1
|
Liu Z, Jiang X, Ke Z, Wang W, Tang J, Dai Y. PAR2 deficiency impairs antitumor immunity and attenuates anti-PD1 efficacy in colorectal cancer. Pharmacol Res 2025; 215:107721. [PMID: 40174816 DOI: 10.1016/j.phrs.2025.107721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
A T cell-inflamed tumor microenvironment is predictive of better prognosis and clinical response to immunotherapy. Proteinase-activated receptor 2 (PAR2), a member of G-protein coupled receptors is involved in inflammatory process and the progression of various cancers. However, the role of PAR2 in modulating the tumor microenvironment remains unclear. Here, we found that PAR2 high-expression was associated with a favorable prognosis in patients with colorectal cancer. Intriguingly, PAR2 expression in human colorectal cancer was mainly confined to tumor cells and was significantly associated with CD8+ T cell infiltration. Tumor-intrinsic PAR2 deficiency blunted antitumor immune responses to promote tumor growth and attenuated the therapeutic efficacy of anti-PD1 in a mouse model of colon cancer. Tumors with downregulated PAR2 showed decreased CD8+ T cell infiltration and impaired effector function. Mechanistically, PAR2 activation in tumor cells induced CXCL9 and CXCL10 production via PI3K/AKT/mTOR signaling, thereby enhancing CD8+ T cell recruitment in the tumor microenvironment. In addition, PAR2 was essential for dendritic cell activation and differentiation towards conventional type 1 subset. PAR2 deficiency in dendritic cells markedly impaired their ability to prime CD8+ T cells and control tumor growth in vivo. Thus, our findings identify new roles for PAR2 in promoting antitumor immunity and provide a promising target to improve immunotherapy efficacy in colorectal cancer.
Collapse
Affiliation(s)
- Zilin Liu
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Xuehui Jiang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Ziliang Ke
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Weihong Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Jianqiang Tang
- Department of General Surgery, Peking University First Hospital, Beijing, China.
| | - Yun Dai
- Department of Gastroenterology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
2
|
Dai Y, Li C, Cheng S, Wang H, Zhuang X. Bioinformatics and experimental insights into F2RL1 as a key biomarker in cervical cancer diagnosis and prognosis. Sci Rep 2025; 15:5228. [PMID: 39939734 PMCID: PMC11821865 DOI: 10.1038/s41598-025-89746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
Cervical cancer(CCa) remains a significant global public health concern, with early diagnosis and treatment being crucial. Moreover, the molecular mechanisms underlying its pathogenesis remain incompletely elucidated. F2RL1 is closely associated with various tumors. However, its relationship with CCa is poorly understood. We accessed data from 309 patients diagnosed with CCa from TCGA database. The Limma package facilitated differential expression analysis to identify differentially expressed mRNAs (DEmRNAs). Survival analysis and ROC analysis were conducted via the XIANTAO database. Immune-related genes were identified with F2RL1-related genes through ImmPort database analysis. Functional enrichment analysis was carried out using GO, KEGG, and GSEA. We gathered cervical cells and serum from participants to test for HPV and TCT, and then used qPCR to check the levels of F2RL1 mRNA expression. We also verified the expression of F2RL1 protein through WB and ELISA techniques. Our investigation has unveiled a fascinating discovery-the levels of F2RL1 expression in CCa tissues are notably elevated when compared to normal tissues, showcasing intriguing variations among various pathological types. Moreover, the presence of high F2RL1 expression is linked to reduce Overall Survival (OS), Progression Free Interval (PFI), Progression Free Survival (PFS). F2RL1 rocked the ROC analysis with an AUC of 0.996. Furthermore, F2RL1 expression levels significantly impact CCa in different N stages, pathological tissue types, treatment statuses, and racial groups, allowing us to develop a predictive model. Additionally, we identified 43 immune-related genes. Enrichment analysis highlighting their association with pathways related to cell movement and T cell activation. Through analysis, we discovered an inverse proportion between F2RL1 expression and the infiltration of most immune cells, particularly TFH and cytotoxic cells, suggesting a potential link to immune evasion in CCa. Molecular biology experiments also confirmed a significant increase in F2RL1 expression in cervical exfoliated cells and serum. Our research uncovers the predictive and early detection significance of F2RL1 in CCa and its correlation with immune infiltration for the first time. F2RL1 is strongly linked to the progression of CCa and could serve as a biomarker for the early diagnosis and prognosis of CCa patients.
Collapse
Affiliation(s)
- Yonggang Dai
- Department of Clinical Laboratoryaboratory, Shandong Provincial Third Hospital, Shandong University, No.11 Middle Wuyingshan Road, Tianqiao, Jinan, 250031, Shandong, China
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chunxiang Li
- Department of Clinical Microbiology Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Shiliang Cheng
- Department of Clinical Laboratoryaboratory, Shandong Provincial Third Hospital, Shandong University, No.11 Middle Wuyingshan Road, Tianqiao, Jinan, 250031, Shandong, China
| | - Hongya Wang
- Department of Clinical Laboratoryaboratory, Shandong Provincial Third Hospital, Shandong University, No.11 Middle Wuyingshan Road, Tianqiao, Jinan, 250031, Shandong, China
| | - Xuewei Zhuang
- Department of Clinical Laboratoryaboratory, Shandong Provincial Third Hospital, Shandong University, No.11 Middle Wuyingshan Road, Tianqiao, Jinan, 250031, Shandong, China.
| |
Collapse
|
3
|
Umekita Y, Kiwaki T, Kawaguchi M, Yamamoto K, Ikenoue M, Takeno S, Fukushima T, Sato Y, Kataoka H. Loss of tumor cell surface hepatocyte growth factor activator inhibitor-1 predicts worse prognosis in esophageal squamous cell carcinoma. Pathol Res Pract 2025; 266:155809. [PMID: 39799890 DOI: 10.1016/j.prp.2025.155809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Hepatocyte growth factor activator inhibitor-1 (HAI-1) is an epithelial type-1 transmembrane protease inhibitor that regulates the pericellular activities of hepatocyte growth factor activator and type-2 transmembrane serine proteases. It is strongly expressed in the stratified squamous epithelium and functions on the cell surface. We previously reported that the cell surface immunoreactivity of HAI-1 was reduced at the invasion front of oral squamous cell carcinoma. In this study, we investigate the relationship between cell surface HAI-1 (csHAI-1) and prognosis of esophageal squamous cell carcinoma (ESCC) after surgery. The effect of HAI-1 knockdown on cultured ESCC cells was also analyzed in vitro. HAI-1 exhibited distinct cell surface immunoreactivity in normal esophageal epithelium. In contrast, alterations in HAI-1 immunoreactivity were frequent in cancer cells, which exhibited aberrant intracytoplasmic localization and decreased cell surface immunoreactivity. The preservation of csHAI-1 immunoreactivity was a sign of a well-differentiated phenotype of ESCC cells. The decreased csHAI-1 was associated with shorter overall survival (OS) and disease-free survival (DFS) in the patients. In 55 cases of early (T1) ESCC cases, decreased csHAI-1 also predicted poor OS and DFS. The loss of HAI-1 enhanced migration and invasion of ESCC cells in vitro. These results suggest that the decreased cell surface immunoreactivity of HAI-1 is associated with a less differentiated phenotype and worse prognosis in ESCC. The cell surface-localized HAI-1 may serve as a promising marker for predicting recurrence and prognosis of ESCC.
Collapse
Affiliation(s)
- Yoshiko Umekita
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takumi Kiwaki
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Makiko Kawaguchi
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Koji Yamamoto
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Makoto Ikenoue
- Section of Gastrointestinal Endocrine and Pediatric Surgery, Department of Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shinsuke Takeno
- Section of Gastrointestinal Endocrine and Pediatric Surgery, Department of Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Sato
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
4
|
Shah H, Fairlie DP, Lim J. Protease-activated receptor 2: A promising therapeutic target for women's cancers. J Pharmacol Exp Ther 2025; 392:100016. [PMID: 39892996 DOI: 10.1124/jpet.124.002176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 01/22/2025] Open
Abstract
Cancers affecting women, such as breast, uterine, ovarian, endometrial, and cervical cancers, have become increasingly prevalent. The growing incidence and death rates associated with these cancers warrant the development of innovative and alternative approaches to current treatments. This article investigates the association of women's cancers with a molecular target known as protease-activated receptor 2 (PAR2), a G protein-coupled receptor that is expressed on the surface of cancer cells. Expression levels of the PAR2 gene were curated from publicly available databases, and PAR2 was found to be significantly overexpressed in tissues from patients with breast, uterine, ovarian, endometrial, or cervical cancer compared with normal tissues. PAR2 overexpression has been previously linked to tumor progression and, in some cases, tumor growth. Activation of PAR2 by either endogenous proteases or synthetic agonists triggers certain downstream intracellular signaling pathways that have been associated with tumor progression, cell migration and invasion, angiogenesis, and apoptosis of cancer cells. Although recent advances have led to identification of several PAR2 antagonists, none has yet been developed for human use. Additionally, PAR2 inhibition has been shown to increase the efficacy of chemotherapeutic drugs, allowing them to be potentially used at less toxic doses in combination therapies for cancer. The present work briefly summarizes the current status of PAR2 as a potential therapeutic target for treating women's cancers. SIGNIFICANCE STATEMENT: This article highlights potential roles for protease-activated receptor 2 (PAR2) in cancers affecting women. Overexpression of the PAR2 gene in women's cancers is associated with various oncogenic processes, such as tumor progression, cell migration, and invasion, ultimately contributing to poorer patient prognoses. Given the increasing incidence of women's cancers, there is an urgent need to develop novel therapeutic drugs, and PAR2 represents a promising target for developing new treatments.
Collapse
Affiliation(s)
- Himani Shah
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
| | - Junxian Lim
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Weiting L, Kawaguchi M, Fukushima T, Sato Y. Loss of hepatocyte growth factor activator inhibitor type 1 (HAI-1) upregulates MMP-9 expression and induces degradation of the epidermal basement membrane. Hum Cell 2024; 38:36. [PMID: 39730982 DOI: 10.1007/s13577-024-01159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1), which is encoded by the SPINT1 gene, is a membrane-associated serine proteinase inhibitor abundantly expressed in epithelial tissues. We had previously demonstrated that HAI-1 is critical for placental development, epidermal keratinization, and maintenance of keratinocyte morphology by regulating cognate proteases, matriptase and prostasin. After performing ultrastructural analysis of Spint1-deleted skin tissues, our results showed that Spint1-deleted epidermis exhibited partially disrupted epidermal basement-membrane structures. Matrix metalloproteinases-9 (MMP-9) expression levels were upregulated in Spint1-deleted primary cultured keratinocytes and SPINT1 knockout (KO) HaCaT cells. Furthermore, gelatin zymography of the conditioned medium showed increased MMP activities in keratinocytes with reduced HAI-1 expression. Treating SPINT1 KO HaCaT cells with dehydroxymethylepoxyquinomicin (DHMEQ), a small molecule inhibitor of NF-κB, abrogated the upregulation of MMP9 and the gelatinolytic activity associated with MMP-9. These results suggest that HAI-1 may play a critical role in epidermal basement membrane integrity by regulating NF-κB activation-induced upregulation of MMP-9.
Collapse
Affiliation(s)
- Liang Weiting
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan
| | - Makiko Kawaguchi
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan.
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan
| | - Yuichiro Sato
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan
| |
Collapse
|
6
|
Furuya K, Nakajima M, Tsunedomi R, Nakagami Y, Xu M, Matsui H, Tokumitsu Y, Shindo Y, Watanabe Y, Tomochika S, Maeda N, Iida M, Suzuki N, Takeda S, Hazama S, Ioka T, Hoshii Y, Ueno T, Nagano H. High serum proteinase-3 levels predict poor progression-free survival and lower efficacy of bevacizumab in metastatic colorectal cancer. BMC Cancer 2024; 24:165. [PMID: 38308214 PMCID: PMC10835931 DOI: 10.1186/s12885-024-11924-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND To improve the prognosis of patients with metastatic colorectal cancer (mCRC), investigating predictive biomarkers of their prognosis and chemotherapeutic responsiveness is necessary. This study aimed to analyze the clinical significance of serum proteinase-3 (PRTN3) as a predictor for prognosis and chemosensitivity, especially to bevacizumab therapy, in mCRC. METHODS This single-center retrospective observational study enrolled 79 patients with mCRC in our hospital and 353 patients with colorectal cancer in the TCGA database. Preoperative serum PRTN3 levels were measured using an enzyme-linked immunosorbent assay. The clinicopathological characteristics and prognosis according to serum PRTN3 levels were then evaluated. PRTN3 expression in tumor and stromal cells was evaluated immunohistochemically. The impact of PRTN3 levels on angiogenesis and bevacizumab sensitivity was evaluated using the tube formation assay. RESULTS Serum PRTN3 levels were an independent poor prognostic factor for progression-free survival (PFS) (hazard ratio, 2.082; 95% confidence interval, 1.118-3.647; P=0.010) in patients with mCRC. Similarly, prognostic analysis with TCGA data sets showed poorer overall survival in patients with PRTN3 expression than that in patients without PRTN3 expression, especially in patients with stage IV. Immunohistochemical analysis of resected specimens revealed that stromal neutrophils expressed PRTN3, and their expression level was significantly correlated with serum PRTN3 levels. Interestingly, the effectiveness of first-line chemotherapy was significantly poorer in the high serum PRTN3 level group. High serum PRTN3 was significantly associated with poor PFS (hazard ratio, 3.027; 95% confidence interval, 1.175-7.793; P=0.0161) in patients treated with bevacizumab, an anti-angiogenic inhibitor. The tube formation assay revealed that PRTN3 administration notably augmented angiogenesis while simultaneously attenuating the anti-angiogenic influence exerted by bevacizumab therapy. CONCLUSIONS Serum PRTN3 levels could be a novel predictive biomarker of PFS of first-line chemotherapy, especially for bevacizumab therapy, in patients with mCRC.
Collapse
Affiliation(s)
- Kei Furuya
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yuki Nakagami
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yusaku Watanabe
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Noriko Maeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshinobu Hoshii
- Department of Diagnostic Pathology, Yamaguchi University Hospital, Ube, Yamaguchi, 755-8505, Japan
| | - Tomio Ueno
- Department of Digestive Surgery, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
7
|
Protease-activated receptor 2 (PAR2)-targeting peptide derivatives for positron emission tomography (PET) imaging. Eur J Med Chem 2023; 246:114989. [PMID: 36527934 DOI: 10.1016/j.ejmech.2022.114989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The proteolytically-activated G protein-coupled receptor (GPCR) protease-activated receptor 2 (PAR2), is implicated in various cancers and inflammatory diseases. Synthetic ligands and in vitro imaging probes targeting this receptor have been developed with low nanomolar affinity, however, no in vivo imaging probes exist for PAR2. Here, we report the strategic design, synthesis, and biological evaluation of a series of novel 4-fluorobenzoylated PAR2-targeting peptides derived from 2f-LIGRLO-NH2 (2f-LI-) and Isox-Cha-Chg-Xaa-NH2 (Isox-) peptide families, where the 4-fluorobenzoyl moiety acts as the 19F-standard of an 18F-labeled probe for potential use in in vivo imaging. We found that several of the 4-fluorobenzoylated peptides from the 2f-LI-family exhibited PAR2 selectivity with moderate potency (EC50 = 151-252 nM), whereas several from the Isox-family exhibited PAR2 selectivity with high potency (EC50 = 13-42 nM). Our lead candidate, Isox-Cha-Chg-Ala-Arg-Dpr(4FB)-NH2 (EC50 = 13 nM), was successfully synthesized with fluorine-18 with a radiochemical yield of 37%, radiochemical purity of >98%, molar activity of 20 GBq/μmol, and an end of synthesis time of 125 min. Biodistribution studies and preliminary PET imaging of the tracer in mice showed predominantly renal clearance. This 18F-labeled tracer is the first reported PAR2 imaging agent with potential for use in vivo. Future work will explore the use of this tracer in cancer xenografts and inflammation models involving upregulation of PAR2 expression.
Collapse
|
8
|
Lv J, Liu J, Chao G, Zhang S. PARs in the inflammation-cancer transformation of CRC. Clin Transl Oncol 2022; 25:1242-1251. [PMID: 36547764 DOI: 10.1007/s12094-022-03052-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the common malignancies with a global trend of increasing incidence and mortality. There is an urgent need to identify new predictive markers and therapeutic targets for the treatment of CRC. Protease-activated receptors (PARs) are a class of G-protein-coupled receptors, with currently identified subtypes including PAR1, PAR2, PAR3 and PAR4. Increasingly, studies suggest that PARs play an important role in the growth and metastasis of CRC. By targeting multiple signaling pathways may contribute to the pathogenesis of CRC. In this review, we first describe recent studies on the role of PARs in CRC inflammation-cancer transformation, focusing on the important role of PARs in signaling pathways associated with inflammation-cancer transformation, and summarize the progress of research on PARs-targeted drugs.
Collapse
Affiliation(s)
- Jianyu Lv
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Jinguo Liu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hanghou, China.
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
9
|
Wang Y, Xu J, Fang Y, Gu J, Zhao F, Tang Y, Xu R, Zhang B, Wu J, Fang Z, Li Y. Comprehensive analysis of a novel signature incorporating lipid metabolism and immune-related genes for assessing prognosis and immune landscape in lung adenocarcinoma. Front Immunol 2022; 13:950001. [PMID: 36091041 PMCID: PMC9455632 DOI: 10.3389/fimmu.2022.950001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background As the crosstalk between metabolism and antitumor immunity continues to be unraveled, we aim to develop a prognostic gene signature that integrates lipid metabolism and immune features for patients with lung adenocarcinoma (LUAD). Methods First, differentially expressed genes (DEGs) related to lipid metabolism in LUAD were detected, and subgroups of LUAD patients were identified via the unsupervised clustering method. Based on lipid metabolism and immune-related DEGs, variables were determined by the univariate Cox and LASSO regression, and a prognostic signature was established. The prognostic value of the signature was evaluated by the Kaplan–Meier method, time-dependent ROC, and univariate and multivariate analyses. Five independent GEO datasets were employed for external validation. Gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), and immune infiltration analysis were performed to investigate the underlying mechanisms. The sensitivity to common chemotherapeutic drugs was estimated based on the GDSC database. Finally, we selected PSMC1 involved in the signature, which has not been reported in LUAD, for further experimental validation. Results LUAD patients with different lipid metabolism patterns exhibited significant differences in overall survival and immune infiltration levels. The prognostic signature incorporated 10 genes and stratified patients into high- and low-risk groups by median value splitting. The areas under the ROC curves were 0.69 (1-year), 0.72 (3-year), 0.74 (5-year), and 0.74 (10-year). The Kaplan–Meier survival analysis revealed a significantly poorer overall survival in the high-risk group in the TCGA cohort (p < 0.001). In addition, both univariate and multivariate Cox regression analyses indicated that the prognostic model was the individual factor affecting the overall survival of LUAD patients. Through GSEA and GSVA, we found that tumor progression and inflammatory and immune-related pathways were enriched in the high-risk group. Additionally, patients with high-risk scores showed higher sensitivity to chemotherapeutic drugs. The in vitro experiments further confirmed that PSMC1 could promote the proliferation and migration of LUAD cells. Conclusions We developed and validated a novel signature incorporating both lipid metabolism and immune-related genes for all-stage LUAD patients. This signature can be applied not only for survival prediction but also for guiding personalized chemotherapy and immunotherapy regimens.
Collapse
Affiliation(s)
- Yuli Wang
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Xu
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Fang
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiefei Gu
- Information Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fanchen Zhao
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Tang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rongzhong Xu
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Zhang
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianchun Wu
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jianchun Wu, ; Zhihong Fang, ; Yan Li,
| | - Zhihong Fang
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jianchun Wu, ; Zhihong Fang, ; Yan Li,
| | - Yan Li
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jianchun Wu, ; Zhihong Fang, ; Yan Li,
| |
Collapse
|
10
|
Guo X, Lin Y, Lin Y, Zhong Y, Yu H, Huang Y, Yang J, Cai Y, Liu F, Li Y, Zhang QQ, Dai J. PM2.5 induces pulmonary microvascular injury in COPD via METTL16-mediated m6A modification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119115. [PMID: 35259473 DOI: 10.1016/j.envpol.2022.119115] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Fine particulate matter (PM2.5) exposure is a significant cause of chronic obstructive pulmonary disease (COPD), but the detailed mechanisms involved in COPD remain unclear. In this study, we established PM2.5-induced COPD rat models and showed that PM2.5 induced pulmonary microvascular injury via accelerating vascular endothelial apoptosis, increasing vascular permeability, and reducing angiogenesis, thereby contributing to COPD development. Moreover, microvascular injury in COPD was validated by measurements of plasma endothelial microparticles (EMPs) and serum VEGF in COPD patients. We then performed m6A sequencing, which confirmed that altered N6-methyladenosine (m6A) modification was induced by PM2.5 exposure. The results of a series of experiments demonstrated that the expression of methyltransferase-like protein 16 (METTL16), an m6A regulator, was upregulated in PM2.5-induced COPD rats, while the expression of other regulators did not differ upon PM2.5-induction. To clarify the regulatory effect of METTL16-mediated m6A modification induced by PM2.5 on pulmonary microvascular injury, cell apoptosis, permeability, and tube formation, the m6A level in METTL16-knockdown pulmonary microvascular endothelial cells (PMVECs) was evaluated, and the target genes of METTL16 were identified from a set of the differentially expressed and m6A-methylated genes associated with vascular injury and containing predicted sites of METTL16 methylation. The results showed that Sulfatase 2 (Sulf2) and Cytohesin-1 (Cyth1) containing the predicted METTL16 methylation sites, exhibited higher m6A methylation and were downregulated after PM2.5 exposure. Further studies demonstrated that METTL16 may regulate Sulf2 expression via m6A modification and thereby contribute to PM2.5-induced microvascular injury. These findings not only provide a better understanding of the role played by m6A modification in PM2.5-induced microvascular injury, but also identify a new therapeutic target for COPD.
Collapse
Affiliation(s)
- Xiaolan Guo
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Center for Reproductive Medicine, Key Laboratory for Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Yuyin Lin
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Center for Reproductive Medicine, Key Laboratory for Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Yingnan Lin
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Center for Reproductive Medicine, Key Laboratory for Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Yue Zhong
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Center for Reproductive Medicine, Key Laboratory for Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Hongjiao Yu
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Center for Reproductive Medicine, Key Laboratory for Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Yibin Huang
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Center for Reproductive Medicine, Key Laboratory for Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Jingwen Yang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, 511500, China
| | - Ying Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, 511500, China
| | - FengDong Liu
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Center for Reproductive Medicine, Key Laboratory for Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Yuanyuan Li
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Center for Reproductive Medicine, Key Laboratory for Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Qian-Qian Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianwei Dai
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Center for Reproductive Medicine, Key Laboratory for Reproductive Medicine of Guangdong Province, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, 511500, China; State Key Lab of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
11
|
Pal P, Jana S, Biswas I, Mandal DP, Bhattacharjee S. Biphasic effect of the dietary phytochemical linalool on angiogenesis and metastasis. Mol Cell Biochem 2022; 477:1041-1052. [PMID: 34994923 DOI: 10.1007/s11010-021-04341-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
Cytotoxic chemotherapy dominates the field of cancer treatment. Consequently, anticancer phytochemicals are largely screened on the basis of their cytotoxicity towards cancer cells which are achieved at higher doses, leading to various toxic side effects. Some phytochemicals also showed pro-carcinogenic effects at certain doses. The concept of hormesis has taught us to look into biphasic responses of phytochemicals in a more systematic way. Interestingly, the monoterpenoid alcohol, linalool, also has been reported to display both anti-oxidant and pro-oxidant properties, which prompted us to explore a probable biphasic effect on cancer cells. Cytotoxicity of various concentrations of linalool (0.1-4 mM) was tested on B16F10 murine melanoma cell line, and two sub-lethal concentrations (0.4 and 0.8 mM) were selected for further experiments. 0.4 mM linalool inhibited angiogenesis and metastasis, while 0.8 mM increased them. Similarly, B16F10 cell migration, invasion, and epithelial-mesenchymal transition markers also showed inhibition and induction with lower and higher linalool concentrations, respectively. Chorioallantoic membrane assay, scratch wound assay, and Boyden's chamber were used to analyze angiogenesis and metastasis. Expression of molecular markers such as vascular endothelial growth factor (VEGF) and its receptor phosphorylated VEGF receptor II (p-VEGFRII or p-Flk-1), Hypoxia-inducible factor-1 α (HIF-1α), E-cadherin, and vimentin were detected using Western blot, ELISA, PCR, qPCR, and immunofluorescence. Finally, ChIP assay was performed to evaluate HIF-1α association with VEGF promoter. Interestingly, measurement of intracellular reactive oxygen species at the selected concentrations of linalool using DCFDA in a flow cytometer showed that the phytochemical induced significant amount of ROS at 0.8 mM. This work sheds light on bimodal dose-response relationship exhibited by dietary phytochemicals like linalool, and it should be taken into consideration to elicit a desirable therapeutic effect.
Collapse
Affiliation(s)
- Priyanka Pal
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata, West Bengal, 700126, India
| | - Samarjit Jana
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata, West Bengal, 700126, India
| | - Ipsita Biswas
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata, West Bengal, 700126, India
| | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata, West Bengal, 700126, India.
| | - Shamee Bhattacharjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
12
|
Qin B, Peng Y, Zhong C, Cai Y, Zhou S, Chen H, Zhuang J, Zeng H, Xu C, Xu H, Li J, Ying G, Gu C, Chen G, Wang L. Mast Cells Mediate Inflammatory Injury and Aggravate Neurological Impairment in Experimental Subarachnoid Hemorrhage Through Microglial PAR-2 Pathway. Front Cell Neurosci 2021; 15:710481. [PMID: 34646122 PMCID: PMC8503547 DOI: 10.3389/fncel.2021.710481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disease with high mortality and disability. Aberrant neuroinflammation has been identified as a critical factor accounting for the poor prognosis of SAH patients. Mast cells (MCs), the sentinel cells of the immune system, play a critical in the early immune reactions and participate in multiple pathophysiological process. However, the exact role of MCs on the pathophysiological process after SAH has not been fully understood. The current study was conducted to determine the role of MCs and MC stabilization in the context of SAH. Mouse SAH model was established by endovascular perforation process. Mice received saline or cromolyn (MC stabilizer) or compound 48/80 (MCs degranulator). Post-SAH evaluation included neurobehavioral test, western blot, immunofluorescence, and toluidine blue staining. We demonstrated that SAH induced MCs activation/degranulation. Administration of MC stabilizer cromolyn conferred a better neurologic outcome and decreased brain edema when compared with SAH+vehicle group. Furthermore, cromolyn significantly inhibited neuroinflammatory response and alleviated neuronal damage after SAH. However, pharmacological activation of MCs with compound 48/80 dramatically aggravated SAH-induced brain injury and exacerbated neurologic outcomes. Notably, pharmacological inhibition of microglial PAR-2 significantly reversed MCs-induced inflammatory response and neurological impairment. Additionally, the effect of MCs-derived tryptase in mediating neuroinflammation was also abolished by the microglial PAR-2 blockage in vitro. Taken together, MCs yielded inflammatory injury through activating microglia-related neuroinflammation after SAH. These data shed light on the notion that MCs might be a novel and promising therapeutic target for SAH.
Collapse
Affiliation(s)
- Bing Qin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjun Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hangzhe Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guangyu Ying
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Nassar E, Hassan N, El-Ghonaimy EA, Hassan H, Abdullah MS, Rottke TV, Kiesel L, Greve B, Ibrahim SA, Götte M. Syndecan-1 Promotes Angiogenesis in Triple-Negative Breast Cancer through the Prognostically Relevant Tissue Factor Pathway and Additional Angiogenic Routes. Cancers (Basel) 2021; 13:cancers13102318. [PMID: 34066023 PMCID: PMC8150756 DOI: 10.3390/cancers13102318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Triple-negative breast cancer is an aggressive subtype of breast cancer characterized by tumor angiogenesis and poor patient survival. Here, we analyzed the function of the cell surface molecule Syndecan-1 in tumor angiogenesis in a 3D cell culture system. As a novel finding, we demonstrate that downregulation of Syndecan-1 reduces angiogenesis by decreasing the amount of angiogenesis factors of the tissue factor pathway. Furthermore, we show that the components of this pathway are associated with the prognosis of breast cancer patients. Our study identifies Syndecan-1 and the tissue factor pathway as novel potential therapeutic targets in the aggressive triple-negative subtype of breast cancer, for which no targeted therapies are currently available. Abstract Triple-negative breast cancer (TNBC) is characterized by increased angiogenesis, metastasis, and poor survival. Dysregulation of the cell surface heparan sulfate proteoglycan and signaling co-receptor Syndecan-1 is linked to poor prognosis. To study its role in angiogenesis, we silenced Syndecan-1 in TNBC cell lines using a 3D human umbilical vein endothelial cell (HUVEC) co-culture system. Syndecan-1 siRNA depletion in SUM-149, MDA-MB-468, and MDA-MB-231 cells decreased HUVEC tubule network formation. Angiogenesis array revealed reduced VEGF-A and tissue factor (TF) in the Syndecan-1-silenced secretome. qPCR independently confirmed altered expression of F3, F7, F2R/PAR1, F2RL1/PAR2, VEGF-A, EDN1, IGFBP1, and IGFBP2 in SUM-149, MDA-MB-231, and MDA-MB-468 cells. ELISA revealed reduced secreted endothelin-1 (SUM-149, MDA-MB-468) and TF (all cell lines) upon Syndecan-1 depletion, while TF pathway inhibitor treatment impaired angiogenesis. Survival analysis of 3951 patients demonstrated that high expression of F3 and F7 are associated with better relapse-free survival, whereas poor survival was observed in TNBC and p53 mutant basal breast cancer (F3) and in ER-negative and HER2-positive breast cancer (F2R, F2RL1). STRING protein network analysis revealed associations of Syndecan-1 with VEGF-A and IGFBP1, further associated with the TF and ET-1 pathways. Our study suggests that TNBC Syndecan-1 regulates angiogenesis via the TF and additional angiogenic pathways and marks its constituents as novel prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Eyyad Nassar
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Eslam A. El-Ghonaimy
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Mahmoud Salah Abdullah
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Theresa V. Rottke
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Burkhard Greve
- Department of Radiotherapy and Radiooncology, University Hospital Münster, 48149 Münster, Germany;
| | - Sherif Abdelaziz Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
- Correspondence: (S.A.I.); (M.G.)
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Correspondence: (S.A.I.); (M.G.)
| |
Collapse
|
14
|
Kawaguchi M, Yamamoto K, Kataoka H, Izumi A, Yamashita F, Kiwaki T, Nishida T, Camerer E, Fukushima T. Protease-activated receptor-2 accelerates intestinal tumor formation through activation of nuclear factor-κB signaling and tumor angiogenesis in Apc Min/+ mice. Cancer Sci 2020; 111:1193-1202. [PMID: 31997435 PMCID: PMC7156842 DOI: 10.1111/cas.14335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte growth factor activator inhibitor‐1 (HAI‐1), encoded by the SPINT1 gene, is a membrane‐bound protease inhibitor expressed on the surface of epithelial cells. Hepatocyte growth factor activator inhibitor‐1 regulates type II transmembrane serine proteases that activate protease‐activated receptor‐2 (PAR‐2). We previously reported that deletion of Spint1 in ApcMin/+ mice resulted in accelerated formation of intestinal tumors, possibly through enhanced nuclear factor‐κB signaling. In this study, we examined the role of PAR‐2 in accelerating tumor formation in the ApcMin/+ model in the presence or absence of Spint1. We observed that knockout of the F2rl1 gene, encoding PAR‐2, not only eliminated the enhanced formation of intestinal tumors caused by Spint1 deletion, but also reduced tumor formation in the presence of Spint1. Exacerbation of anemia and weight loss associated with HAI‐1 deficiency was also normalized by compound deficiency of PAR‐2. Mechanistically, signaling triggered by deregulated protease activities increased nuclear translocation of RelA/p65, vascular endothelial growth factor expression, and vascular density in ApcMin/+‐induced intestinal tumors. These results suggest that serine proteases promote intestinal carcinogenesis through activation of PAR‐2, and that HAI‐1 plays a critical tumor suppressor role as an inhibitor of matriptase, kallikreins, and other PAR‐2 activating proteases.
Collapse
Affiliation(s)
- Makiko Kawaguchi
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Koji Yamamoto
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Kataoka
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Aya Izumi
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Fumiki Yamashita
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Takumi Kiwaki
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Takahiro Nishida
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Eric Camerer
- Inserm U970, Paris Cardiovascular Research Center, Université de Paris, Paris, France
| | | |
Collapse
|