1
|
Owida HA, Abed AY, Altalbawy FMA, H M, Abbot V, Jakhonkulovna SM, Mohammad SI, Vasudevan A, Khalaf RM, Zwamel AH. NLRP3 inflammasome-based therapies by natural products: a new development in the context of cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04030-0. [PMID: 40116873 DOI: 10.1007/s00210-025-04030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
The leucine-rich repeat containing protein (NLR) canonical inflammasome family includes Nod-like receptor protein 3 (NLRP3). Via the mediation of apoptosis proteins and immunological reactions, it controls the pathogenesis of malignancy. Experimental studies showed a relationship among lymphogenesis, cancer metastasis, and NLRP3 expression. Natural products have also been used as lead-based substances in a number of investigations to speed up the creation of novel, specific NLRP3 inhibitors. Via the mediation of apoptotic proteins and immunological responses, it controls the pathogenesis of malignancy. Moreover, it was recently noted that among human cancers, chemotherapy activates NLRP3. Induction of NLRP3 could encourage the generation of IL-1β and IL-22 to facilitate the propagation of malignancy. Additionally, prior research has demonstrated that the usage of NLRP3 in cancer therapy may result in resistance to drugs. The depletion of NLRP3 could affect the survival of cells. Natural products have been used as lead materials in a number of studies to help generate novel, specific NLRP3 antagonists more quickly. In the present review, we examine the mechanism behind the beneficial effects of the natural substances on the inhibition of cancer growth and progression, with special focus on NLRP3 regulation.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Department of Medical Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ahmed Yaseen Abed
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Ramadi, Al Anbar, 31001, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India
| | | | - Suleiman Ibrahim Mohammad
- Electronic Marketing and Social Media, Economic and Administrative Sciences, Zarqa University, Zarqa, Jordan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
| | | | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Naiki‐Ito A, Naiki T, Takahashi S. Exploring experimental models of prostate cancer in chemoprevention: Oxidative stress as a key pathway to translational research. Pathol Int 2025; 75:131-144. [PMID: 39807695 PMCID: PMC11922031 DOI: 10.1111/pin.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Prostate cancer (PCa) is the second most common cancer in men globally. Its growth is driven by oxidative stress associated with inflammation, aging, and environmental factors, including diet and lifestyle. These factors contribute to multiple stages of PCa progression, including progression to castration-resistant prostate cancer (CRPC). Therefore, oxidative stress represents an intriguing target for PCa chemoprevention and treatment. In vivo experimental models are crucial for understanding the mechanisms of PCa development, validating chemopreventive and therapeutic approaches, and translating preclinical results into clinical applications. We established a transgenic rat for adenocarcinoma of the prostate (TRAP) model, a transgenic rat that efficiently develops androgen-dependent adenocarcinoma, pathologically and biologically mimicking human PCa progression, to clarify the mechanisms of tumor progression, including the involvement of oxidative stress, and established a system for screening the chemopreventive effects of agents against PCa. Additionally, we derived a CRPC model from the TRAP model and developed a distant metastasis model, providing a comprehensive multistage rat model of prostate carcinogenesis. This review presents findings on the molecular mechanisms of PCa and the chemopreventive effects of natural compounds with antioxidant properties, such as polyphenols. We additionally described the potential for repositioning existing drugs with antiandrogenic activity for PCa chemoprevention.
Collapse
Affiliation(s)
- Aya Naiki‐Ito
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Taku Naiki
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| |
Collapse
|
3
|
Silva-Pinto PA, de Pontes JTC, Aguilar-Morón B, Canales CSC, Pavan FR, Roque-Borda CA. Phytochemical insights into flavonoids in cancer: Mechanisms, therapeutic potential, and the case of quercetin. Heliyon 2025; 11:e42682. [PMID: 40084006 PMCID: PMC11904581 DOI: 10.1016/j.heliyon.2025.e42682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Quercetin, a flavonoid known for its potent antioxidant and anti-inflammatory properties, has gained attention in cancer therapy due to its ability to modulate key molecular pathways involved in tumor progression and immune evasion. This review provides a comprehensive analysis of quercetin's effects on pathways such as PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and JAK/STAT, which are central to cancer cell survival, proliferation, and apoptosis. Through inhibition of PI3K/Akt/mTOR and MAPK/ERK signaling, quercetin promotes apoptosis and reduces proliferation specifically in cancer cells while sparing healthy cells. Additionally, quercetin downregulates NF-κB activity and modulates JAK/STAT signaling, enhancing immune recognition of cancer cells and decreasing inflammation in the tumor microenvironment. Emerging nanoformulation strategies are also discussed, highlighting how nanotechnology can improve quercetin's bioavailability and targeting capabilities. Unlike other reviews, this work uniquely integrates molecular insights with cutting-edge nanoformulations, showcasing quercetin's dual potential as a therapeutic agent and an immune modulator in the evolving landscape of cancer treatment. This review underscores quercetin's multifaceted role in cancer treatment and suggests future directions to optimize its clinical efficacy, particularly in combination with conventional therapies.
Collapse
Affiliation(s)
- Piero Alex Silva-Pinto
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa, 04000, Republic of Peru
| | - Janaína Teixeira Costa de Pontes
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-900, SP, Brazil
| | - Brigitte Aguilar-Morón
- Facultad de Ingeniería de Procesos – Universidad Nacional de San Agustín, Arequipa, Arequipa, Republic of Peru
| | | | - Fernando Rogério Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-900, SP, Brazil
| | - Cesar Augusto Roque-Borda
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa, 04000, Republic of Peru
| |
Collapse
|
4
|
Aires I, Parada B, Ferreira R, Oliveira PA. Recent animal models of bladder cancer and their application in drug discovery: an update of the literature. Expert Opin Drug Discov 2025:1-21. [PMID: 39954010 DOI: 10.1080/17460441.2025.2465373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/29/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Bladder cancer presents a significant health problem worldwide, with environmental and genetic factors contributing to its incidence. Histologically, it can be classified as carcinoma in situ, non-muscle invasive and muscle-invasive carcinoma, each one with distinct genetic alterations impacting prognosis and response to therapy. While traditional transurethral resection is commonly performed in carcinoma in situ and non-muscle invasive carcinoma, it often fails to prevent recurrence or progression to more aggressive phenotypes, leading to the frequent need for additional treatment such as intravesical chemotherapy or immunotherapy. Despite the advances made in recent years, treatment options for bladder cancer are still lacking due to the complex nature of this disease. So, animal models may hold potential for addressing these limitations, because they not only allow the study of disease progression but also the evaluation of therapies and the investigation of drug repositioning. AREAS COVERED This review discusses the use of animal models over the past decade, highlighting key discoveries and discussing advantages and disadvantages for new drug discovery. EXPERT OPINION Over the past decade animal models have been employed to evaluate new mechanisms underlying the responses to standard therapies, aiming to optimize bladder cancer treatment. The authors propose that molecular engineering techniques and AI may hold promise for the future development of more precise and effective targeted therapies in bladder cancer.
Collapse
Affiliation(s)
- Inês Aires
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Belmiro Parada
- Coimbra Institute for Clinical and Biomedical, University of Coimbra, Coimbra, Portugal
| | - Rita Ferreira
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
5
|
Liu CY, Li Z, Cheng FE, Nan Y, Li WQ. Radix Codonopsis: a review of anticancer pharmacological activities. Front Pharmacol 2025; 15:1498707. [PMID: 39840099 PMCID: PMC11747557 DOI: 10.3389/fphar.2024.1498707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Radix Codonopsis (Dangshen), derived from the dried root of plants in the Campanulaceae family, is a widely used Chinese herbal medicine. It is renowned for its pharmacological effects, including tonifying the middle qi, invigorating the spleen, benefiting the lungs, enhancing immunity, and nourishing the blood. Codonopsis extract is frequently incorporated into health products such as tablets and capsules, making it accessible for daily health maintenance. Additionally, it is commonly used in dietary applications like soups, teas, and porridges to nourish qi, enrich blood, and promote overall vitality. In recent years, increasing attention has been given to the anti-cancer potential of Radix Codonopsis. Studies have identified key active components such as luteolin, stigmasterol, polyacetylenes, lobetyolin, and glycitein, which exhibit anti-tumor properties through mechanisms like inhibiting cancer cell growth and proliferation, suppressing epithelial-mesenchymal transition (EMT), and inducing apoptosis. This review highlights the research progress on Radix Codonopsis, including its active constituents, anti-cancer mechanisms, and its role in the convergence of medicine and food in modern life. By doing so, it aims to provide valuable insights and references for future scientific studies and clinical applications of Radix Codonopsis.
Collapse
Affiliation(s)
- Cai-Yue Liu
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Zheng Li
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Fan-E. Cheng
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Yi Nan
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Wei-Qiang Li
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Mahwish, Imran M, Naeem H, Hussain M, Alsagaby SA, Al Abdulmonem W, Mujtaba A, Abdelgawad MA, Ghoneim MM, El‐Ghorab AH, Selim S, Al Jaouni SK, Mostafa EM, Yehuala TF. Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies. Food Sci Nutr 2025; 13:e4682. [PMID: 39830909 PMCID: PMC11742186 DOI: 10.1002/fsn3.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 11/30/2024] [Indexed: 01/22/2025] Open
Abstract
Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin. Luteolin prevents cancer via modulation of numerous pathways, that is, by inactivating proteins; such as procaspase-9, CDC2 and cyclin B or upregulation of caspase-9 and caspase-3, cytochrome C, cyclin A, CDK2, and APAF-1, in turn inducing cell cycle arrest as well as apoptosis. It also enhances phosphorylation of p53 and expression level of p53-targeted downstream gene. By Increasing BAX protein expression; decreasing VEGF and Bcl-2 expression it can initiate cell cycle arrest and apoptosis. Luteolin can stimulate mitochondrial-modulated functions to cause cellular death. It can also reduce expression levels of p-Akt, p-EGFR, p-Erk1/2, and p-STAT3. Luteolin plays positive role against cardiovascular disorders by improving cardiac function, decreasing the release of inflammatory cytokines and cardiac enzymes, prevention of cardiac fibrosis and hypertrophy; enhances level of CTGF, TGFβ1, ANP, Nox2, Nox4 gene expressions. Meanwhile suppresses TGFβ1 expression and phosphorylation of JNK. Luteolin helps fight diabetes via inhibition of alpha-glucosidase and ChE activity. It can reduce activity levels of catalase, superoxide dismutase, and GS4. It can improve blood glucose, insulin, HOMA-IR, and HbA1c levels. This review is an attempt to elaborate molecular targets of luteolin and its role in modulating irregularities in cellular pathways to overcome severe outcomes during diseases including cancer, cardiovascular disorders, diabetes, obesity, inflammation, Alzheimer's disease, Parkinson's disease, hepatic disorders, renal disorders, brain injury, and asthma. As luteolin has enormous therapeutic benefits, it could be a potential candidate in future drug development strategies.
Collapse
Affiliation(s)
- Mahwish
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAL‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering and TechnologyHamdard University Islamabad campusIslamabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversityAljoufSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityRiyadhSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir DarEthiopia
| |
Collapse
|
7
|
Ren F, Li Y, Luo H, Gao S, Jiang S, Yang J, Rao C, Chen Y, Peng C. Extraction, detection, bioactivity, and product development of luteolin: A review. Heliyon 2024; 10:e41068. [PMID: 39759280 PMCID: PMC11700251 DOI: 10.1016/j.heliyon.2024.e41068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Luteolin is a kind of natural flavonoid, widely existing in a variety of plants, has been revealed to have a wide range of biological activities. In recent years, the research results of luteolin are abundant. Here we review the latest research results of luteolin in order to provide new ideas for further research and development of luteolin. In this paper, the focus of the search was published between 2010 and 2024 on the extraction and determination of luteolin, biological activities, and the development and application of luteolin products. A comprehensive search using the keyword "luteolin" was conducted in the PubMed, Web of Science and WIPO databases. Through the collection of related literature, this paper summarized a variety of extraction techniques of luteolin, including immersion extraction, solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction and so on. The determination methods include: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), electrochemical method (ED) and so on. In addition, the biological activities of luteolin, including antioxidant, anti-inflammatory, anti-tumor, antibacterial, analgesic and so on, were described. And luteolin as the main component of the product is being gradually developed, and has been used in the field of food, medicine and cosmetics. This paper provides a reference for further study of luteolin.
Collapse
Affiliation(s)
- Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ying Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jian Yang
- Chuan-chu UNITED INTERNATIONAL Engineering Co., LTD, Chengdu, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 611137, China
| |
Collapse
|
8
|
Shi L, Zhang X, Mao L, Zhang Y. Anti-neoplastic effect of heterophyllin B on ovarian cancer via the regulation of NRF2/HO-1 in vitro and in vivo. Tissue Cell 2024; 91:102566. [PMID: 39341007 DOI: 10.1016/j.tice.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Heterophyllin B (HB) is a cyclic peptide with anti-neoplastic effect on many cancers. However, its effect and mechanism of action in ovarian cancer cells are still unknown. PURPOSE The primary objective of this study was to assess the impact of HB on the proliferation of ovarian cancer (OC) cells and delve into the underlying mechanisms involved. METHODS We performed CCK-8 assays, HE staining, KI67 staining, clonogenic formation assays, Annexin V-FITC/PI staining, tumor invasion assays, and migration assays to detect the effects of HB on cell viability, proliferation, apoptosis, migration, and invasion in ovarian cancer cells. Additionally, real-time fluorescent quantitative PCR (qPCR) and Western blotting were utilized for verification. The expression of NF-E2-related factor 2 (NRF2) and heme oxygenase 1 (HMOX1/HO-1) signaling molecules was detected using qPCR and Western blotting. A specific inducer, Hemin, was used to activate HO-1 and Nrf2 overexpression, in order to verify the pharmacological mechanism of HB on ovarian cancer cells. The binding relationship between HB and NRF2 was investigated through molecular docking. RESULTS HB treatment inhibited the viability of OC cells, meanwhile it showed suppressive effect on the proliferation, migration, and invasion of OC cells, Meanwhile, HB could promote the apoptosis of tumor cells. For the mechanisms, we found that HB treatment could significantly down-regulate the levels of NRF2/HO-1. Consistent with the results of in vitro experiments, administration of HB significantly delayed tumor growth in OVCAR8 xenografted nude mice, and inhibited the expression of Ki67, Nrf2 and HO-1. CONCLUSION This study demonstrated that HB had anti-neoplastic effect on OC by inhibiting Nrf2/HO-1 signaling pathway and may be a potential drug for the treatment of OC.
Collapse
Affiliation(s)
- Linyu Shi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, No.20, Xisi Road, Nantong, Jiangsu Province 226001, China
| | - Xiaoyu Zhang
- Department of Gastroenterology and Hepatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China; Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, No.20, Xisi Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
9
|
Kumar P, Bhardwaj VK, Shende P, Purohit R. Computational and experimental analysis of Luteolin-β-cyclodextrin supramolecular complexes: Insights into conformational dynamics and phase solubility. Eur J Pharm Biopharm 2024; 205:114569. [PMID: 39481614 DOI: 10.1016/j.ejpb.2024.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Investigating the structural stability of poorly-soluble luteolin (LuT) after encapsulation within cyclodextrins (CDs) is crucial for unlocking the therapeutic potential of LuT bioactive molecule. Herein, native and modified β-CD were employed to investigate LuT inclusion complex formation. Molecular mechanics (MM) and quantum mechanics (QM) were utilized for structural dynamics analysis. Microsecond timescale MD simulations yielded insights into LuT-CD interactions. The binding affinity between LuT and selected β-CDs was assessed by calculating the binding free energy using MM-PBSA and umbrella sampling simulations. The MM-PBSA results indicated that Heptakis-O-(2-hydroxypropyl)-β-CD (HP-β-CD) (-82.59+/-11.67 kJ/mol) and Di-O-methyl-β-CD (DM-β-CD) (-54.01+/-11.07 kJ/mol) exhibited good binding affinity for LuT. Subsequently, derivative screening of HP-β-CD revealed that only 2-HP-β-CD (HP-β-CD-1)/LuT (-21.38 kJ/mol) displayed a superior binding free energy (obtained from umbrella sampling) than HP-β-CD/LuT (-19.15 kJ/mol) inclusion complex. We conducted QM calculations on the top three complexes namelly HP-β-CD, DM-β-CD, and HP-β-CD-1 employing wB97X-D/6-311 + G(d,p) model chemistry to strengthen the MM results. The computational analysis aligns with experimental findings (phase solubility analysis), validating HP-β-CD-1 as most effective cavitand molecule for improving the solubility of LuT. This study offers critical structural insights for developing novel HP-β-CD derivatives with enhanced host capacity to encapsulate guest molecules efficiently.
Collapse
Affiliation(s)
- Pramod Kumar
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Mod Razif MRF, Chan SY, Chew YL, Hassan M, Ahmad Hisham S, Abdul Rahman S, Mai CW, Teo MYM, Kee PE, Khoo KS, Lee SK, Liew KB. Recent Developments in Luteolin-Loaded Nanoformulations for Enhanced Anti-Carcinogenic Activities: Insights from In Vitro and In Vivo Studies. SCI 2024; 6:68. [DOI: 10.3390/sci6040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025] Open
Abstract
With approximately 18 million people affected by cancer in 2020 globally, scientists are exploring innovative approaches to develop effective treatments for various types of cancer. Traditional chemotherapy drugs, although effective against cancer cells, often lead to significant side effects on healthy tissues, such as hair loss, anemia, and nausea. To discover safer alternatives, researchers are investigating natural bioactive compounds found abundantly in plants. Luteolin, a flavonoid found in celery and artichokes, stands out due to its diverse anti-carcinogenic properties, including inhibiting proliferation, inducing apoptosis, activating autophagy, and inhibiting angiogenesis and metastasis. However, the therapeutic potential of luteolin is hindered by challenges related to its bioavailability and solubility. This critical review explores the specific anti-carcinogenic properties of luteolin while analyzing the impact of its limited bioavailability and solubility on effectiveness. Additionally, it investigates the outcomes of encapsulating luteolin in nanoformulations, providing insights into potential strategies for enhancing its anti-carcinogenic effects. Finally, the review compares the efficacy of luteolin with and without nanoformulations. This review provides valuable insights into the potential of utilizing luteolin-loaded nanoformulations as a safer and more effective method for treating cancer, contributing to the ongoing efforts in improving cancer care and outcomes worldwide.
Collapse
Affiliation(s)
| | - Siok Yee Chan
- School of Pharmaceutical Science, Universiti Sains Malaysia, Jalan Universiti, Gelugor 11700, PNG, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, Cheras 56000, KUL, Malaysia
| | - Masriana Hassan
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Jalan Universiti 1, Serdang 43400, SGR, Malaysia
| | - Shairyzah Ahmad Hisham
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, SGR, Malaysia
| | - Shamima Abdul Rahman
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, SGR, Malaysia
| | - Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, Cheras 56000, KUL, Malaysia
| | - Michelle Yee Mun Teo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, Cheras 56000, KUL, Malaysia
| | - Phei Er Kee
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, TN, India
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, SGR, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, SGR, Malaysia
| |
Collapse
|
11
|
Pan B, Wu F, Lu S, Lu W, Cao J, Cheng F, Ou M, Chen Y, Zhang F, Wu G, Mei L. Luteolin-Loaded Hyaluronidase Nanoparticles with Deep Tissue Penetration Capability for Idiopathic Pulmonary Fibrosis Treatment. SMALL METHODS 2024:e2400980. [PMID: 39370583 DOI: 10.1002/smtd.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by sustained fibrotic lesions. Orally administered drugs usually fail to efficiently penetrate the interstitial tissue and reach the lesions, resulting in low treatment efficiency. Luteolin (Lut) is a natural flavonoid, active metabolites of which possess antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic properties. In this study, a nano-formulation is developed by loading Lut into hyaluronidase nanoparticles (Lut@HAase). These Lut@HAase nanoparticles (NPs) exhibit small size and good stability, suitable for noninvasive inhalation and accumulation in the lungs, and hyaluronidase at the site of lesions can degrade hyaluronic acid in the interstitial tissue, enabling efficient penetration of Lut. Lut's therapeutic effect, when administered via NPs, is studied both in vitro (using MRC5 cells) and in vivo (using IPF mice models), and its anti-fibrotic properties are found to inhibit inflammation and eliminate reactive oxygen species. Conclusively, this study demonstrates that Lut@HAase can improve lung function and enhance survival rates while reducing lung damage with few abnormalities during IPF treatment.
Collapse
Affiliation(s)
- Bo Pan
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Fangping Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Shanming Lu
- Department of Pathology, Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
| | - Wenwen Lu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiahui Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Fei Cheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Meitong Ou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Youyi Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Fan Zhang
- Department of Pathology, Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Guolin Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
12
|
Zhu J, Lu Y, He Q. From detection methods to risk prevention: Control of N-nitrosamines in foods and the role of natural bioactive compounds. Compr Rev Food Sci Food Saf 2024; 23:e70000. [PMID: 39217507 DOI: 10.1111/1541-4337.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Food processing unavoidably introduces various risky ingredients that threaten food safety. N-Nitrosamines (NAs) constitute a class of food contaminants, which are considered carcinogenic to humans. According to the compiled information, pretreatment methods based on solid-phase extraction (SPE) were widely used before the determination of volatile NAs in foods. The innovation of adsorbents and hybridization of other methods have been confirmed as the future trends of SPE-based pretreatment methods. Moreover, technologies based on liquid chromatography and gas chromatography were popularly applied for the detection of NAs. Recently, sensor-based methods have garnered increasing attention due to their efficiency and flexibility. More portable sensor-based technologies are recommended for on-site monitoring of NAs in the future. The application of artificial intelligence can facilitate data processing during high-throughput detection of NAs. Natural bioactive compounds have been confirmed to be effective in mitigating NAs in foods through antioxidation, scavenging precursors, and regulating microbial activities. Meanwhile, they exhibit strong protective activities against hepatic damage, pancreatic cancer, and other NA injuries. Further supplementation of data on the bioavailability of bioactives can be achieved through encapsulation and clinical trials. The utilization of bioinformatics tools rooted in various omics technologies is suggested for investigating novel mechanisms and finally broadening their applications in targeted therapies.
Collapse
Affiliation(s)
- Jinpeng Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Wang R, Li X, Xu Y, Li Y, Zhang W, Guo R, Song J. Progress, pharmacokinetics and future perspectives of luteolin modulating signaling pathways to exert anticancer effects: A review. Medicine (Baltimore) 2024; 103:e39398. [PMID: 39183411 PMCID: PMC11346905 DOI: 10.1097/md.0000000000039398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Luteolin (3, 4, 5, 7-tetrahydroxyflavone) are natural flavonoids widely found in vegetables, fruits and herbs, with anti-tumor, anti-inflammatory and antioxidant effects, and also play an anti-cancer effect in various cancers such as lung, breast, prostate, and liver cancer, etc. Specifically, the anti-cancer mechanism includes regulation of various signaling pathways to induce apoptosis of tumor cells, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, regulation of immune function, synergistic anti-cancer drugs and regulation of reactive oxygen species levels of tumor cells. Specific anti-cancer mechanisms include regulation of various signaling pathways to induce apoptosis, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, reversal of epithelial-mesenchymal transition, regulation of immune function, synergism with anti-cancer drugs and regulation of reactive oxygen species levels in tumor cells. This paper integrates the latest cutting-edge research on luteolin and combines it with the prospect of future clinical applications, aiming to explore the mechanism of luteolin exerting different anticancer effects through the regulation of different signaling pathways, so as to provide a practical theoretical basis for the use of luteolin in clinical treatment and hopefully provide some reference for the future research direction of luteolin.
Collapse
Affiliation(s)
- Rui Wang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
- Medical School of Nantong University, Nantong, PR China
| | - Xia Li
- Department of General Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yanhan Xu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yangyang Li
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Weisong Zhang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Rongqi Guo
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Jianxiang Song
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| |
Collapse
|
14
|
Kato H, Sato M, Naiki‐Ito A, Inaguma S, Sano M, Komura M, Nagayasu Y, Xiaochen K, Kato A, Matsuo Y, Ijichi H, Takahashi S. The role of DPYD and the effects of DPYD suppressor luteolin combined with 5-FU in pancreatic cancer. Cancer Med 2024; 13:e70124. [PMID: 39158384 PMCID: PMC11331593 DOI: 10.1002/cam4.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Despite advances in the treatment of cancer, pancreatic ductal adenocarcinoma (PDAC) remains highly lethal due to the lack of effective therapies. Our previous study showed that Luteolin (Lut), a flavonoid, suppressed pancreatocarcinogenesis and reduced the expression of dihydropyrimidine dehydrogenase (DPYD), an enzyme that degrades pyrimidines such as 5-fluorouracil (5-FU), in PDACs. In this study, we investigated the role of DPYD and evaluated the therapeutic potential of combining 5-FU with Lut in PDACs. METHODS AND RESULTS PDAC cells overexpressing DPYD showed increased proliferation, and invasiveness, adding to the resistance to 5-FU. The xenograft tumors of DPYD-overexpressing PDAC cells also exhibit enhanced growth and invasion compared to the control xenograft tumors. RNA-seq analysis of the DPYD-overexpressing PDAC xenograft tumors revealed an upregulation of genes associated with metallopeptidase activity-MMP9 and MEP1A. Furthermore, the overexpression of MEP1A in PDAC was associated with invasion. Next, we investigated the combined effects of Lut, a DPYD suppressor, and 5-FU on DPYD-overexpressing xenograft tumors and PDAC of Pdx1-Cre; LSL-KrasG12D/+; Trp53flox/flox(KPPC) mice. Neither single administration of 5-FU nor Lut showed significant inhibitory effects; however, the combined administration of 5-FU and Lut exhibited a significant tumor-suppressive effect in both the xenograft tumors and KPPC models. CONCLUSION We have elucidated that DPYD expression contributes to proliferation, invasiveness, and 5-FU resistance, in PDACs. The combination therapy of Lut and 5-FU holds the potential for enhanced efficacy against PDACs.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical Sciences and Medical SchoolNagoyaJapan
| | - Motonori Sato
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical Sciences and Medical SchoolNagoyaJapan
| | - Aya Naiki‐Ito
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical Sciences and Medical SchoolNagoyaJapan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical Sciences and Medical SchoolNagoyaJapan
| | - Makoto Sano
- Department of AnesthesiologyNihon University School of MedicineTokyoJapan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical Sciences and Medical SchoolNagoyaJapan
| | - Yuko Nagayasu
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical Sciences and Medical SchoolNagoyaJapan
| | - Kuang Xiaochen
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical Sciences and Medical SchoolNagoyaJapan
| | - Akihisa Kato
- Department of Gastroenterology and MetabolismNagoya City University Graduate School of Medical Sciences and Medical SchoolNagoyaJapan
| | - Yoichi Matsuo
- Department of Gastroenterology SurgeryNagoya City University Graduate School of Medical Sciences and Medical SchoolNagoyaJapan
| | - Hideaki Ijichi
- Department of Clinical Nutrition Center, Graduate School of Medicinethe University of TokyoHongoTokyoJapan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor BiologyNagoya City University Graduate School of Medical Sciences and Medical SchoolNagoyaJapan
| |
Collapse
|
15
|
Zong S, Li X, Zhang G, Hu J, Li H, Guo Z, Zhao X, Chen J, Wang Y, Jing Z. Effect of luteolin on glioblastoma's immune microenvironment and tumor growth suppression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155611. [PMID: 38776737 DOI: 10.1016/j.phymed.2024.155611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Glioblastoma is the most malignant and prevalent primary human brain tumor, and the immunological microenvironment controlled by glioma stem cells is one of the essential elements contributing to its malignancy. The use of medications to ameliorate the tumor microenvironment may give a new approach for glioma treatment. METHODS Glioma stem cells were separated from clinical patient-derived glioma samples for molecular research. Other studies, including CCK8, EdU, Transwell, and others, supported luteolin's ability to treat glioma progenitor cells. Network pharmacology and molecular docking models were used to study the drug target, and qRT-PCR, WB, and IF were used to evaluate the molecular mechanism. Intracranial xenografts were examined using HE and IHC, while macrophage polarization was examined using FC. RESULTS We originally discovered that luteolin inhibits glioma stem cells. IL6 released by glioma stem cells is blocked during medication action and inhibits glioma stem cell proliferation and invasion via the IL6/STAT3 signaling pathway. Additionally, luteolin inhibits the secretion of TGFβ1, affects the polarization function of macrophages in the microenvironment, inhibits the polarization of M2 macrophages in TAM, and further inhibits various functions of glioma stem cells by affecting the IL6/STAT3 signaling pathway, luteolin crosstalk TGFβ1/SMAD3 signaling pathway, and so on. CONCLUSIONS Through the suppression of the immunological microenvironment and inhibition of the IL6/STAT3 signaling pathway, our study determined the inhibitory effect of luteolin on glioma stem cells. This medication's dual inhibitory action, which has a significant negative impact on the glioma stem cells' malignant process, makes it both a viable anti-glioma medication and a candidate for targeted glioma microenvironment therapy.
Collapse
Affiliation(s)
- Shengliang Zong
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Xinqiao Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Guoqing Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Jinpeng Hu
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Hao Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Zhengting Guo
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Xiang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Junhua Chen
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China
| | - Yongfeng Wang
- Department of Radiology, The First Hospital of China Medical University, No.155, Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, China.
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
16
|
Rath P, Chauhan A, Ranjan A, Aggarwal D, Rani I, Choudhary R, Shahwan M, Ramniwas S, Joshi H, Haque S, Mathkor DM, Tuli HS. Luteolin: A promising modulator of apoptosis and survival signaling in liver cancer. Pathol Res Pract 2024; 260:155430. [PMID: 39038389 DOI: 10.1016/j.prp.2024.155430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Due to the increasing incidence of cancer and the difficulties in determining the safety profile of existing therapeutic approaches, cancer research has recently become heavily involved in the search for new therapeutic approaches. The therapeutic significance of natural substances, especially flavonoids, against the onset and progression of cancer has been emphasized in traditional food-based medicine. Interestingly, the flavone luteolin possesses biological effects that have been linked to its anti-inflammatory, antioxidant, and anticancer effects. Luteolin interacts with several downstream chemicals and signaling pathways, including those involved in apoptosis, autophagy, cell cycle progression, and angiogenesis, to exert its anticancer effects on various cancerous cells. A complete understanding of both intrinsic and extrinsic apoptotic pathways, autophagy, and, most critically, the nanodelivery of luteolin in liver cancer is provided in the current review.
Collapse
Affiliation(s)
- Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India.
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India.
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India.
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala 134007, India.
| | - Renuka Choudhary
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India.
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates.
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali 140413, India.
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Shafiul Haque
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon.
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia.
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India.
| |
Collapse
|
17
|
Kitaeva KV, Solovyeva VV, Blatt NL, Rizvanov AA. Eternal Youth: A Comprehensive Exploration of Gene, Cellular, and Pharmacological Anti-Aging Strategies. Int J Mol Sci 2024; 25:643. [PMID: 38203812 PMCID: PMC10778954 DOI: 10.3390/ijms25010643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The improvement of human living conditions has led to an increase in average life expectancy, creating a new social and medical problem-aging, which diminishes the overall quality of human life. The aging process of the body begins with the activation of effector signaling pathways of aging in cells, resulting in the loss of their normal functions and deleterious effects on the microenvironment. This, in turn, leads to chronic inflammation and similar transformations in neighboring cells. The cumulative retention of these senescent cells over a prolonged period results in the deterioration of tissues and organs, ultimately leading to a reduced quality of life and an elevated risk of mortality. Among the most promising methods for addressing aging and age-related illnesses are pharmacological, genetic, and cellular therapies. Elevating the activity of aging-suppressing genes, employing specific groups of native and genetically modified cells, and utilizing senolytic medications may offer the potential to delay aging and age-related ailments over the long term. This review explores strategies and advancements in the field of anti-aging therapies currently under investigation, with a particular emphasis on gene therapy involving adeno-associated vectors and cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Nataliya L. Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
18
|
Liu L, Li X. Pharmacokinetic study of the interaction between luteolin and magnoflorine in rats. Chem Biol Drug Des 2024; 103:e14356. [PMID: 37731180 DOI: 10.1111/cbdd.14356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
Both luteolin and magnoflorine have been reported to regulate the development of breast cancer, which makes them easier to co-administrate. Luteolin was co-administrated with magnoflorine to evaluate their potential interaction. The pharmacokinetic study was performed on male Sprague-Dawley rats randomly grouped as the single administration of luteolin and the co-administration of luteolin and magnoflorine with six rats of each. CaCO-2 cell transwell assay was employed for transport evaluation, and the metabolic stability of luteolin and CYP3A activity were assessed in rat liver microsomes. The effect of luteolin on MDA-MB-231 cells was assessed with CCK8 assay. Magnoflorine significantly changed the pharmacokinetic profile of luteolin with increased area under the curve (AUC), prolonged t1/2 , and reduced clearance rate. Magnoflorine also suppressed the efflux ratio and improved the in vitro metabolic stability of luteolin. Magnoflorine also enhanced the inhibitory effect of luteolin on MDA-MB-231 cells. Magnoflorine significantly inhibited CYP3A activity with the IC50 of 18.99 μM. Magnoflorine prolonged the system exposure, enhanced the metabolic stability, and enhanced the anti-tumor effect of luteolin through inactivating CYP3A.
Collapse
Affiliation(s)
- Lu Liu
- Department of Endocrine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohua Li
- Department of Endocrine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Gao P, Zhang W, Lin Y, Lu R, Lou Z, Lu G, Pan R, Chen Y. Luteolin suppresses oral carcinoma 3 (OC3) cell growth and migration via modulating polo-like kinase 1 (PLK1) expression and cellular energy metabolism. J Zhejiang Univ Sci B 2023; 24:1151-1158. [PMID: 38057271 PMCID: PMC10710912 DOI: 10.1631/jzus.b2300200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 12/08/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent malignant tumor affecting the head and neck region (Leemans et al., 2018). It is often diagnosed at a later stage, leading to a poor prognosis (Muzaffar et al., 2021; Li et al., 2023). Despite advances in OSCC treatment, the overall 5-year survival rate of OSCC patients remains alarmingly low, falling below 50% (Jehn et al., 2019; Johnson et al., 2020). According to statistics, only 50% of patients with oral cancer can be treated with surgery. Once discovered, it is more frequently at an advanced stage. In addition, owing to the aggressively invasive and metastatic characteristics of OSCC, most patients die within one year of diagnosis. Hence, the pursuit of novel therapeutic drugs and treatments to improve the response of oral cancer to medication, along with a deeper understanding of their effects, remains crucial objectives in oral cancer research (Johnson et al., 2020; Bhat et al., 2021; Chen et al., 2023; Ruffin et al., 2023).
Collapse
Affiliation(s)
- Pengfei Gao
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
- School of Stomatology, Bengbu Medical College, Bengbu 233030, China
| | - Wentao Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yujie Lin
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou 325035, China
| | - Ruijie Lu
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou 325035, China
| | - Zijian Lou
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou 325035, China
| | - Gang Lu
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou 311122, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou 311122, China.
| | - Yunfang Chen
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China. ,
- School of Stomatology, Bengbu Medical College, Bengbu 233030, China. ,
| |
Collapse
|
20
|
Gupta M, Ahmad J, Ahamad J, Kundu S, Goel A, Mishra A. Flavonoids as promising anticancer therapeutics: Contemporary research, nanoantioxidant potential, and future scope. Phytother Res 2023; 37:5159-5192. [PMID: 37668281 DOI: 10.1002/ptr.7975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 09/06/2023]
Abstract
Flavonoids are natural polyphenolic compounds considered safe, pleiotropic, and readily available molecules. It is widely distributed in various food products such as fruits and vegetables and beverages such as green tea, wine, and coca-based products. Many studies have reported the anticancer potential of flavonoids against different types of cancers, including solid tumors. The chemopreventive effect of flavonoids is attributed to various mechanisms, including modulation of autophagy, induction of cell cycle arrest, apoptosis, and antioxidant defense. Despite of significant anticancer activity of flavonoids, their clinical translation is limited due to their poor biopharmaceutical attributes (such as low aqueous solubility, limited permeability across the biological membranes (intestinal and blood-brain barrier), and stability issue in biological systems). A nanoparticulate system is an approach that is widely utilized to improve the biopharmaceutical performance and therapeutic efficacy of phytopharmaceuticals. The present review discusses the significant anticancer potential of promising flavonoids in different cancers and the utilization of nanoparticulate systems to improve their nanoantioxidant activity further to enhance the anticancer activity of loaded promising flavonoids. Although, various plant-derived secondary metabolites including flavonoids have been recommended for treating cancer, further vigilant research is warranted to prove their translational values.
Collapse
Affiliation(s)
- Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Javed Ahamad
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Archit Goel
- All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
21
|
Islam F, Nath N, Zehravi M, Khan J, Jashim SBT, Charde MS, Chakole RD, Kumar KP, Babu AK, Nainu F, Khan SL, Rab SO, Emran TB, Wilairatana P. Exploring the role of natural bioactive molecules in genitourinary cancers: how far has research progressed? NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:39. [PMID: 37843642 PMCID: PMC10579213 DOI: 10.1007/s13659-023-00400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/17/2023] [Indexed: 10/17/2023]
Abstract
The primary approaches to treat cancerous diseases include drug treatment, surgical procedures, biotherapy, and radiation therapy. Chemotherapy has been the primary treatment for cancer for a long time, but its main drawback is that it kills cancerous cells along with healthy ones, leading to deadly adverse health effects. However, genitourinary cancer has become a concern in recent years as it is more common in middle-aged people. So, researchers are trying to find possible therapeutic options from natural small molecules due to the many drawbacks associated with chemotherapy and other radiation-based therapies. Plenty of research was conducted regarding genitourinary cancer to determine the promising role of natural small molecules. So, this review focused on natural small molecules along with their potential therapeutic targets in the case of genitourinary cancers such as prostate cancer, renal cancer, bladder cancer, testicular cancer, and so on. Also, this review states some ongoing or completed clinical evidence in this regard.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Kingdom of Saudi Arabia.
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Sumiya Ben-Ta Jashim
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Manoj Shrawan Charde
- Government College of Pharmacy, Vidyanagar, Karad, Satara, 415124, Maharashtra, India
| | - Rita Dadarao Chakole
- Government College of Pharmacy, Vidyanagar, Karad, Satara, 415124, Maharashtra, India
| | - K Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Govt. of NCT of Delhi, Delhi Pharmaceutical Sciences and Research University (DPSRU), Mehrauli-Badarpur Road, PushpVihar, Sector 3, New Delhi, 110017, India
| | - A Kishore Babu
- Ratnadeep College of Pharmacy, Ratnapur, Jamkhed, Ahmednagar, 413206, Maharashtra, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
22
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 631] [Impact Index Per Article: 315.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
23
|
Chang X, Tamauchi S, Yoshida K, Yoshihara M, Yokoi A, Shimizu Y, Ikeda Y, Yoshikawa N, Kiyono T, Yamamoto Y, Kajiyama H. Downregulating vaccinia-related kinase 1 by luteolin suppresses ovarian cancer cell proliferation by activating the p53 signaling pathway. Gynecol Oncol 2023; 173:31-40. [PMID: 37075494 DOI: 10.1016/j.ygyno.2023.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVES Ovarian cancer constitutes one of the most common causes of cancer-related deaths, and preventing chemotherapy resistance and recurrence in patients with ovarian cancer remains a challenge. Herein, we aimed to identify the effect of luteolin, a novel therapeutic agent targeting vaccinia-related kinase 1 (VRK1), on high-grade serous ovarian cancer (HGSOC). METHODS Phosphokinase array, RNA sequencing, and cell cycle and apoptosis assays were conducted to determine the underlying mechanism of the effect of luteolin on HGSOC cells. The anticancer effects of oral and intraperitoneal luteolin administration were assessed in patient-derived xenograft models via several methods, including the assessment of tumor size and immunohistochemistry of phospho-p53, phosphor-HistoneH3 and cleaved caspase 3. RESULTS Luteolin reduced HGSOC cell proliferation and increased apoptosis and cell cycle arrest at G2/M. Compared with controls, several genes were dysregulated in luteolin-treated cells, and luteolin activated the p53 signaling pathway. The human phosphokinase array revealed distinct p53 upregulation in luteolin-treated cells, as confirmed by p53 phosphorylation at ser15 and ser46 using western blot analysis. In patient-derived xenograft models, oral or intraperitoneal luteolin administration substantially suppressed tumor growth. Moreover, combination treatment involving luteolin and cisplatin inhibited tumor cell proliferation, especially in cisplatin-resistant HGSOC cell lines. CONCLUSIONS Luteolin demonstrated considerable anticancer effect on HGSOC cells, reduced VRK1 expression, and activated the p53 signaling pathway, thereby inducing apoptosis and cell cycle arrest in G2/M and inhibiting cell proliferation. Furthermore, luteolin exhibited a synergistic effect with cisplatin both in vivo and in vitro. Thus, luteolin can be considered a promising cotreatment option for HGSOC.
Collapse
Affiliation(s)
- Xuboya Chang
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
| | - Yusuke Shimizu
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, Chiba 277-8577, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
24
|
Kang Y, Park C, Lee H, Kang S, Cheon C, Kim B. Natural Products as New Approaches for Treating Bladder Cancer: From Traditional Medicine to Novel Drug Discovery. Pharmaceutics 2023; 15:1117. [PMID: 37111603 PMCID: PMC10145408 DOI: 10.3390/pharmaceutics15041117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease that a tumor develops in the bladder lining and in some cases, the bladder muscle. Chemotherapy and immunotherapy are commonly used to treat bladder cancer. However, chemotherapy can cause burning and irritation in the bladder while BCG immunotherapy, which is the main type of intravesical immunotherapy for bladder cancer, can also cause burning in the bladder and flu-like symptoms. Thus, drugs originating from natural products have attracted much attention due to the reports that they have anti-cancer properties with low adverse effects. In this study, eighty-seven papers that dealt with natural products preventing or treating bladder cancer were reviewed. The studies were classified into the following mechanism: 71 papers on cell death, 5 papers on anti-metastasis, 3 papers on anti-angiogenesis, 1 paper on anti-resistance, and 7 papers on clinical trials. Most of the natural products that induced apoptosis up-regulated proteins such as caspase-3 and caspase-9. Regarding anti-metastasis, MMP-2 and MMP-9 are regulated frequently. Regarding anti-angiogenesis, HIF-1α and VEGF-A are down-regulated frequently. Nevertheless, the number of papers regarding anti-resistance and clinical trial are too few, so more studies are needed. In conclusion, this database will be useful for future in vivo studies of the anti-bladder cancer effect of natural products, in the process of selecting materials used for the experiment.
Collapse
Affiliation(s)
- Yoo Kang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chelin Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heemin Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sojin Kang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chunhoo Cheon
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
25
|
Yang X, Yang Y, Liu K, Zhang C. Traditional Chinese medicine monomers: Targeting pulmonary artery smooth muscle cells proliferation to treat pulmonary hypertension. Heliyon 2023; 9:e14916. [PMID: 37128338 PMCID: PMC10147991 DOI: 10.1016/j.heliyon.2023.e14916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a complex multifactorial disease characterized by increased pulmonary vascular resistance and pulmonary vascular remodeling (PVR), with high morbidity, disability, and mortality. The abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is the main pathological change causing PVR. At present, clinical treatment drugs for PH are limited, which can only improve symptoms and reduce hospitalization but cannot delay disease progression and reduce survival rate. In recent years, numerous studies have shown that traditional Chinese medicine monomers (TCMs) inhibit excessive proliferation of PASMCs resulting in alleviating PVR through multiple channels and multiple targets, which has attracted more and more attention in the treatment of PH. In this paper, the experimental evidence of inhibiting PASMCs proliferation by TCMs was summarized to provide some directions for the future development of these mentioned TCMs as anti-PH drugs in clinical.
Collapse
|
26
|
Yoon HJ, Kang DH, Jin F, Bang JS, Sohn UD, Je HD. The Effect of Luteolin on the Modulation of Vascular Contractility via ROCK and CPI-17 Inactivation. Biomol Ther (Seoul) 2023; 31:193-199. [PMID: 36065763 PMCID: PMC9970840 DOI: 10.4062/biomolther.2022.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/05/2022] Open
Abstract
In this investigation, we made a study of the efficacy of luteolin (a flavonoid found in plants such as vegetables, herbs and fruits) on vascular contractibility and to elucidate the mechanism underlying the relaxation. Isometric contractions of denuded muscles were stored and combined with western blot analysis which was conducted to assess the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to examine the effect of luteolin on the RhoA/ROCK/CPI-17 pathway. Luteolin significantly alleviated phorbol ester-, fluoride- and thromboxane mimetic-elicited contractions regardless of endothelial nitric oxide synthesis, implying its direct effect on smooth muscle. It also significantly alleviated the fluoride-elicited elevation in pCPI-17 and pMYPT1 levels and phorbol 12,13-dibutyrate-elicited increase in pERK1/2 level, suggesting depression of ROCK and PKC/MEK activity and ensuing phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that luteolin-elicited relaxation includes myosin phosphatase reactivation and calcium desensitization, which seems to be arbitrated by CPI-17 dephosphorylation via ROCK/PKC inhibition.
Collapse
Affiliation(s)
- Hyuk-Jun Yoon
- Department of Pharmacology, College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Dae Hong Kang
- Department of Pharmacology, College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Fanxue Jin
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Joon Seok Bang
- College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Dong Je
- Department of Pharmacology, College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea,Corresponding Author E-mail: , Tel: +82-53-850-3615, Fax: +82-53-359-6734
| |
Collapse
|
27
|
Wen SY, Wei BY, Ma JQ, Wang L, Chen YY. Phytochemicals, Biological Activities, Molecular Mechanisms, and Future Prospects of Plantago asiatica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:143-173. [PMID: 36545763 DOI: 10.1021/acs.jafc.2c07735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. has been used as a vegetable and nutritious food in Asia for thousands of years. According to recent phytochemical and pharmacological research, the active compositions of the plant contribute to various health benefits, such as antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer. This article reviews the 87 components of the plant and their structures, as well as their biological activities and molecular research progress, in detail. This review provides valuable reference material for further study, production, and application of P. asiatica, as well as its components in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Bing-Yan Wei
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
28
|
Spagnuolo C, Moccia S, Tedesco I, Crescente G, Volpe MG, Russo M, Russo GL. Phenolic Extract from Extra Virgin Olive Oil Induces Different Anti-Proliferative Pathways in Human Bladder Cancer Cell Lines. Nutrients 2022; 15:nu15010182. [PMID: 36615840 PMCID: PMC9823665 DOI: 10.3390/nu15010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Regular consumption of olive oil is associated with protection against chronic-degenerative diseases, such as cancer. Epidemiological evidence indicates an inverse association between olive oil intake and bladder cancer risk. Bladder cancer is among the most common forms of cancer; in particular, the transitional cell carcinoma histotype shows aggressive behavior. We investigated the anti-proliferative effects of a phenolic extract prepared from an extra virgin olive oil (EVOOE) on two human bladder cancer cell lines, namely RT112 and J82, representing the progression from low-grade to high-grade tumors, respectively. In RT112, the EVOOE reduced cell viability (IC50 = 240 μg/mL at 24 h), triggering a non-protective form of autophagy, evidenced by the autophagosome formation and the increase in LC-3 lipidation. In J82, EVOOE induced a strong decrease in cell viability after 24 h of treatment (IC50 = 65.8 μg/mL) through rapid and massive apoptosis, assessed by Annexin V positivity and caspase-3 and -9 activation. Moreover, in both bladder cancer cell lines, EVOOE reduced intracellular reactive oxygen species, but this antioxidant effect was not correlated with its anti-proliferative outcomes. Data obtained suggest that the mixture of phenolic compounds in extra virgin olive oil activates different anti-proliferative pathways.
Collapse
|
29
|
Chen YF, Wu S, Li X, Chen M, Liao HF. Luteolin Suppresses Three Angiogenesis Modes and Cell Interaction in Uveal Melanoma in Vitro. Curr Eye Res 2022; 47:1590-1599. [PMID: 36214596 DOI: 10.1080/02713683.2022.2134426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Uveal melanoma is a high-vascularized tumor that lacks effective systemic therapies. Most anti-angiogenesis drug therapies only target endothelial cell-dependent angiogenesis but not vasculogenic mimicry (VM), which supplies blood to tumors independent of endothelial cells. Thus, we aimed to explore the inhibitory effects of luteolin on proliferation, migration, invasiveness, angiogenesis, and VM activity of uveal melanoma. We further explored the signaling pathway underlying the mechanism of action of luteolin. METHODS Monocultures of uveal melanoma C918 cells, human umbilical vein endothelial cells (HUVECs), and co-cultures of these two cell lines were established. Angiogenesis of HUVECs, VM formation of C918 cells, and the mosaic vessels formed by both cell types were observed under an inverted microscope. Cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), wound scratch, Transwell cell migration, and invasion assays were performed. VEGF levels were detected by ELISA. Western blotting was used to detect the expression of PI3K, p-PI3K P85, Akt, and p-Akt Ser473 proteins. RESULTS Luteolin inhibited all three modes of angiogenesis observed in uveal melanoma in vitro. Luteolin effectively inhibited the proliferation, migration, and invasion of C918 cells and proliferation and migration of HUVECs. Furthermore, luteolin could inhibit the interaction between the endothelial cells and C918 cells. VEGF secretion in C918 cells and HUVECs treated with luteolin was inhibited. Luteolin decreased the levels of phosphorylated Akt kinase. CONCLUSION We demonstrated the anti-angiogenic effects of luteolin, including against the VM type, in addition to suppressing tumor cell proliferation and migration in vitro. Furthermore, luteolin likely exerts its inhibitory effects via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Luteolin might be an effective therapeutic candidate for treating highly vascularized uveal melanoma tumors.
Collapse
Affiliation(s)
- Yu-Fen Chen
- Nanchang University, Nanchang, China.,Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, China
| | - Sha Wu
- Nanchang University, Nanchang, China.,Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, China
| | - Xuemei Li
- Nanchang University, Nanchang, China.,Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, China.,Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Mingyuan Chen
- Nanchang University, Nanchang, China.,Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, China.,Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, China
| | - Hong-Fei Liao
- Nanchang University, Nanchang, China.,Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, China.,Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Gu H, Yi T, Lin P, Hu J. Study on essential oil, antioxidant activity, anti-human prostate cancer effects, and induction of apoptosis by Equisetum arvense. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
In this study, we have reported the chemical composition of Equisetum arvense essential oil and the anti-cancer activity of the plant against the prostate cancer cell line. The essential oil was obtained using the hydro-distillation assay. The chemical composition was identified using the gas chromatographic methods including gas chromatography/flame ionization detector and gas chromatography/mass spectrometry. The antioxidant activity of the essential oil and extract was evaluated using classical methods. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was run to evaluate the cytotoxic effect of the essential oil and extract on the prostate cancer cell line of lymph node carcinoma of the prostate. The induction apoptosis of the extract was analyzed by a flow cytometer. Thymol acetate (14.7%), trans-carveol (12.5%), thymol (11.8%), and δ-elemene (9.4%) were identified as the main compounds for the essential oil. The extract scavenged the free radical of 2,2-diphenyl-1-picrylhydrazyl with a half maximal inhibitory concentration (IC50) of 15.2 ± 1.4 μg/mL for the plant extract. In the MTT assay, the IC50 of the extract and essential oil were 25.2 ± 0.3 and 218.9 ± 10.7 μg/mL after 72 h. The highest apoptosis was 31.6% for the plant extract. The obtained results of the present study revealed that E. arvense can be introduced as a potent agent to prevent the growth of prostate tumors.
Collapse
Affiliation(s)
- Hongyong Gu
- Department of Urology, Yichun People’s Hospital , Yichun City , Jiangxi, 336000 , China
| | - Ting Yi
- Public Health Department, Yichun City Center for Disease Control and Prevention , Yichun City , Jiangxi, 336000 , China
| | - Pengxiu Lin
- Department of Urology, Yichun People’s Hospital , Yichun City , Jiangxi, 336000 , China
| | - Jin Hu
- Department of Urology, Yichun People’s Hospital , Yichun City , Jiangxi, 336000 , China
| |
Collapse
|
31
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Singh Tuli H, Rath P, Chauhan A, Sak K, Aggarwal D, Choudhary R, Sharma U, Vashishth K, Sharma S, Kumar M, Yadav V, Singh T, Yerer MB, Haque S. Luteolin, a Potent Anticancer Compound: From Chemistry to Cellular Interactions and Synergetic Perspectives. Cancers (Basel) 2022; 14:5373. [PMID: 36358791 PMCID: PMC9658186 DOI: 10.3390/cancers14215373] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/03/2023] Open
Abstract
Increasing rates of cancer incidence and the toxicity concerns of existing chemotherapeutic agents have intensified the research to explore more alternative routes to combat tumor. Luteolin, a flavone found in numerous fruits, vegetables, and herbs, has exhibited a number of biological activities, such as anticancer and anti-inflammatory. Luteolin inhibits tumor growth by targeting cellular processes such as apoptosis, cell-cycle progression, angiogenesis and migration. Mechanistically, luteolin causes cell death by downregulating Akt, PLK-1, cyclin-B1, cyclin-A, CDC-2, CDK-2, Bcl-2, and Bcl-xL, while upregulating BAX, caspase-3, and p21. It has also been reported to inhibit STAT3 signaling by the suppression of STAT3 activation and enhanced STAT3 protein degradation in various cancer cells. Therefore, extensive studies on the anticancer properties of luteolin reveal its promising role in chemoprevention. The present review describes all the possible cellular interactions of luteolin in cancer, along with its synergistic mode of action and nanodelivery insight.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
| | | | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda 151001, India
| | - Kanupriya Vashishth
- Department of Cardiology, Advance Cardiac Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Sheetu Sharma
- Department of Pharmacovigilace and Clinical Research, Chitkara University, Rajpura 140401, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala 133001, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE-20213 Malmö, Sweden
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, Delhi 110007, India
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
33
|
Anjum J, Mitra S, Das R, Alam R, Mojumder A, Emran TB, Islam F, Rauf A, Hossain MJ, Aljohani ASM, Abdulmonem WA, Alsharif KF, Alzahrani KJ, Khan H. A renewed concept on the MAPK signaling pathway in cancers: Polyphenols as a choice of therapeutics. Pharmacol Res 2022; 184:106398. [PMID: 35988867 DOI: 10.1016/j.phrs.2022.106398] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 01/15/2023]
Abstract
Abnormalities in the mitogen-activated protein kinase (MAPK) signaling pathway are a key contributor to the carcinogenesis process and have therefore been implicated in several aspects of tumorigenesis, including cell differentiation, proliferation, invasion, angiogenesis, apoptosis, and metastasis. This pathway offers multiple molecular targets that may be modulated for anticancer activity and is of great interest for several malignancies. Polyphenols from various dietary sources have been observed to interfere with certain aspects of this pathway and consequently play a substantial role in the development and progression of cancer by suppressing cell growth, inactivating carcinogens, blocking angiogenesis, causing cell death, and changing immunity. A good number of polyphenolic compounds have shown promising outcomes in numerous pieces of research and are currently being investigated clinically to treat cancer patients. The current study concentrates on the role of the MAPK pathway in the development and metastasis of cancer, with particular emphasis on dietary polyphenolic compounds that influence the different MAPK sub-pathways to obtain an anticancer effect. This study aims to convey an overview of the various aspects of the MAPK pathway in cancer development and invasion, as well as a review of the advances achieved in the development of polyphenols to modulate the MAPK signaling pathway for better treatment of cancer.
Collapse
Affiliation(s)
- Juhaer Anjum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Roksana Alam
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Mojumder
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, KPK, Pakistan
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
34
|
Lu M, Lan X, Wu X, Fang X, Zhang Y, Luo H, Gao W, Wu D. Salvia miltiorrhiza in cancer: Potential role in regulating MicroRNAs and epigenetic enzymes. Front Pharmacol 2022; 13:1008222. [PMID: 36172186 PMCID: PMC9512245 DOI: 10.3389/fphar.2022.1008222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that play important roles in gene regulation by influencing the translation and longevity of various target mRNAs and the expression of various target genes as well as by modifying histones and DNA methylation of promoter sites. Consequently, when dysregulated, microRNAs are involved in the development and progression of a variety of diseases, including cancer, by affecting cell growth, proliferation, differentiation, migration, and apoptosis. Preparations from the dried root and rhizome of Salvia miltiorrhiza Bge (Lamiaceae), also known as red sage or danshen, are widely used for treating cardiovascular diseases. Accumulating data suggest that certain bioactive constituents of this plant, particularly tanshinones, have broad antitumor effects by interfering with microRNAs and epigenetic enzymes. This paper reviews the evidence for the antineoplastic activities of S. miltiorrhiza constituents by causing or promoting cell cycle arrest, apoptosis, autophagy, epithelial-mesenchymal transition, angiogenesis, and epigenetic changes to provide an outlook on their future roles in the treatment of cancer, both alone and in combination with other modalities.
Collapse
Affiliation(s)
- Meng Lu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xi Wu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| |
Collapse
|
35
|
Zheng H, Zhu X, Gong E, Lv Y, Li Y, Cai X. Luteolin suppresses lung cancer progression through targeting the circ_0000190/miR-130a-3p/notch-1 signaling pathway. J Chemother 2022:1-13. [PMID: 35943044 DOI: 10.1080/1120009x.2022.2102303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Luteolin has been reported to repress the development of lung cancer. And circular RNAs (circRNAs) circ_0000190 was upregulated in lung cancer tissues. This study is designed to explore the roles of luteolin and circ_0000190 in lung cancer progression. Cell viability, colony number, migration, invasion, and apoptosis were detected by Cell Counting Kit-8 (CCK-8), colony formation, transwell, and flow cytometry assays, severally. The lactate dehydrogenase (LDH) release was determined by special kits. Protein levels of B-celllymphoma-2 (Bcl-2) Cleaved-caspase3 (casp3), Bcl-2 related X protein (Bax), Notch-1, hairy enhance of split-1(Hes-1), and vascular endothelium growth factor (VEGF) were determined by western blot assay. Circ_0000190 andmicroRNA-130a-3p (miR-130a-3p) expression were measured by real-time quantitative polymerase chain reaction (RT-qPCR). The binding relationship between circ_0000190 andmiR-130a-3pwas predicted by starbase and then verified by a dual-luciferase reporter and RNA pull-down assays. The biological roles of Luteolin and circ_0000190 on tumor growth of lung cancer were examined by the xenograft tumor model in vivo. Luteolin inhibited cell viability, colony formation, migration, invasion, and promoted apoptosis of lung cancer cells. Moreover, overexpression of circ_0000190 could counteract the suppression role of luteolin on lung cancer development. Andcirc_0000190 directly bound with miR-130a-3p. Luteolin blocked lung cancer cell growth, metastasis, and Notch-1 signaling pathway by modulating the circ_0000190/miR-130a-3pin vitro. Luteolin repressed tumor growth of lung cancer in vivo by regulating circ_0000190. Luteolin dampened the progression of lung cancer partly by regulating circ_0000190/miR-130a-3p, providing an underlying therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medinine University, Lishui People's Hospital, Lishui City, China
| | - Xiaoyu Zhu
- Department of General Surgery, The Sixth Affiliated Hospital of Wenzhou Medinine University, Lishui People's Hospital, Lishui City, China
| | - Enhui Gong
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medinine University, Lishui People's Hospital, Lishui City, China
| | - Yuankai Lv
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medinine University, Lishui People's Hospital, Lishui City, China
| | - Yuling Li
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medinine University, Lishui People's Hospital, Lishui City, China
| | - Xiaoping Cai
- Department of Respiratory, The Sixth Affiliated Hospital of Wenzhou Medinine University, Lishui People's Hospital, Lishui City, China
| |
Collapse
|
36
|
Cheng Z, Ye F, Xu C, Liang Y, Zhang Z, Chen X, Dai X, Ou Y, Mou Z, Li W, Chen Y, Zhou Q, Zou L, Mao S, Jiang H. The potential mechanism of Longsheyangquan Decoction on the treatment of bladder cancer: Systemic network pharmacology and molecular docking. Front Pharmacol 2022; 13:932039. [PMID: 35910372 PMCID: PMC9330057 DOI: 10.3389/fphar.2022.932039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
Our goal was to explore the bioactive constituents of Longsheyangquan (LSYQ) Decoction and elucidate its mechanisms on the treatment of bladder cancer (BCa). A total of 38 compounds were selected based on their pharmacokinetic properties in three large traditional Chinese medicine (TCM) databases. 654 putative targets of LSYQ Decoction were predicted using a structure-based, reverse-docking algorithm online, of which 343 overlapped with BCa-related protein-coding genes. The protein-protein interaction (PPI) network was constructed to perform module analysis for further Gene Ontology (GO) annotations and Kyoto Encyclopedia Genes and Genomes (KEGG) pathway enrichment analysis, which identified CDK2, EGFR, MMP9 and PTGS2 as hub targets. The TCM-compound-target network and compound-target-pathway network together revealed that quercetin, diosmetin, enhydrin and luteolin were the main components of LSYQ Decoction. Finally, molecular docking showed the affinity between the key compounds and the hub target proteins to verify the accuracy of drug target prediction in the first place. The present study deciphered the core components and targets of LSYQ Decoction on the treatment of BCa in a comprehensive systemic pharmacological manner.
Collapse
Affiliation(s)
- Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheyu Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Haowen Jiang,
| |
Collapse
|
37
|
Chen H, Wang Z, Yang N, Zhang J, Liang Z. Decorin inhibits proliferation and metastasis in human bladder cancer cells by upregulating P21. Medicine (Baltimore) 2022; 101:e29760. [PMID: 35777025 PMCID: PMC9239591 DOI: 10.1097/md.0000000000029760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Migration of bladder cancer (BC) cells poses a substantial threat to human health. It is critical to elucidate the mechanism of BC invasion and progression for surgical treatment and the prognosis of patients. Decorin is of interest as an anticancer treatment that can play a vital role in regulating tumorigenesis. The effect of decorin expression on survival in clinical patients was screened and analyzed using bladder urothelial carcinoma data from the Cancer Genome Atlas (TCGA) database. The differential expression of transforming growth factor-β1 (TGF-β1) in tumors was compared against that of normal samples to analyze the correlation between them. MTT, flow cytometry, and Wound/Transwell assays were used to detect cell proliferation, cycle arrest, apoptosis, migration, and invasion. Analysis of TCGA data showed that decorin expression was significantly lower in bladder urothelial carcinoma samples than in normal tissues, while TGF-β1 expression did not change significantly. We found that decorin was correlated with TGF-β1 expression in bladder urothelial cancer. In addition, decorin blocked the G1/S phase by upregulating p21 protein and inhibiting the expression of TGF-β1 and MMP2, promoting the occurrence of apoptosis and inhibiting the proliferation of human BC T24 cells. Moreover, decorin increased the adhesion of tumor cells in vitro, and effectively inhibited cell metastasis. Decorin regulated the expression of TGF-β1 and MMP2 through p21 protein, promoted apoptosis and adhesion, and inhibited the proliferation and metastasis of BC cells.
Collapse
Affiliation(s)
- Hongjie Chen
- Department of Urology, the First People’s Hospital of Lanzhou, Gansu, Lanzhou, China
- *Correspondence: Hongjie Chen, No. 1, Wujiayuan West Street, Qilihe district, Gansu, Lanzhou, China (e-mail: )
| | - Ziyi Wang
- Clinical Department of Integrated Traditional Chinese and Western medicine, Gansu University of Chinese Medicine, Gansu, Lanzhou, China
| | - Ninggang Yang
- Department of Urology, the First People’s Hospital of Lanzhou, Gansu, Lanzhou, China
| | - Jun Zhang
- Department of Urology, the First People’s Hospital of Lanzhou, Gansu, Lanzhou, China
| | - Zhong Liang
- Department of Urology, the First People’s Hospital of Lanzhou, Gansu, Lanzhou, China
| |
Collapse
|
38
|
Motallebi M, Bhia M, Rajani HF, Bhia I, Tabarraei H, Mohammadkhani N, Pereira-Silva M, Kasaii MS, Nouri-Majd S, Mueller AL, Veiga FJB, Paiva-Santos AC, Shakibaei M. Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sci 2022; 305:120752. [PMID: 35779626 DOI: 10.1016/j.lfs.2022.120752] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Naringenin is an important phytochemical which belongs to the flavanone group of polyphenols, and is found mainly in citrus fruits like grapefruits and others such as tomatoes and cherries plus medicinal plants derived food. Available evidence demonstrates that naringenin, as herbal medicine, has important pharmacological properties, including anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and anti-cancer activities. Collected data from in vitro and in vivo studies show the inactivation of carcinogens after treatment with pure naringenin, naringenin-loaded nanoparticles, and also naringenin in combination with anti-cancer agents in various malignancies, such as colon cancer, lung neoplasms, breast cancer, leukemia and lymphoma, pancreatic cancer, prostate tumors, oral squamous cell carcinoma, liver cancer, brain tumors, skin cancer, cervical and ovarian cancer, bladder neoplasms, gastric cancer, and osteosarcoma. Naringenin inhibits cancer progression through multiple mechanisms, like apoptosis induction, cell cycle arrest, angiogenesis hindrance, and modification of various signaling pathways including Wnt/β-catenin, PI3K/Akt, NF-ĸB, and TGF-β pathways. In this review, we demonstrate that naringenin is a natural product with potential for the treatment of different types of cancer, whether it is used alone, in combination with other agents, or in the form of the naringenin-loaded nanocarrier, after proper technological encapsulation.
Collapse
Affiliation(s)
- Mahzad Motallebi
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Department of Biology, Yadegar-e-Imam Khomeini Shahr-e-Rey Branch, Islamic Azad University, Tehran 1815163111, Iran
| | - Mohammed Bhia
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Huda Fatima Rajani
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E0T5, Canada
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hadi Tabarraei
- Department of Veterinary Biomedical Science, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon SKS7N 5B4, Canada
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maryam Sadat Kasaii
- Department of Nutrition Research, Department of Community Nutrition, National Nutrition and Food Technology Research Institute (WHO Collaborating Center); and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Saeedeh Nouri-Majd
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 14155-6117, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Francisco J B Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany.
| |
Collapse
|
39
|
Basha NJ, Basavarajaiah SM. Anticancer Potential of Bioactive Molecule Luteolin and Its Analogs: An Update. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2080728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, India
| | - S. M. Basavarajaiah
- P.G. Department of Chemistry, R.V. Road Vijaya College, Bengaluru, Karnataka, India
| |
Collapse
|
40
|
Pan Q, Liu Y, Ma W, Kan R, Zhu H, Li D. Cardioprotective Effects and Possible Mechanisms of Luteolin for Myocardial Ischemia-Reperfusion Injury: A Systematic Review and Meta-Analysis of Preclinical Evidence. Front Cardiovasc Med 2022; 9:685998. [PMID: 35548432 PMCID: PMC9081501 DOI: 10.3389/fcvm.2022.685998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAt present, effective clinical therapies for myocardial ischemia-reperfusion injury (MIRI) are lacking. We investigated if luteolin conferred cardioprotective effects against MIRI and elucidated the potential underlying mechanisms.MethodFour databases were searched for preclinical studies of luteolin for the treatment of MIRI. The primary outcomes were myocardial infarct size (IS) and intracardiac hemodynamics. The second outcomes were representative indicators of apoptosis, oxidative stress, and inflammatory. The Stata and RevMan software packages were utilized for data analysis.ResultsLuteolin administration was confirmed to reduce IS and ameliorate hemodynamics as compared to the control groups (p < 0.01). IS had decreased by 2.50%, 2.14%, 2.54% in three subgroups. Amelioration of hemodynamics was apparent in two different myocardial infarct models (model of left anterior descending branch ligation and model of global heart ischemia), as left ventricular systolic pressure improved by 21.62 and 35.40 mmHg respectively, left ventricular end-diastolic pressure decreased by 7.79 and 4.73 mmHg respectively, maximum rate of left ventricular pressure rise increased by 737.48 and 750.47 mmHg/s respectively, and maximum rate of left ventricular pressure decrease increased by 605.66 and 790.64 mmHg/s respectively. Apoptosis of cardiomyocytes also significantly decreased, as indicated by thelevels of MDA, an oxidative stress product, and expression of the inflammatory factor TNF-α (p < 0.001).ConclusionPooling of the data demonstrated that luteolin exerts cardioprotective effects against MIRI through different signaling pathways. As possible mechanisms, luteolin exerts anti-apoptosis, anti-oxidation, and anti-inflammation effects against MIRI.
Collapse
Affiliation(s)
- Qinyuan Pan
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Yang Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Wenrui Ma
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Rongsheng Kan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hong Zhu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Hong Zhu
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dongye Li
| |
Collapse
|
41
|
Li T, Fu X, Liu B, Wang X, Li J, Zhu P, Niu X, Bai J, Liu Y, Lu X, Yu ZL. Luteolin binds Src, promotes STAT3 protein ubiquitination and exerts anti-melanoma effects in cell and mouse models. Biochem Pharmacol 2022; 200:115044. [PMID: 35460630 DOI: 10.1016/j.bcp.2022.115044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) has been proposed as a target for melanoma prevention. Luteolin, a bioactive flavonoid abundant inmedicinal herbs, has been reported to have anti-melanoma activity in vitro. However, its in vivo anti-melanoma effects and underlying mechanisms have not been fully elucidated. In this study, ten cell lines and two mouse models (B16F10 allograft and A375 xenograft models) were used for assessing the in vitro and in vivo anti-melanoma effects of luteolin. A STAT3 over-activated stable A375 cell line was used to determine the contribution of STAT3 signaling in luteolin's anti-melanoma effects. Results showed that luteolin dose-dependently reduced viability of melanoma cells. Luteolin also induced apoptosis in, and suppressed migration and invasion of, A375 and B16F10 melanoma cells. Mechanistically, luteolin inhibited phosphorylation of STAT3 and Src (an upstream kinase of STAT3), accelerated ubiquitin-proteasome pathway-mediated STAT3 degradation, and downregulated the expression of STAT3-targeted genes involved in cell survival and invasion in melanoma cells. Molecular modelling and surface plasmon resonance imaging showed that luteolin stably bound to the protein kinase domain of Src. Animal studies demonstrated that prophylactic administration of luteolin restrained melanoma growth and Src/STAT3 signaling in both A375 and B16F10 melanoma-bearing mice. Moreover, luteolin's anti-melanoma effects were diminished by STAT3 over-activation in A375 cells. Our findings indicate that luteolin inhibits STAT3 signaling by suppressing STAT3 activation and promoting STAT3 protein degradation in melanoma cells, thereby exhibiting anti-melanoma effects. This study provides further pharmacological groundwork for developing luteolin as a chemopreventive agent against melanoma.
Collapse
Affiliation(s)
- Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiuqiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Bin Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xueyu Wang
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Junkui Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Peili Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiaodi Niu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jingxuan Bai
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yuxi Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xinshan Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Development Centre for Natural Health Products, HKBU Institute for Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
42
|
Wufuer Y, Yang X, Guo L, Aximujiang K, Zhong L, Yunusi K, Wu G. The Antitumor Effect and Mechanism of Total Flavonoids From Coreopsis Tinctoria Nutt (Snow Chrysanthemum) on Lung Cancer Using Network Pharmacology and Molecular Docking. Front Pharmacol 2022; 13:761785. [PMID: 35350758 PMCID: PMC8957955 DOI: 10.3389/fphar.2022.761785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Coreopsis tinctoria Nutt (C. tinctoria), also known as Snow Chrysanthemum, is rich in polyphenols and flavonoids. It has important pharmacological effects such as lowering blood lipids, regulating blood glucose, and anti-tumor effect. However, its anti-tumor mechanism has not yet been investigated thoroughly. This study aimed to explore the anti-tumor effect of total flavonoids extracted from C. tinctoria (CTFs) on lung cancer and the possible mechanism. The components of CTFs were analyzed using Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The active components of CTFs were screened according to oral bioavailability (OB) and drug-likeness (DL). Totally, 68 components of CTFs were identified and 23 active components were screened. Network pharmacological analysis on the active components identified 288 potential targets associated with lung cancer. After protein-protein interaction (PPI) network topology analysis, 17 key protein targets including Akt1, MAPK1, TP53, Bcl-2, Caspase-3, Bax, GSK3B and CCND1 were screened. The molecular docking results showed that the active components of CTFs had good binding activity with key targets. GO and KEGG analysis of candidate targets found that the main enrichment was in PI3K/Akt-mediated intrinsic apoptotic pathways. Finally, according to the results of network pharmacology, the potential molecular mechanism of CTFs intervention in lung cancer was validated experimentally in vitro and in vivo. The experimental validation results demonstrated that the antitumor activity of CTFs on lung cancer may be related to inhibiting the PI3K-Akt signaling pathway and activating the mitochondrial-mediated apoptosis pathway.
Collapse
Affiliation(s)
- Yilimire Wufuer
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Xu Yang
- Department of Obstetrics and Gynecology, The Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyuan Guo
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | | | - Li Zhong
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Kurexi Yunusi
- Uygur Medical College, Xinjiang Medical University, Urumqi, China
| | - Guixia Wu
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
43
|
Zhou YS, Cui Y, Zheng JX, Quan YQ, Wu SX, Xu H, Han Y. Luteolin relieves lung cancer-induced bone pain by inhibiting NLRP3 inflammasomes and glial activation in the spinal dorsal horn in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153910. [PMID: 35026502 DOI: 10.1016/j.phymed.2021.153910] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bone cancer pain (BCP) is one of the most severe complications in cancer patients. However, the pharmacological therapeutic approaches are limited. Luteolin, a major component of flavones, is widely distributed in plants and plays a critical role in the antinociceptive effects, but whether luteolin could alleviate cancer pain and its underlying mechanisms are not known. HYPOTHESIS/PURPOSE This study investigated the molecular mechanisms by which luteolin reduced BCP. METHODS Behavioral, pharmacological, immunohistochemical, and biochemical approaches were used to investigate the effect of luteolin on BCP. RESULTS Luteolin treatment ameliorated Lewis lung cancer (LLC)-induced bone pain in mice in a dose-dependent manner. Luteolin treatment could inhibit the activation of neurons, glial cells, and NOD-like receptor protein 3 (NLRP3) inflammasomes in the dorsal spinal cord in the BCP mouse model. Furthermore, phosphorylated p-38 mitogen-activated protein kinase (MAPK) in the spinal dorsal horn (SDH) was suppressed by luteolin treatment that could influence the analgesic and glial inhibition effects of luteolin. CONCLUSION Our results demonstrated that luteolin inhibited neuroinflammation by obstructing glial cell and NLRP3 inflammasome activation via modulating p38 MAPK activity in SDH, ultimately improving LLC-induced BCP.
Collapse
Affiliation(s)
- Yong-Sheng Zhou
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China; Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yue Cui
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China; College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, 716099, China
| | - Jia-Xin Zheng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya-Qi Quan
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yong Han
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China; Department of Thoracic Surgery, Air Force Medical Center, PLA, Beijing, 100142, China.
| |
Collapse
|
44
|
Slika H, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, Shaito A, Ghaddar T, Kobeissy F, Eid AH. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother 2022; 146:112442. [PMID: 35062053 DOI: 10.1016/j.biopha.2021.112442] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality around the globe. Reactive oxygen species (ROS) play contradicting roles in cancer incidence and progression. Antioxidants have attracted attention as emerging therapeutic agents. Among these are flavonoids, which are natural polyphenols with established anticancer and antioxidant capacities. Increasing evidence shows that flavonoids can inhibit carcinogenesis via suppressing ROS levels. Surprisingly, flavonoids can also trigger excessive oxidative stress, but this can also induce death of malignant cells. In this review, we explore the inherent characteristics that contribute to the antioxidant capacity of flavonoids, and we dissect the scenarios in which they play the contrasting role as pro-oxidants. Furthermore, we elaborate on the pathways that link flavonoid-mediated modulation of ROS to the prevention and treatment of cancer. Special attention is given to the ROS-mediated anticancer functions that (-)-epigallocatechin gallate (EGCG), hesperetin, naringenin, quercetin, luteolin, and apigenin evoke in various cancers. We also delve into the structure-function relations that make flavonoids potent antioxidants. This review provides a detailed perspective that can be utilized in future experiments or trials that aim at utilizing flavonoids or verifying their efficacy for developing new pharmacologic agents. We support the argument that flavonoids are attractive candidates for cancer therapy.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| | - Gheyath Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Tarek Ghaddar
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
45
|
Ma J, Chen X, Zhu X, Pan Z, Hao W, Li D, Zheng Q, Tang X. Luteolin potentiates low-dose oxaliplatin-induced inhibitory effects on cell proliferation in gastric cancer by inducing G 2/M cell cycle arrest and apoptosis. Oncol Lett 2021; 23:16. [PMID: 34820015 PMCID: PMC8607327 DOI: 10.3892/ol.2021.13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
Although the reduction of oxaliplatin doses may alleviate deleterious side effects of gastrointestinal and gynecological cancer treatment, it also limits the anticancer therapeutic effects. As a high-efficient and low-priced herbal medicine ingredient, luteolin is an agent with a broad spectrum of anticancer activities and acts as a potential enhancer of therapeutic effects of chemotherapy agents in cancer treatment. This study focused on the antitumor effects and mechanism of combined treatment with luteolin and oxaliplatin on a mouse forestomach carcinoma (MFC) cell line. The study used CCK-8 assay, flow cytometry, Annexin V-FITC/PI double staining assay, reactive oxygen species testing assay, mitochondrial membrane potential testing assay, and western blot assay. The results showed that luteolin and oxaliplatin exerted synergistic effects on inhibiting MFC cell proliferation by inducing G2/M cell cycle arrest and apoptosis. Inhibiting the tumor necrosis factor receptor-associated protein 1/phosphorylated-extracellular-regulated protein kinases1/2/cell division cycle 25 homolog C/cyclin-dependent kinase-1/cyclin B1 pathway was indispensable to the combined treatment with luteolin and oxaliplatin to induce G2/M cell cycle arrest. In addition, luteolin increased oxidative stress in MFC cells treated with a low dose of oxaliplatin. The combined therapy damaged mitochondrial membrane potential and regulated BCL-2-associated X protein and B-cell lymphoma 2 protein expression, leading to apoptosis. Findings of the present study suggest that luteolin may be a qualified chemotherapy enhancer to potentiate the anticancer effects of low-dose oxaliplatin in MFC cells. This work provides a theoretical foundation for future research on applications of luteolin in clinical chemotherapy.
Collapse
Affiliation(s)
- Jun Ma
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China.,School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaojie Chen
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xuejie Zhu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhaohai Pan
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wenjin Hao
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Defang Li
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Qiusheng Zheng
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China.,School of Pharmacy, Shihezi University, Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi, Xinjiang 832002, P.R. China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
46
|
Han W, Yu F, Wang R, Guan W, Zhi F. Valproic Acid Sensitizes Glioma Cells to Luteolin Through Induction of Apoptosis and Autophagy via Akt Signaling. Cell Mol Neurobiol 2021; 41:1625-1634. [PMID: 32719967 PMCID: PMC11444005 DOI: 10.1007/s10571-020-00930-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Glioma is a highly malignant type of intracranial tumor with a poor prognosis resulting from traditional chemo-resistance with temozolomide (TMZ). Luteolin has been detected to exert limited anti-tumor effects on gliomas, while valproic acid (VPA) is a common chemotherapy sensitizer in the treatment of tumors. In this study, three glioma cell lines including U251, LN229 and SNB19 were selected for evaluation of combined anti-tumor effects of VPA and luteolin via Cell Counting Kit-8 (CCK-8) assay, colony formation assay, wound-healing assay, flow cytometry and western blot assay. The results disclosed that VPA sensitized glioma cells to luteolin by repressing cell viability, colony formation and migration. Mechanically, VPA boosted cellular apoptosis and cell-cycle arrest by increased level of cleaved caspase-3/caspase-3, cleaved PARP/PARP and Bax/Bcl-2. In addition, VPA also facilitated cellular autophagy via the decline of p62, p-Akt/Akt and the accumulation of LC3-II. These findings suggested that VPA enhanced the anticancer effects of luteolin by strengthening apoptosis and autophagy via Akt signaling, which could be adopted as a novel therapy for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Changzhou, 213003, Jiangsu, China
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fan Yu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Rong Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Changzhou, 213003, Jiangsu, China
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Changzhou, 213003, Jiangsu, China.
| | - Feng Zhi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Changzhou, 213003, Jiangsu, China.
- Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
47
|
Kato H, Naiki-Ito A, Suzuki S, Inaguma S, Komura M, Nakao K, Naiki T, Kachi K, Kato A, Matsuo Y, Takahashi S. DPYD, down-regulated by the potentially chemopreventive agent luteolin, interacts with STAT3 in pancreatic cancer. Carcinogenesis 2021; 42:940-950. [PMID: 33640964 PMCID: PMC8283735 DOI: 10.1093/carcin/bgab017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
The 5-year survival rate of pancreatic ductal carcinoma (PDAC) patients is <10% despite progress in clinical medicine. Strategies to prevent the development of PDAC are urgently required. The flavonoids Luteolin (Lut) and hesperetin (Hes) may be cancer-chemopreventive, but effects on pancreatic carcinogenesis in vivo have not been studied. Here, the chemopreventive effects of Lut and Hes on pancreatic carcinogenesis are assessed in the BOP-induced hamster PDAC model. Lut but not Hes suppressed proliferation of pancreatic intraepithelial neoplasia (PanIN) and reduced the incidence and multiplicity of PDAC in this model. Lut also inhibited the proliferation of hamster and human pancreatic cancer cells in vitro. Multi-blot and microarray assays revealed decreased phosphorylated STAT3 (pSTAT3) and dihydropyrimidine dehydrogenase (DPYD) on Lut exposure. To explore the relationship between DPYD and STAT3 activity, the former was silenced by RNAi or overexpressed using expression vectors, and the latter was inactivated by small molecule inhibitors or stimulated by IL6 in human PDAC cells. DPYD knock-down decreased, and overexpression increased, pSTAT3 and cell proliferation. DPYD expression was decreased by inactivation of STAT3 and increased by its activation. The frequency of pSTAT3-positive cells and DPYD expression was significantly correlated and was decreased in parallel by Lut in the hamster PDAC model. Finally, immunohistochemical analysis in 73 cases of human PDAC demonstrated that DPYD expression was positively correlated with the Ki-67 labeling index, and high expression was associated with poor prognosis. These results indicate that Lut is a promising chemopreventive agent for PDAC, targeting a novel STAT3-DPYD pathway.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Kenju Nakao
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Taku Naiki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Kenta Kachi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Akihisa Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Yoichi Matsuo
- Department of Gastroenterology Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya,Japan
| |
Collapse
|
48
|
Yang X, Feng Y, Liu Y, Ye X, Ji X, Sun L, Gao F, Zhang Q, Li Y, Zhu B, Wang X. Fuzheng Jiedu Xiaoji formulation inhibits hepatocellular carcinoma progression in patients by targeting the AKT/CyclinD1/p21/p27 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153575. [PMID: 33984593 DOI: 10.1016/j.phymed.2021.153575] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignant tumor with limited treatment options. Conventional antitumor therapy combined with traditional Chinese medicine (TCM) to limit tumor progression has gradually become the focus of complementary and alternative therapies for HCC treatment. The Fuzheng Jiedu Xiaoji formulation (FZJDXJ) alleviates the clinical symptoms of patients and inhibits tumor progression, but its curative effect still requires extensive clinical research and mechanistic analysis. PURPOSE To explore the effectiveness of FZJDXJ in HCC patients and investigate its biological function and mechanism underlying anticancer therapy. METHODS This randomized controlled clinical trial enrolled 291 HCC patients receiving transcatheter arterial chemoembolization (TACE) therapy; patients received either FZJDXJ combined with standard treatment, or standard treatment alone, for 48 weeks. Statistical analyses were performed according to survival time at the end of the trial. The main constituents of the FZJDXJ extracts were identified and evaluated using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and molecular docking. The antitumor effects of FZJDXJ and its specific biological mechanism of action were studied. RESULTS After 48 weeks of treatment, one-year overall survival (OS) and progression-free survival (PFS) were significantly different between the two groups. Co-administration of FZJDXJ and TACE prolonged the OS of HCC patients, especially in BCLC A or B stage. FZJDXJ and TACE treatment effectively extended the PFS of patients, especially in the BCLC B stage. HPLC-MS/MS identified 1619 active constituents of FZJDXJ, including formononetin, chlorogenic acid (CGA), caffeic acid, luteolin, gallic acid, diosgenin, ergosterol endoperoxide, and lupeol, which may function through the AKT/CyclinD1/p21/p27 pathways. Through molecular docking, CGA and gallic acid could effectively combine with Thr308, an important phosphorylation site of AKT1. FZJDXJ inhibited tumor growth in nude mice. In vitro, FZJDXJ-mediated serum inhibited the proliferation, migration, and invasion of liver cancer cells, and promoted cell apoptosis. CONCLUSION Clinically, FZJDXJ combined with TACE therapy significantly prolonged OS and PFS and reduced the mortality rate of HCC patients. Mechanistically, FZJDXJ effectively inhibited the proliferation and migration of liver cancer cells through the modulation of the AKT/CyclinD1/p21/p27 pathways, and may be a promising TCM drug for anti-HCC therapy.
Collapse
Affiliation(s)
- Xue Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ying Feng
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xieqiong Ye
- Department of Infectious Diseases, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Ji
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Le Sun
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fangyuan Gao
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qun Zhang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuxin Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bingbing Zhu
- Department of Gastroenterology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100029, China
| | - XianBo Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
49
|
Mancini MCS, Ponte LGS, Silva CHR, Fagundes I, Pavan ICB, Romeiro SA, da Silva LGS, Morelli AP, Rostagno MA, Simabuco FM, Bezerra RMN. Beetroot and leaf extracts present protective effects against prostate cancer cells, inhibiting cell proliferation, migration, and growth signaling pathways. Phytother Res 2021; 35:5241-5258. [PMID: 34132433 DOI: 10.1002/ptr.7197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 12/24/2022]
Abstract
Beet (Beta vulgaris L.) has high nutritional value, containing bioactive compounds such as betalains and flavonoids. Scientific evidence points to the use of these natural compounds in the treatment of several types of cancer, such as prostate cancer, one of the main causes of morbidity and mortality in men. Here, we compared beet roots and leaves extracts, and their main compounds, apigenin, and betanin, respectively, in DU-145 and PC-3 prostate cancer cell lines. Both cells presented the proliferation decreased for beetroot and beet leaves extracts. The apigenin treatment also reduced the proliferation of both cell lines. Regarding cell migration, beet leaves extract was able to decrease the scratch area in both cell lines, whereas apigenin affected only PC-3 cells' migration. In colony formation assay, both extracts were effective in reducing the number of colonies formed. Besides, the beet leaves extracts and apigenin presented strong inhibition of growth-related signaling pathways in both cell lines, and the beetroot extract and betanin presented effects only in DU-145 cells. Furthermore, the extracts and isolated compounds were able to reduce the levels of apoptotic and cell cycle proteins. This study reveals that beet extracts have important anti-cancer effects against prostate cancer cells.
Collapse
Affiliation(s)
- Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Cayo Henrique Rocha Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isabella Fagundes
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil.,Laboratory of Signal Mechanisms, School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, Brazil
| | - Stefhani Andrioli Romeiro
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Maurício Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
50
|
Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma. Int J Mol Sci 2021; 22:ijms22115938. [PMID: 34073079 PMCID: PMC8197880 DOI: 10.3390/ijms22115938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Sulforaphane (SFN) is a natural glucosinolate found in cruciferous vegetables that acts as a chemopreventive agent, but its mechanism of action is not clear. Due to antioxidative mechanisms being thought central in preventing cancer progression, SFN could play a role in oxidative processes. Since redox imbalance with increased levels of reactive oxygen species (ROS) is involved in the initiation and progression of bladder cancer, this mechanism might be involved when chemoresistance occurs. This review summarizes current understanding regarding the influence of SFN on ROS and ROS-related pathways and appraises a possible role of SFN in bladder cancer treatment.
Collapse
|