectively. Results indicate that TPH is indeed expressed in rat adrenal glands. Exposure to CRS upregulates TPH2 in LAG, while inducing downregulation of it in the DRN. Then, the increased levels of 5-HT in LAG from CRS-exposed animals likely results from TPH2-mediated synthesis.
Collapse
Affiliation(s)
- Neeshu Saroj
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Shiv Shanker
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - Eduardo Serrano-Hernández
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Gabriel Manjarrez-Gutiérrez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico
| | - José-Antonio Mondragón
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología del IPN, Av. Acueducto, La Laguna Ticomán, CP 07340, Mexico
| | - Saidel Moreno-Martínez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Rosa A Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - Pedro López-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - José A Terrón
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México.
| |
Collapse
|
2
|
Fröbel D, Stanke D, Langner M, Žygienė G, Bechmann N, Peitzsch M. Liquid chromatography-tandem mass spectrometry based simultaneous quantification of tryptophan, serotonin and kynurenine pathway metabolites in tissues and cell culture systems. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123870. [PMID: 37683448 DOI: 10.1016/j.jchromb.2023.123870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Kynurenine and respective metabolites exhibit bioactivity as well as tryptophan, an essential amino acid, and the neurotransmitter serotonin. Dysregulations in the kynurenine pathway are involved in neurodegenerative/neuropsychiatric disorders and diabetes mellitus type 2 but also in cancer. Therefore, measurements of kynurenine-related metabolites will improve the general understanding for kynurenine pathway relevance in disease pathogenesis. METHODS Tryptophan, serotonin, picolinic acid, quinolinic acid, 3-OH-kynurenine, kynurenine, 3-OH-anthranilic acid, kynurenic acid, anthranilic acid as well as nicotinic acid and the redox cofactor NAD+ were analyzed in heterogeneous matrices by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). After validation, the described method was applied for measurements of native metabolite concentrations in murine tissues and cellular systems including pathway-shift monitoring after treatment with the tryptophan-2,3-dioxygenase-inhibitor 680C91. In addition, the method was evaluated for its ability for integration into multi-omics approaches using a single sample metabolite extraction procedure. RESULTS A simple and sensitive UPLC-MS/MS method for simultaneous quantification of up to 10 kynurenine-related metabolites in four biological matrices was developed. Within a run time of 6.5 min, chromatographic separation of kynurenine-related metabolites, including the isomers nicotinic acid and picolinic acid, was achieved without derivatization. Validation parameters, including interday precision (<14.8%), mean accuracy (102.4% ± 12.9%) and linear detection ranges of more than three orders of magnitude, indicate method reliability. Depending the investigated sample matrix, the majority of metabolites were successfully detected and quantified in native murine and cell culture derived sample materials. Furthermore, the method allowed to monitor the impact of a tryptophan-2,3-dioxygenase-inhibitor on kynurenine pathway in a cellular system and is suitable for multi-assay analyses using aliquots from the same cell extract. CONCLUSION The described UPLC-MS/MS method provides a simple tool for the simultaneous quantification of kynurenine pathway metabolites. Due to its suitability for many physiological matrices, the method provides wide application for disease-related experimental settings.
Collapse
Affiliation(s)
- Dennis Fröbel
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Daniela Stanke
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mathias Langner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Gintare Žygienė
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
3
|
The exploitation of enzyme-based cancer immunotherapy. Hum Cell 2023; 36:98-120. [PMID: 36334180 DOI: 10.1007/s13577-022-00821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Cancer immunotherapy utilizes the immune system and its wide-ranging components to deliver anti-tumor responses. In immune escape mechanisms, tumor microenvironment-associated soluble factors and cell surface-bound molecules are mainly accountable for the dysfunctional activity of tumor-specific CD8+ T cells, natural killer (NK) cells, tumor associated macrophages (TAMs) and stromal cells. The myeloid-derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs), are also key tumor-promoting immune cells. These potent immunosuppressive networks avert tumor rejection at various stages, affecting immunotherapies' outcomes. Numerous clinical trials have elucidated that disruption of immunosuppression could be achieved via checkpoint inhibitors. Another approach utilizes enzymes that can restore the body's potential to counter cancer by triggering the immune system inhibited by the tumor microenvironment. These immunotherapeutic enzymes can catalyze an immunostimulatory signal and modulate the tumor microenvironment via effector molecules. Herein, we have discussed the immuno-metabolic roles of various enzymes like ATP-dephosphorylating ectoenzymes, inducible Nitric Oxide Synthase, phenylamine, tryptophan, and arginine catabolizing enzymes in cancer immunotherapy. Understanding the detailed molecular mechanisms of the enzymes involved in modulating the tumor microenvironment may help find new opportunities for cancer therapeutics.
Collapse
|
4
|
Wang Z, Wang W, Zhou L, Ren L, Miao R, Qu K, Ren B, Yu W, Wang H, Liu C, Fan H. MiR-34a targets SNAI1 and is essential for 5-hydroxytryptamine induced epithelial mesenchymal transition in liver cancer. Minerva Gastroenterol (Torino) 2022; 68:363-365. [PMID: 34792315 DOI: 10.23736/s2724-5985.21.03041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhixin Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Wen Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Liuxin Zhou
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Li Ren
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Runchen Miao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Ren
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Wenhao Yu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Haijiu Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China -
| |
Collapse
|
5
|
Moravcová S, Spišská V, Pačesová D, Hrubcová L, Kubištová A, Novotný J, Bendová Z. Circadian control of kynurenine pathway enzymes in the rat pineal gland, liver, and heart and tissue- and enzyme-specific responses to lipopolysaccharide. Arch Biochem Biophys 2022; 722:109213. [DOI: 10.1016/j.abb.2022.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
|
6
|
Penney KL, Tyekucheva S, Rosenthal J, El Fandy H, Carelli R, Borgstein S, Zadra G, Fanelli GN, Stefanizzi L, Giunchi F, Pomerantz M, Peisch S, Coulson H, Lis R, Kibel AS, Fiorentino M, Umeton R, Loda M. Metabolomics of Prostate Cancer Gleason Score in Tumor Tissue and Serum. Mol Cancer Res 2021; 19:475-484. [PMID: 33168599 PMCID: PMC8369519 DOI: 10.1158/1541-7786.mcr-20-0548] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Gleason score, a measure of prostate tumor differentiation, is the strongest predictor of lethal prostate cancer at the time of diagnosis. Metabolomic profiling of tumor and of patient serum could identify biomarkers of aggressive disease and lead to the development of a less-invasive assay to perform active surveillance monitoring. Metabolomic profiling of prostate tissue and serum samples was performed. Metabolite levels and metabolite sets were compared across Gleason scores. Machine learning algorithms were trained and tuned to predict transformation or differentiation status from metabolite data. A total of 135 metabolites were significantly different (P adjusted < 0.05) in tumor versus normal tissue, and pathway analysis identified one sugar metabolism pathway (P adjusted = 0.03). Machine learning identified profiles that predicted tumor versus normal tissue (AUC of 0.82 ± 0.08). In tumor tissue, 25 metabolites were associated with Gleason score (unadjusted P < 0.05), 4 increased in high grade while the remainder were enriched in low grade. While pyroglutamine and 1,5-anhydroglucitol were correlated (0.73 and 0.72, respectively) between tissue and serum from the same patient, no metabolites were consistently associated with Gleason score in serum. Previously reported as well as novel metabolites with differing abundance were identified across tumor tissue. However, a "metabolite signature" for Gleason score was not obtained. This may be due to study design and analytic challenges that future studies should consider. IMPLICATIONS: Metabolic profiling can distinguish benign and neoplastic tissues. A novel unsupervised machine learning method can be utilized to achieve this distinction.
Collapse
Affiliation(s)
- Kathryn L Penney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Svitlana Tyekucheva
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jacob Rosenthal
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Habiba El Fandy
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, NCI, Cairo University, Giza, Egypt
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and the New York Genome Center, New York, New York
| | - Stephanie Borgstein
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Giorgia Zadra
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Giuseppe Nicolò Fanelli
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lavinia Stefanizzi
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Francesca Giunchi
- Metropolitan Department of Pathology, University of Bologna, Bologna, Italy
| | - Mark Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Samuel Peisch
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Hannah Coulson
- Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts
| | - Rosina Lis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adam S Kibel
- Division of Urology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Renato Umeton
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and the New York Genome Center, New York, New York.
- The Broad Institute, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Hagiwara A, Nakamura Y, Nishimoto R, Ueno S, Miyagi Y. Induction of tryptophan hydroxylase in the liver of s.c. tumor model of prostate cancer. Cancer Sci 2020; 111:1218-1227. [PMID: 31997472 PMCID: PMC7156786 DOI: 10.1111/cas.14333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Enhanced degradation of tryptophan (Trp) and thus decreased plasma Trp levels are common in several types of cancers. Although it is well known that Trp catabolism is induced in the tumor microenvironment by the enzymes expressed in cancer cells, immune cells, or both, few studies have examined systemic Trp catabolism in cancer pathophysiology. The present study aimed to evaluate Trp catabolism in both tumor and peripheral tissues using tumor‐engrafted Copenhagen rats that were s.c. inoculated with AT‐2 rat prostate cancer cells negative for expression of Trp catabolic enzymes. Liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) metabolomics showed significantly decreased plasma Trp levels in AT‐2 engrafted rats, accompanied by increased kynurenine/Trp ratios in spleen and thymus and serotonin levels in liver and thymus. Quantitative PCR and enzymatic activity assays showed indoleamine‐2, 3‐dioxygenase, an inducible enzyme that catalyzes Trp to kynurenine, was increased in tumor tissues, whereas tryptophan‐2,3‐dioxygenase, a major Trp catabolic enzyme that regulates systemic level of Trp, tended to be increased in the liver of AT‐2 engrafted rats. Furthermore, tryptophan hydroxylase‐1 (TPH1), an enzyme that catalyzes the reaction of Trp to serotonin, was significantly increased in liver and spleen of AT‐2 engrafted rats. Further histochemical analysis revealed that the induction of TPH1 in the liver could be attributed to infiltration of mast cells. A similar phenomenon was observed with nonneoplastic liver samples from colorectal cancer patients. These results suggested that Trp catabolism toward serotonin synthesis might be induced in peripheral remote tissues in cancer, which could have a pathophysiological effect on cancer.
Collapse
Affiliation(s)
- Asami Hagiwara
- Material & Technology Solutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki City, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology and Genetics Divisiosn, Kanagawa Cancer Center Research Institute, Kanagawa Cancer Center, Yokohama City, Japan
| | - Rumi Nishimoto
- Material & Technology Solutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki City, Japan
| | - Satoko Ueno
- Material & Technology Solutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki City, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Divisiosn, Kanagawa Cancer Center Research Institute, Kanagawa Cancer Center, Yokohama City, Japan
| |
Collapse
|