1
|
Runtian Z, Wenqiang H, Zimeng S, Tianyu W, Jingquan Z. AEBP1 or ACLP, which is the key factor in inflammation and fibrosis? Int J Biol Macromol 2025; 310:143554. [PMID: 40294683 DOI: 10.1016/j.ijbiomac.2025.143554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Adipocyte enhancer-binding protein 1 (AEBP1) and Aortic carboxypeptidase-like protein (ACLP) are two protein isoforms produced by the AEBP1 gene. AEBP1, originally discovered in preadipocytes, functions as a transcriptional repressor and is involved in promoting inflammation, proliferation, and migration through various signaling pathways. ACLP is an extracellular matrix protein linked to Ehlers-Danlos syndrome, a genetic disorder characterized by defective connective tissue development. Structurally, AEBP1 and ACLP share many similarities, and both participate in critical physiological or pathological processes, such as cancer and fibrosis, by influencing pathways like NK-κB, WNT, and TGF-β. In recent years, research on AEBP1 and ACLP has expanded to include major organs such as the brain, kidneys, and lungs, with a particular focus on the cardiovascular system, where they show potential as novel drug targets. However, most studies do not clearly distinguish between AEBP1 and ACLP. For instance, AEBP1 is implicated in myocardial fibrosis in hypertrophic cardiomyopathy models, whereas ACLP is associated with fibrosis in other organs. Additionally, literature on the relationship between AEBP1 and fibrosis is often contradictory. Clarifying the distinct roles of AEBP1 and ACLP and their different functions in various cell types would greatly benefit further research. Current research suggests that the AEBP1 gene encodes two proteins, AEBP1 and ACLP, which have been reported to exhibit distinct functions in different studies. However, many studies do not differentiate between these two proteins, potentially leading to misconceptions. Therefore, we have conducted a comprehensive review of the existing literature to elucidate the functions of the AEBP1 gene and its encoded proteins in detail.
Collapse
Affiliation(s)
- Zhang Runtian
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Han Wenqiang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shen Zimeng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wang Tianyu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhong Jingquan
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China.
| |
Collapse
|
2
|
Chen W, Cheng Q, Li N, Gu K, Zhao H, Na H. The role of glycan-lectin interactions in the tumor microenvironment: immunosuppression regulators of colorectal cancer. Am J Cancer Res 2025; 15:1347-1383. [PMID: 40371166 PMCID: PMC12070101 DOI: 10.62347/wbjl4045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/17/2025] [Indexed: 05/16/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumour and a serious global health issue. Glycosylation, a type of posttranslational modification, has been extensively studied in relation to cancer growth and metastasis. Aberrant glycosylation alters how the immune system in the microenvironment perceives the tumour and drives immune suppression through glycan-binding receptors. Interestingly, specific glycan signatures can be regarded as a new pattern of immune checkpoints. Lectins are a group of proteins that exhibit high affinity for glycosylation structures. Lectins and their ligands are found on endothelial cells (ECs), immune cells and tumour cells and play important roles in the tumour microenvironment (TME). In CRC, glycan-lectin interactions can accelerate immune evasion promoting the differentiation of tumour-associated M2 macrophages, altering T cell, dendritic cell (DC), natural killer (NK) cell, and regulatory T (Treg) cell activity to modify the functions of antigen-presenting cells functions. Here, we review our current knowledge on how glycan-lectin interactions affect immune-suppressive circuits in the TME and discuss their roles in the development of more effective immunotherapies for CRC.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of General Surgery, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Quanzhi Cheng
- Department of Laboratory Medicine, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Na Li
- Department of Laboratory Medicine, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Kaiming Gu
- Department of Laboratory Medicine, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Hongmei Zhao
- Department of Infection Management, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Heya Na
- Department of Laboratory Medicine, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| |
Collapse
|
3
|
Dube CT, Gilbert HTJ, Rabbitte N, Baird P, Patel S, Herrera JA, Baricevic-Jones I, Unwin RD, Chan D, Gnanalingham K, Hoyland JA, Richardson SM. Proteomic profiling of human plasma and intervertebral disc tissue reveals matrisomal, but not plasma, biomarkers of disc degeneration. Arthritis Res Ther 2025; 27:28. [PMID: 39930483 PMCID: PMC11809052 DOI: 10.1186/s13075-025-03489-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/26/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Intervertebral disc (IVD) degeneration is a common cause of low back pain, and the most symptomatic patients with neural compression need surgical intervention to relieve symptoms. Current techniques used to diagnose IVD degeneration, such as magnetic resonance imaging (MRI), do not detect changes in the tissue extracellular matrix (ECM) as degeneration progresses. Improved techniques, such as a combination of tissue and blood biomarkers, are needed to monitor the progression of IVD degeneration for more effective treatment plans. METHODS To identify tissue and blood biomarkers associated with degeneration progression, we histologically graded 35 adult human degenerate IVD tissues and matched plasma from the individuals into two groups: mild degenerate and severe degenerate. Mass spectrometry was utilised to characterise proteomic differences in tissue and plasma between the two groups. Top differentially distributed proteins were further validated using immunohistochemistry and qRT-PCR. Additionally, correlational analyses were conducted to define similarities and differences between tissue and plasma protein changes in individuals with mild and severe IVD degeneration. RESULTS Our data revealed that the abundance of 31 proteins was significantly increased in severe degenerated IVD tissues compared to mild. Functional analyses showed that more than 40% of these proteins were matrisome-related, indicating differences in ECM protein composition between severe and mild degenerate IVD tissues. We confirmed adipocyte enhancer-binding protein 1 (AEBP1) as one of the most significantly enriched core matrisome genes and proteins as degeneration progressed. Compared to others, AEBP1 protein levels best distinguished between mild and severe degenerated IVD tissues with an area under the curve score of 0.768 (95% CI: 0.60-0.93). However, we found that protein changes from associated plasma exhibited a weak relationship with histological grading and AEBP1 tissue levels. Given that systemic plasma changes are complex, a larger sample cohort may be required to identify patterns in blood relating to IVD degeneration progression. CONCLUSIONS In this study, we have identified AEBP1 as a tissue marker for monitoring the severity of disc degeneration in humans. Further work to link alterations in tissue AEBP1 levels to changes in blood-related proteins will be beneficial for detailed monitoring of IVD degeneration thereby enabling more personalised treatment approaches.
Collapse
Affiliation(s)
- Christabel Thembela Dube
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Hamish T J Gilbert
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Guy Hilton Research Centre, School of Life Sciences, Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Niamh Rabbitte
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Pauline Baird
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sonal Patel
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jeremy A Herrera
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Ivona Baricevic-Jones
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Richard D Unwin
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Danny Chan
- School of Biomedical Sciences, Faculty of Medicine Building, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Kanna Gnanalingham
- Department of Neurosurgery, Manchester Academy of Health Science Centre, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Stott Lane, Salford, M6 8HD, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
4
|
Gao D, Lu Y, Jiang T, Duan Q, Huang Z. To construct and validate a risk score model of angiogenesis-related genes to predict the prognosis of hepatocellular carcinoma. Sci Rep 2025; 15:4660. [PMID: 39920250 PMCID: PMC11806001 DOI: 10.1038/s41598-025-87459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high morbidity and mortality worldwide. Angiogenesis is essential for HCC progression and metastasis. Some angiogenesis-related genes promote this process, whereas other antiangiogenic genes inhibit HCC growth and metastasis. Therefore, finding new potential biomarkers for HCC prognosis prediction and treatment is essential. Public RNAseq and clinical data from TCGA and GEO database, download angiogenesis-related genes from the GeneCards, MSigDB database, through the single factor analysis of Cox, LASSO build risk score-Cox regression analysis model and external validation verified from the GEO. Cox regression analysis, Kaplan Meier (KM) curve, ROC curve, and decision-curve analysis will be used to evaluate and examine the risk score prediction effect of the model. GSVA analysis was used to assess the variation of gene sets between groups, and ClBERSOFT, ESTIMATE, and TIMER databases were used to analyze the immune infiltration in the single-cell level analysis of gene expression differences between cells. Finally, in the three pairs of HCC tissues and tissue adjacent to carcinoma by real-time fluorescent quantitative PCR (qRT_PCR) and western blotting (WB) to evaluate angiogenesis-related genes (ATP2A3 AEBP1 PNMA1, PLAT) expression level in HCC, and AEBP1 was knocked out in HCCLM3 cells, which is to study AEBP1 biological function in HCC. We established a prognostic risk assessment model based on 13 significant genes associated with HCC prognosis by Cox analysis and LASSO-Cox regression analysis. The median was used to divide these patients into high-risk and low-risk groups, and the prognosis of the high-risk group was worse than that of the low-risk group. Through the multivariate Cox regression analysis, it was found that the risk score was an independent predictor of overall survival (OS). The GSVA analysis suggested that the predicted high-risk population showed higher activity in the purine, pyrimidine, and riboflavin metabolic pathways. Compared with the low-risk group, the tumor microenvironment in the high-risk group showed a reduction in the number of cells promoting anti-tumor immunity and an increase in the number of cells inhibiting anti-tumor immunity, as well as a reduction in overall immune infiltration and matrix components. On the single-cell level, it was confirmed that the key genes (AEBP1, ATP2A3, PLAT, and PNMA1) expressed differently between liver cancer and adjacent tissue cell groups. Finally, qRT_PCR and WB results showed that ATP2A3, AEBP1, PNMA1, and PLAT were highly expressed in liver cancer tissue compared to adjacent tissue, and the proliferation, migration, and invasion of HCCLM3 cells were inhibited after knocking out AEBP1. We constructed novel risk score models as prognostic biomarkers for HCC, which has the potential to guide the development of more personalized treatment strategies for HCC patients. In addition, AEBP1 is a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Duangui Gao
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550002, China
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Yuan Lu
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Tianpeng Jiang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550002, China
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Qinghong Duan
- Institute of Image, Guizhou Medical University, Guiyang, China.
- Department of Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, No. 1 Beijing West Road, Guiyang, 550002, China.
| | - Zhi Huang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550002, China.
- Institute of Image, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
5
|
Okazaki F, Yorozu A, Sekiguchi S, Niinuma T, Maruyama R, Kitajima H, Yamamoto E, Ishiguro K, Toyota M, Hatanaka Y, Nishiyama K, Ogi K, Kai M, Takano K, Ichimiya S, Miyazaki A, Suzuki H. AEBP1 is a negative regulator of skeletal muscle cell differentiation in oral squamous cell carcinoma. Sci Rep 2024; 14:27425. [PMID: 39521917 PMCID: PMC11550323 DOI: 10.1038/s41598-024-79061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
The tumor microenvironment plays a pivotal role in cancer development. We recently reported that in oral squamous cell carcinoma (OSCC), adipocyte enhancer-binding protein 1 (AEBP1) is abundantly expressed in cancer-associated fibroblasts (CAFs), leading to CAF activation and inhibition of CD8 + T cell infiltration. In the present study, we investigated whether AEBP1 contributes to the destruction and atrophy of muscle tissues in OSCC. By analyzing human skeletal muscle myoblasts (HSMMs), we found that AEBP1 is downregulated during muscle cell differentiation. Transcriptome analysis revealed that AEBP1 knockdown significantly upregulates myogenesis-related genes in HSMMs, and qRT-PCR and western blot analyses confirmed the induction of muscle-related genes, including MYOG, in HSMMs after AEBP1 knockdown. Conversely, ectopic expression of AEBP1 strongly suppressed myogenesis-related genes in HSMMs. Notably, indirect co-culture of HSMMs with OSCC cells led to AEBP1 upregulation and robust suppression of muscle-related genes in HSMMs. Treatment with TGF-β1 also upregulated AEBP1 and suppressed expression of muscle-related genes in HSMMs. Our findings suggest that AEBP1 is a negative regulator of skeletal muscle cell differentiation and that OSCC cells inhibit muscle cell differentiation, at least in part, by inducing AEBP1.
Collapse
Affiliation(s)
- Fumika Okazaki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Human Immunology, Research Institute for Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shohei Sekiguchi
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kazuya Ishiguro
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Yui Hatanaka
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koyo Nishiyama
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuhiro Ogi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kenichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
6
|
Jin R, Li C, Yang Y, Xie J. AEBP1 restores osteoblastic differentiation under dexamethasone treatment by activating PI3K/AKT signalling. Clin Exp Pharmacol Physiol 2024; 51:e13923. [PMID: 39358837 DOI: 10.1111/1440-1681.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Adipocyte enhancer-binding protein 1 (AEBP1) is closely implicated in osteoblastic differentiation and bone fracture; this research aimed to investigate the effect of AEBP1 on restoring osteoblastic differentiation under dexamethasone (Dex) treatment, and its interaction with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. Pre-osteoblastic MC3T3-E1 cells were cultured in osteogenic medium and treated by Dex to mimic steroid-induced osteonecrosis cellular model. They were then further transfected with control or AEBP1-overexpressed lentiviral vectors. Finally, cells were treated with the PI3K inhibitor LY294002, with or without AEBP1-overexpressed lentiviral vectors. AEBP1 expression showed a downward trend in MC3T3-E1 cells under Dex treatment in a dose-dependent manner. AEBP1-overexpressed lentiviral vectors increased relative cell viability, alkaline phosphatase (ALP) staining, Alizarin red staining and osteoblastic differentiation markers including osteocalcin (OCN), osteopontin (OPN), collagen type I alpha 1 (COL1A1), runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 2 (BMP2), but decreased cell apoptosis rate in MC3T3-E1 cells under Dex treatment; besides, AEBP1-overexpressed lentiviral vectors positively regulated p-PI3K and p-AKT expressions. Furthermore, LY294002 treatment decreased relative cell viability, Alizarin red staining, osteoblastic differentiation markers including OCN, OPN, RUNX2 and BMP, increased cell apoptosis rate and did not affect ALP staining in MC3T3-E1 cells under Dex treatment; meanwhile, LY294002 treatment weakened the effect of AEBP1 overexpression vectors on the above cell functions. AEBP1 restores osteoblastic differentiation under Dex treatment by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Rilong Jin
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Center for Sport Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yute Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Xie
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Ju G, Xing T, Xu M, Zhang X, Sun Y, Mu Z, Sun D, Miao S, Li L, Liang J, Lin Y. AEBP1 promotes papillary thyroid cancer progression by activating BMP4 signaling. Neoplasia 2024; 49:100972. [PMID: 38237535 PMCID: PMC10828808 DOI: 10.1016/j.neo.2024.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Papillary thyroid cancer (PTC) is the most prevalent endocrine cancer worldwide. Approximately 30 % of PTC patients will progress into the advanced or metastatic stage and have a relatively poor prognosis. It is well known that epithelial-mesenchymal transition (EMT) plays a pivotal role in thyroid cancer metastasis, resistance to therapy, and recurrence. Clarifying the molecular mechanisms of EMT in PTC progression will help develop the targeted therapy of PTC. The aberrant expression of some transcription factors (TFs) participated in many pathological processes of cancers including EMT. In this study, by performing bioinformatics analysis, adipocyte enhancer-binding protein 1 (AEBP1) was screened as a pivotal TF that promoted EMT and tumor progression in PTC. In vitro experiments indicated that knockout of AEBP1 can inhibit the growth and invasion of PTC cells and reduce the expression of EMT markers including N-cadherin, TWIST1, and ZEB2. In the xenograft model, knockout of AEBP1 inhibited the growth and lung metastasis of PTC cells. By performing RNA-sequencing, dual-luciferase reporter assay, and chromatin immunoprecipitation assay, Bone morphogenetic protein 4 (BMP4) was identified as a downstream target of AEBP1. Over-expression of BMP4 can rescue the inhibitory effects of AEBP1 knockout on the growth, invasion, and EMT phenotype of PTC cells. In conclusion, these findings demonstrated that AEBP1 plays a critical role in PTC progression by regulating BMP4 expression and the AEBP1-BMP4 axis may present novel therapeutic targets for PTC treatment.
Collapse
Affiliation(s)
- Gaoda Ju
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China; Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing 100730, China; Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Tao Xing
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Miaomiao Xu
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Xin Zhang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing 100730, China; Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Yuqing Sun
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing 100730, China; Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Zhuanzhuan Mu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing 100730, China; Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Di Sun
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing 100730, China; Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Sen Miao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Li Li
- Department of Oncology, Peking University International Hospital, Peking University, Beijing 102206, China
| | - Jun Liang
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China; Department of Oncology, Peking University International Hospital, Peking University, Beijing 102206, China.
| | - Yansong Lin
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing 100730, China; Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China.
| |
Collapse
|
8
|
Suh SB, Suh JY, Cho SB. Analyzing secretory proteins in human dermal fibroblast-conditioned medium for angiogenesis: A bioinformatic approach. Skin Res Technol 2024; 30:e13568. [PMID: 38200622 PMCID: PMC10781896 DOI: 10.1111/srt.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND The conditioned medium from human dermal fibroblasts (dermal fibroblast-conditioned medium; DFCM) contains a diverse array of secretory proteins, including growth factors and wound repair-promoting proteins. Angiogenesis, a crucial process that facilitates the infiltration of inflammatory cells during wound repair, is induced by a hypoxic environment and inflammatory cytokines. METHODS In this study, we conducted a comprehensive bioinformatic analysis of 337 proteins identified through proteomics analysis of DFCM. We specifically focused on 64 DFCM proteins with potential involvement in angiogenesis. These proteins were further classified based on their characteristics, and we conducted a detailed analysis of their protein-protein interactions. RESULTS Gene Ontology protein classification categorized these 64 DFCM proteins into various classes, including metabolite interconversion enzymes (N = 11), protein modifying enzymes (N = 10), protein-binding activity modulators (N = 9), cell adhesion molecules (N = 6), extracellular matrix proteins (N = 6), transfer/carrier proteins (N = 3), calcium-binding proteins (N = 2), chaperones (N = 2), cytoskeletal proteins (N = 2), RNA metabolism proteins (N = 1), intercellular signal molecules (N = 1), transporters (N = 1), scaffold/adaptor proteins (N = 1), and unclassified proteins (N = 9). Furthermore, our protein-protein interaction network analysis of DFCM proteins revealed two distinct networks: one with medium confidence level interaction scores, consisting of 60 proteins with significant connections, and another at a high confidence level, comprising 52 proteins with significant interactions. CONCLUSIONS Our bioinformatic analysis highlights the presence of a multitude of secretory proteins in DFCM that form significant protein-protein interaction networks crucial for regulating angiogenesis. These findings underscore the critical roles played by DFCM proteins in various stages of angiogenesis during the wound repair process.
Collapse
Affiliation(s)
| | | | - Sung Bin Cho
- Yonsei Seran Dermatology and Laser ClinicSeoulSouth Korea
| |
Collapse
|
9
|
Sekiguchi S, Yorozu A, Okazaki F, Niinuma T, Takasawa A, Yamamoto E, Kitajima H, Kubo T, Hatanaka Y, Nishiyama K, Ogi K, Dehari H, Kondo A, Kurose M, Obata K, Kakiuchi A, Kai M, Hirohashi Y, Torigoe T, Kojima T, Osanai M, Takano K, Miyazaki A, Suzuki H. ACLP Activates Cancer-Associated Fibroblasts and Inhibits CD8+ T-Cell Infiltration in Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:4303. [PMID: 37686580 PMCID: PMC10486706 DOI: 10.3390/cancers15174303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
We previously showed that upregulation of adipocyte enhancer-binding protein 1 (AEBP1) in vascular endothelial cells promotes tumor angiogenesis. In the present study, we aimed to clarify the role of stromal AEBP1/ACLP expression in oral squamous cell carcinoma (OSCC). Immunohistochemical analysis showed that ACLP is abundantly expressed in cancer-associated fibroblasts (CAFs) in primary OSCC tissues and that upregulated expression of ACLP is associated with disease progression. Analysis using CAFs obtained from surgically resected OSCCs showed that the expression of AEBP1/ACLP in CAFs is upregulated by co-culture with OSCC cells or treatment with TGF-β1, suggesting cancer-cell-derived TGF-β1 induces AEBP1/ACLP in CAFs. Collagen gel contraction assays showed that ACLP contributes to the activation of CAFs. In addition, CAF-derived ACLP promotes migration, invasion, and in vivo tumor formation by OSCC cells. Notably, tumor stromal ACLP expression correlated positively with collagen expression and correlated inversely with CD8+ T cell infiltration into primary OSCC tumors. Boyden chamber assays suggested that ACLP in CAFs may attenuate CD8+ T cell migration. Our results suggest that stromal ACLP contributes to the development of OSCCs, and that ACLP is a potential therapeutic target.
Collapse
Affiliation(s)
- Shohei Sekiguchi
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Fumika Okazaki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.T.)
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Toshiyuki Kubo
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Yui Hatanaka
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Koyo Nishiyama
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Kazuhiro Ogi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hironari Dehari
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Atsushi Kondo
- Department of Head and Neck Oncology, Sapporo Teishinkai Hospital, Sapporo 065-0033, Japan
| | - Makoto Kurose
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Kazufumi Obata
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Akito Kakiuchi
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.T.)
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.T.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute of Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.T.)
| | - Kenichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan (T.K.); (M.K.)
| |
Collapse
|
10
|
Zhuang MQ, Jiang XL, Liu WD, Xie QH, Wang P, Dong LW, Hu HP, Zhou HB, Zhou YB. Aquaporin 1 is a prognostic marker and inhibits tumour progression through downregulation of Snail expression in intrahepatic cholangiocarcinoma. Dig Liver Dis 2023; 55:1133-1140. [PMID: 36642562 DOI: 10.1016/j.dld.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recently, some studies have suggested a link between AQP1 and cancer progression. AIMS The aim of the present study was to investigate the influence of AQP1 on the clinicopathology and prognosis of intrahepatic cholangiocarcinoma (ICC) patients. METHODS We retrospectively detected the expression of AQP1 protein in 307 patients with ICC who underwent partial hepatectomy. Western blot analysis was used to detect AQP1 protein levels in stable AQP1 overexpression and knockdown cell lines. The influence of AQP1 on the invasion and metastasis ability of ICC cells was assessed by wound-healing and Transwell assays in vitro as well as by a splenic liver metastasis model in vivo. RESULTS Positive membranous AQP1 expression was identified in 34.2% (105/307) of the ICC specimens. Survival data revealed that positive AQP1 expression was significantly associated with favourable disease-free survival (DFS) and overall survival (OS) (p = 0.0290 and p = 0003, respectively). Moreover, high AQP1 expression inhibited the invasion and migration of ICC cells in vitro as well as inhibited liver metastasis in nude mice. Mechanistically, high AQP1 expression in ICC cells increased the levels of E-cadherin but decreased the levels of the Snail transcription factor. CONCLUSIONS AQP1 expression is associated with a favourable prognosis in ICC patients. AQP1 inhibits ICC cell invasion, metastasis, and epithelial-mesenchymal transition (EMT) through downregulation of Snail expression.
Collapse
Affiliation(s)
- Meng-Qi Zhuang
- Department of Digestive Medicine, Second Affiliated Hospital, Anhui Medical College, Anhui 230000, China; Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Xiao-Lan Jiang
- Department of Digestive Medicine, First people's Hospital of Honghe autonomous Prefecture, Yunnan Province 661199, China
| | - Wen-Di Liu
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Qiao-Hua Xie
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Peng Wang
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Li-Wei Dong
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - He-Ping Hu
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China
| | - Hua-Bang Zhou
- Department of Hepatobiliary Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai 200438, China.
| | - Yu-Bao Zhou
- Department of Digestive Medicine, Second Affiliated Hospital, Anhui Medical College, Anhui 230000, China.
| |
Collapse
|
11
|
Li F, Zhu W. LINC00460 promotes angiogenesis by enhancing NF-κB-mediated VEGFA expression in cervical cancer cells. Biochem Biophys Res Commun 2023; 671:146-152. [PMID: 37302288 DOI: 10.1016/j.bbrc.2023.05.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Angiogenesis is a characteristic of tumor development and is key for tumor growth and metastasis. LINC00460 is a long non-coding RNA that plays important yet complex roles in cancer development and progression. Here, we explored the functional mechanism of action of LINC00460 in cervical cancer (CC) angiogenesis for the first time. We found that conditioned medium (CM) from LINC00460-knockdown CC cells attenuated human umbilical vein endothelial cell (HUVEC) migration, invasion, and tube formation, whereas LINC00460 upregulation had the opposite effects. Mechanistically, LINC00460 stimulated VEGFA transcription. Suppressing VEGF-A reversed the effects of CM from LINC00460-overexpressing CC cells on HUVEC angiogenesis. Recombinant VEGFA eliminated the suppressive effects of CM from LINC00460-knockdown CC cells. Furthermore, LINC00460 enhanced VEGFA expression and promoted angiogenesis by activating the NF-κB pathway. Our data illustrate that LINC00460 can promote angiogenesis by activating the NF-κB-VEGFA axis, suggesting that the axis is a promising target for blocking tumor angiogenesis.
Collapse
Affiliation(s)
- Fan Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China; Department of Gynecology, Shanghai Xuhui Central Hospital, Shanghai, 200031, China; Department of Gynecology, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China
| | - Weipei Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
12
|
Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal 2023; 21:96. [PMID: 37143134 PMCID: PMC10158035 DOI: 10.1186/s12964-023-01125-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
The tumor microenvironment is one of the important drivers of tumor development. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma and actively participate in tumor development, invasion, metastasis, drug resistance, and other biological behaviors. CAFs are a highly heterogeneous group of cells, a reflection of the diversity of their origin, biomarkers, and functions. The diversity of CAF origin determines the complexity of CAF biomarkers, and CAF subpopulations expressing different biomarkers may play contrasting roles in tumor progression. In this review, we provide an overview of these emerging CAF biomarkers and the biological functions that they suggest, which may give a better understanding of the relationship between CAFs and tumor cells and be of great significance for breakthroughs in precision targeted therapy for tumors. Video Abstract.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, No. 155 of Nanjing Road, Heping District, Shenyang, 110001, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
13
|
Ferragu M, Vergori L, Le Corre V, Bellal S, Del Carmen Martinez M, Bigot P. Effects of Large Extracellular Vesicles from Kidney Cancer Patients on the Growth and Environment of Renal Cell Carcinoma Xenografts in a Mouse Model. Curr Issues Mol Biol 2023; 45:2491-2504. [PMID: 36975533 PMCID: PMC10047252 DOI: 10.3390/cimb45030163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Plasma membrane-derived vesicles, also referred to as large extracellular vesicles (lEVs), are implicated in several pathophysiological situations, including cancer. However, to date, no studies have evaluated the effects of lEVs isolated from patients with renal cancer on the development of their tumors. In this study, we investigated the effects of three types of lEVs on the growth and peritumoral environment of xenograft clear cell renal cell carcinoma in a mouse model. Xenograft cancer cells were derived from patients' nephrectomy specimens. Three types of lEVs were obtained from pre-nephrectomy patient blood (cEV), the supernatant of primary cancer cell culture (sEV) and from blood from individuals with no medical history of cancer (iEV). Xenograft volume was measured after nine weeks of growth. Xenografts were then removed, and the expression of CD31 and Ki67 were evaluated. We also measured the expression of MMP2 and Ca9 in the native mouse kidney. lEVs from kidney cancer patients (cEV and sEV) tend to increase the size of xenografts, a factor that is related to an increase in vascularization and tumor cell proliferation. cEV also altered organs that were distant from the xenograft. These results suggest that lEVs in cancer patients are involved in both tumor growth and cancer progression.
Collapse
Affiliation(s)
- Matthieu Ferragu
- Urology Department, Angers University Hospital, 49100 Angers, France
| | - Luisa Vergori
- INSERM Unite Mixte de Recherche (UMR) 1063, Stress Oxydant et Pathologies Metaboliques, 49100 Angers, France
| | - Vincent Le Corre
- Urology Department, Angers University Hospital, 49100 Angers, France
| | - Sarah Bellal
- Anatomopathological Department, Angers University Hospital, 49100 Angers, France
| | - Maria Del Carmen Martinez
- INSERM Unite Mixte de Recherche (UMR) 1063, Stress Oxydant et Pathologies Metaboliques, 49100 Angers, France
| | - Pierre Bigot
- Urology Department, Angers University Hospital, 49100 Angers, France
| |
Collapse
|
14
|
Janikowska G, Janikowski T, Plato M, Mazurek U, Orchel J, Opiłka M, Lorenc Z. Histaminergic System and Inflammation-Related Genes in Normal Large Intestine and Adenocarcinoma Tissues: Transcriptional Profiles and Relations. Int J Mol Sci 2023; 24:4913. [PMID: 36902343 PMCID: PMC10002554 DOI: 10.3390/ijms24054913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Transcriptional analyses such as microarray data have contributed to the progress in the diagnostics and therapy of colorectal cancer (CRC). The need for such research is still present because of the disease being common in both men and women with a high second position in cancer rankings. Little is known about the relations between the histaminergic system and inflammation in the large intestine and CRC. Therefore, the aim of this study was to evaluate the expression of genes related to the histaminergic system and inflammation in the CRC tissues at three cancer development designs: all tested CRC samples, low (LCS) and high (HCS) clinical stage, and four clinical stages (CSI-CSIV), to the control. The research was carried out at the transcriptomic level, analysing hundreds of mRNAs from microarrays, as well as carrying out RT-PCR analysis of histaminergic receptors. The following histaminergic mRNAs: GNA15, MAOA, WASF2A, and inflammation-related: AEBP1, CXCL1, CXCL2, CXCL3, CXCL8, SPHK1, TNFAIP6, were distinguished. Among all analysed transcripts, AEBP1 can be considered the most promising diagnostic marker in the early stage of CRC. The results showed 59 correlations between differentiating genes of the histaminergic system and inflammation in the control, control and CRC, and CRC. The tests confirmed the presence of all histamine receptor transcripts in both the control and colorectal adenocarcinoma. Significant differences in expression were stated for HRH2 and HRH3 in the advanced stages of CRC adenocarcinoma. The relations between the histaminergic system and inflammation-linked genes in both the control and the CRC have been observed.
Collapse
Affiliation(s)
- Grażyna Janikowska
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4 Street, 41-200 Sosnowiec, Poland
| | - Tomasz Janikowski
- Silesian College of Medicine in Katowice, Mickiewicza 29 Street, 40-085 Katowice, Poland
| | - Marta Plato
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8 Street, 41-206 Sosnowiec, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8 Street, 41-206 Sosnowiec, Poland
- The Karol Godula Upper Silesian Academy of Entrepreneurship in Chorzów, Racławicka 23 Street, 41-506 Chorzów, Poland
| | - Joanna Orchel
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8 Street, 41-206 Sosnowiec, Poland
- Katalyst Laboratories, London W1D 3QL, UK
| | - Mieszko Opiłka
- Clinical Department of General, Colorectal and Multiple Organ Trauma Surgery, Faculty of Health Sciences, Medical University of Silesia, Medyków 1 Square, 41-200 Sosnowiec, Poland
| | - Zbigniew Lorenc
- Clinical Department of General, Colorectal and Multiple Organ Trauma Surgery, Faculty of Health Sciences, Medical University of Silesia, Medyków 1 Square, 41-200 Sosnowiec, Poland
| |
Collapse
|
15
|
Yorozu A, Sekiguchi S, Takasawa A, Okazaki F, Niinuma T, Kitajima H, Yamamoto E, Kai M, Toyota M, Hatanaka Y, Nishiyama K, Ogi K, Dehari H, Obata K, Kurose M, Kondo A, Osanai M, Miyazaki A, Takano K, Suzuki H. CXCL12 is expressed by skeletal muscle cells in tongue oral squamous cell carcinoma. Cancer Med 2023; 12:5953-5963. [PMID: 36300800 PMCID: PMC10028106 DOI: 10.1002/cam4.5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The CXCL12/CXCR4 axis plays a pivotal role in the progression of various malignancies, including oral squamous cell carcinoma (OSCC). In this study, we aimed to clarify the biological and clinical significance of CXCL12 in the tumor microenvironment of OSCCs. METHODS Publicly available single-cell RNA-sequencing (RNA-seq) datasets were used to analyze CXCL12 expression in head and neck squamous cell carcinomas (HNSCC). Immunohistochemical analysis of CXCL12, α-smooth muscle antigen (α-SMA), fibroblast activation protein (FAP) and CD8 was performed in a series of 47 surgically resected primary tongue OSCCs. Human skeletal muscle cells were co-cultured with or without OSCC cells, after which CXCL12 expression was analyzed using quantitative reverse-transcription PCR. RESULTS Analysis of the RNA-seq data suggested CXCL12 is abundantly expressed in stromal cells within HNSCC tissue. Immunohistochemical analysis showed that in grade 1 primary OSCCs, CXCL12 is expressed in both tumor cells and muscle cells. By contrast, grade 3 tumors were characterized by disruption of muscle structure and reduced CXCL12 expression. Quantitative analysis of CXCL12-positive areas within tumors revealed that reduced CXCL12 expression correlated with poorer overall survival. Levels of CXCL12 expression tended to inversely correlate α-SMA expression and positively correlate with infiltration by CD8+ lymphocytes, though these relations did not reach statistical significance. CXCL12 was significantly upregulated in muscle cells co-cultured with OSCC cells. CONCLUSION Our results suggest that tongue OSCC cells activate CXCL12 expression in muscle cells, which may contribute to tumor progression. However, CXCL12 is reduced in advanced OSCCs due to muscle tissue destruction.
Collapse
Affiliation(s)
- Akira Yorozu
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shohei Sekiguchi
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumika Okazaki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yui Hatanaka
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koyo Nishiyama
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuhiro Ogi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hironari Dehari
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazufumi Obata
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Kurose
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kondo
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenichi Takano
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
16
|
Liu N, Liu D, Cao S, Lei J. Silencing of adipocyte enhancer-binding protein 1 (AEBP1) alleviates renal fibrosis in vivo and in vitro via inhibition of the β-catenin signaling pathway. Hum Cell 2023; 36:972-986. [PMID: 36738398 DOI: 10.1007/s13577-023-00859-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Renal fibrosis is the common final pathway in many renal diseases regardless of the underlying etiology. Adipocyte enhancer-binding protein 1 (AEBP1) was reported to play a vital role in the development of organ fibrosis, but its role in renal fibrosis has not been reported. Thus, the aim of this study was to investigate the possible function of AEBP1 in renal fibrosis and the mechanism associated with the β-catenin signaling pathway. A total of 83 genes upregulated after unilateral ureteral obstruction (UUO) were screened from two Gene Expression Omnibus (GEO) datasets and subjected to Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Among them, AEBP1 was enriched in collagen binding and the regulation of collagen fibril organization and was confirmed to be upregulated in UUO kidneys and TGF-β1-induced cells. Knockdown of AEBP1 ameliorated renal fibrosis via reducing collagen accumulation, inhibiting epithelial-mesenchymal transition and fibroblast transformation, as evidenced by decreases in the expression of collagen I and III, Col1a1, Col3a1, fibronectin, Snail, α-SMA, as well as collagen-specific staining of kidney tissues, whereas the E-cadherin was increased. Besides, AEBP1 silencing inhibited the expression of β-catenin in nucleus and β-catenin downstream proteins (Axin2, Myc, and Ccnd1). Continuously active β-catenin-S33Y further restored the inhibitory effect of AEBP1 silencing on renal fibrosis. These findings indicate that knockdown of AEBP1 could potentially slow down renal fibrosis by blocking the β-catenin signaling pathway, highlighting the potential of AEBP1 as a therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Naiquan Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, 39#, Huaxiang Road, Tiexi District, Shenyang, 110022, China
| | - Dajun Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, 39#, Huaxiang Road, Tiexi District, Shenyang, 110022, China.
| | - Shiyu Cao
- Department of Clinical Medicine, Class of 2018, China Medical University, Shenyang, China
| | - Jing Lei
- Department of Nephrology, Shengjing Hospital of China Medical University, 39#, Huaxiang Road, Tiexi District, Shenyang, 110022, China
| |
Collapse
|
17
|
Aquaporin-mediated dysregulation of cell migration in disease states. Cell Mol Life Sci 2023; 80:48. [PMID: 36682037 DOI: 10.1007/s00018-022-04665-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 01/23/2023]
Abstract
Dysregulated cell migration and invasion are hallmarks of many disease states. This dysregulated migratory behavior is influenced by the changes in expression of aquaporins (AQPs) that occur during pathogenesis, including conditions such as cancer, endometriosis, and arthritis. The ubiquitous function of AQPs in migration of diseased cells makes them a crucial target for potential therapeutics; this possibility has led to extensive research into the specific mechanisms underlying AQP-mediated diseased cell migration. The functions of AQPs depend on a diverse set of variables including cell type, AQP isoform, disease state, cell microenvironments, and even the subcellular localization of AQPs. To consolidate the considerable work that has been conducted across these numerous variables, here we summarize and review the last decade's research covering the role of AQPs in the migration and invasion of cells in diseased states.
Collapse
|
18
|
Najafi M, Tavakol S, Zarrabi A, Ashrafizadeh M. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: a review. Arch Physiol Biochem 2022; 128:1438-1452. [PMID: 32521182 DOI: 10.1080/13813455.2020.1773864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemotherapy has opened a new window in cancer therapy. However, the resistance of cancer cells has dramatically reduced the efficacy of chemotherapy. Cisplatin is a chemotherapeutic agent and its potential in cancer therapy has been restricted by resistance of cancer cells. As a consequence, the scientists have attempted to find new strategies in elevating chemotherapy efficacy. Due to great anti-tumour activity, naturally occurring compounds are of interest in polychemotherapy. Quercetin is a flavonoid with high anti-tumour activity against different cancers that can be used with cisplatin to enhance its efficacy and also are seen to sensitise cancer cells into chemotherapy. Furthermore, cisplatin has side effects such as nephrotoxicity and ototoxicity. Administration of quercetin is advantageous in reducing the adverse effects of cisplatin without compromising its anti-tumour activity. In this review, we investigate the dual role of quercetin in enhancing anti-tumour activity of cisplatin and simultaneous reduction in its adverse effects.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
19
|
Zhou Q, Wang X, Zhang Y, Wang L, Chen Z. Inhibition of AEBP1 predisposes cisplatin-resistant oral cancer cells to ferroptosis. BMC Oral Health 2022; 22:478. [DOI: 10.1186/s12903-022-02503-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Studies have shown that excessive iron can lead to an increased incidence of cancer. The role of adipocyte enhancer-binding protein 1 (AEBP1) on ferroptosis is unknown. Thus, we explored the effect of AEBP1 silencing in regulation of ferroptosis in cisplatin-resistant oral cancer cells.
Methods
The functions of AEBP1 silencing and sulfasalazine (SSZ) treatment were determined on oral cancer cell lines and tumor xenograft mouse models. Then we evaluated the functions of AEBP1 on cell proliferation, migration, invasion, lipid reactive oxygen species (ROS), labile iron pool (LIP) and free iron, lipid peroxidation, and expression levels of ferroptosis-related genes.
Results
AEBP1 was highly expressed in oral cancer cells and tissues. AEBP1 silencing inhibited oral cancer cell proliferation, migration, and invasion after SSZ treatment. SSZ-induced ferroptosis is due to enhanced ROS level, free iron, and lipid peroxidation, which were distinctly increased by AEBP1 silencing. Meanwhile, AEBP1 silencing enhanced the effects of SSZ on levels of LIP and Fe2+, lipid peroxidation, as well as the expression levels of ferroptosis-related genes in the tumor xenograft mouse models. Importantly, AEBP1 silencing suppressed tumor growth in vivo. Furthermore, silencing of AEBP1 might activate the JNK/ P38 /ERK pathway.
Conclusion
This research suggested that silencing of AEBP1 predisposes cisplatin-resistant oral cancer cells to ferroptosis via the JNK/p38 /ERK pathway.
Collapse
|
20
|
Sugai M, Yanagawa N, Shikanai S, Hashimoto M, Saikawa H, Osakabe M, Saito H, Maemondo M, Sugai T. Correlation of tumor microenvironment-related markers with clinical outcomes in patients with squamous cell carcinoma of the lung. Transl Lung Cancer Res 2022; 11:975-990. [PMID: 35832444 PMCID: PMC9271437 DOI: 10.21037/tlcr-22-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/12/2022] [Indexed: 11/06/2022]
Abstract
Background Squamous cell carcinoma (SCC) is the major histological type in lung cancer (LC). The tumor microenvironment (TME) drives tumor progression and metastasis. In the TME, cancer-associated fibroblasts (CAFs) play key roles in carcinogenesis. However, the roles of CAFs in lung SCC remain unknown. In this study, we evaluated whether the CAF phenotype was determined by various CAF-related proteins and whether CAF-related protein expression contributed to clinical outcomes in patients with lung SCC. Methods We examined the associations of CAF- and epithelial-mesenchymal transition (EMT)-related markers expressed in CAFs, including α-smooth muscle actin (α-SMA), CD10, podoplanin, fibroblast-specific protein 1 (FSP1), platelet-derived growth factor receptor (PDGFR) α, PDGFRβ, adipocyte enhancer-binding protein 1 (AEBP1), fibroblast activation protein (FAP), tenascin-C, Zinc finger E-box binding homeobox 1 (ZEB1), and twist homolog 1 gene (TWIST1), in 108 lung SCC tissues using immunohistochemistry. In addition, cluster analysis was used to identify objective expression patterns of immunohistochemical markers. Finally, the CD3/CD8 ratio was evaluated in order to identify the associations of CAF-related proteins with the CD3/CD8 ratio using immunohistochemistry. Results SCC samples were classified into two subgroups (CAF-phenotype), which were significantly correlated with disease-free and overall survival using univariate and multivariate analyses. Moreover, high AEBP1 expression was identified as an independent prognostic marker in this cohort by univariate and multivariate analyses. The CD3/CD8 ratio was not correlated with the CAF-phenotype. Conclusions The presence of a specific subgroup defined by multiple markers could be used for prediction of prognosis in patients with lung SCC. In addition, AEBP1 overexpression played key roles in prediction of a poor prognosis in patients with lung SCC.
Collapse
Affiliation(s)
- Mayu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun, Japan.,Department of Respiratory Medicine, School of Medicine, Iwate Medical University, Shiwagun, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun, Japan
| | - Shunsuke Shikanai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun, Japan
| | - Mai Hashimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun, Japan
| | - Hirotaka Saikawa
- Department of Respiratory Medicine, School of Medicine, Iwate Medical University, Shiwagun, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun, Japan
| | - Hajime Saito
- Department of Thoracic Surgery, School of Medicine, Iwate Medical University, Shiwagun, Japan
| | - Makoto Maemondo
- Department of Respiratory Medicine, School of Medicine, Iwate Medical University, Shiwagun, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwagun, Japan
| |
Collapse
|
21
|
Zheng H, Liu H, Li H, Dou W, Wang X. Weighted Gene Co-expression Network Analysis Identifies a Cancer-Associated Fibroblast Signature for Predicting Prognosis and Therapeutic Responses in Gastric Cancer. Front Mol Biosci 2021; 8:744677. [PMID: 34692770 PMCID: PMC8531434 DOI: 10.3389/fmolb.2021.744677] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) are the most prominent cellular components in gastric cancer (GC) stroma that contribute to GC progression, treatment resistance, and immunosuppression. This study aimed at exploring stromal CAF-related factors and developing a CAF-related classifier for predicting prognosis and therapeutic effects in GC. Methods: We downloaded mRNA expression and clinical information of 431 GC samples from Gene Expression Omnibus (GEO) and 330 GC samples from The Cancer Genome Atlas (TCGA) databases. CAF infiltrations were quantified by the estimate the proportion of immune and cancer cells (EPIC) method, and stromal scores were calculated via the Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm. Stromal CAF-related genes were identified by weighted gene co-expression network analysis (WGCNA). A CAF risk signature was then developed using the univariate and least absolute shrinkage and selection operator method (LASSO) Cox regression model. We applied the Spearman test to determine the correlation among CAF risk score, CAF markers, and CAF infiltrations (estimated via EPIC, xCell, microenvironment cell populations-counter (MCP-counter), and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms). The TIDE algorithm was further used to assess immunotherapy response. Gene set enrichment analysis (GSEA) was applied to clarify the molecular mechanisms. Results: The 4-gene (COL8A1, SPOCK1, AEBP1, and TIMP2) prognostic CAF model was constructed. GC patients were classified into high– and low–CAF-risk groups in accordance with their median CAF risk score, and patients in the high–CAF-risk group had significant worse prognosis. Spearman correlation analyses revealed the CAF risk score was strongly and positively correlated with stromal and CAF infiltrations, and the four model genes also exhibited positive correlations with CAF markers. Furthermore, TIDE analysis revealed high–CAF-risk patients were less likely to respond to immunotherapy. GSEA revealed that epithelial–mesenchymal transition (EMT), TGF-β signaling, hypoxia, and angiogenesis gene sets were significantly enriched in high–CAF-risk group patients. Conclusion: The present four-gene prognostic CAF signature was not only reliable for predicting prognosis but also competent to estimate clinical immunotherapy response for GC patients, which might provide significant clinical implications for guiding tailored anti-CAF therapy in combination with immunotherapy for GC patients.
Collapse
Affiliation(s)
- Hang Zheng
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Heshu Liu
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huayu Li
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Weidong Dou
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
22
|
Hatanaka Y, Niinuma T, Kitajima H, Nishiyama K, Maruyama R, Ishiguro K, Toyota M, Yamamoto E, Kai M, Yorozu A, Sekiguchi S, Ogi K, Dehari H, Idogawa M, Sasaki Y, Tokino T, Miyazaki A, Suzuki H. DLEU1 promotes oral squamous cell carcinoma progression by activating interferon-stimulated genes. Sci Rep 2021; 11:20438. [PMID: 34650128 PMCID: PMC8516910 DOI: 10.1038/s41598-021-99736-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are deeply involved in cancer development. We previously reported that DLEU1 (deleted in lymphocytic leukemia 1) is one of the lncRNAs overexpressed in oral squamous cell carcinoma (OSCC) cells, where it exhibits oncogenic activity. In the present study, we further clarified the molecular function of DLEU1 in the pathogenesis of OSCC. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that DLEU1 knockdown induced significant changes in the levels of histone H3 lysine 4 trimethylation (H3K4me3) and H3K27 acetylation (H3K27ac) in OSCC cells. Notably, DLEU1 knockdown suppressed levels of H3K4me3/ H3K27ac and expression of a number of interferon-stimulated genes (ISGs), including IFIT1, IFI6 and OAS1, while ectopic DLEU1 expression activated these genes. Western blot analysis and reporter assays suggested that DLEU1 upregulates ISGs through activation of JAK-STAT signaling in OSCC cells. Moreover, IFITM1, one of the ISGs induced by DLUE1, was frequently overexpressed in primary OSCC tumors, and its knockdown inhibited OSCC cell proliferation, migration and invasion. These findings suggest that DLEU1 exerts its oncogenic effects, at least in part, through activation of a series ISGs in OSCC cells.
Collapse
Affiliation(s)
- Yui Hatanaka
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Koyo Nishiyama
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuya Ishiguro
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shohei Sekiguchi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kazuhiro Ogi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hironari Dehari
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masashi Idogawa
- Department of Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasushi Sasaki
- Biology Division, Department of Liberal Arts and Sciences, Center for Medical Education, Sapporo Medical University, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
23
|
Tao Y, Wei X, Yue Y, Wang J, Li J, Shen L, Lu G, He Y, Zhao S, Zhao F, Weng Z, Shen X, Zhou L. Extracellular vesicle-derived AEBP1 mRNA as a novel candidate biomarker for diabetic kidney disease. J Transl Med 2021; 19:326. [PMID: 34332599 PMCID: PMC8325821 DOI: 10.1186/s12967-021-03000-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A novel and improved methodology is still required for the diagnosis of diabetic kidney disease (DKD). The aim of the present study was to identify novel biomarkers using extracellular vesicle (EV)-derived mRNA based on kidney tissue microarray data. METHODS Candidate genes were identified by intersecting the differentially expressed genes (DEGs) and eGFR-correlated genes using the GEO datasets GSE30528 and GSE96804, followed by clinical parameter correlation and diagnostic efficacy assessment. RESULTS Fifteen intersecting genes, including 8 positively correlated genes, B3GALT2, CDH10, MIR3916, NELL1, OCLM, PRKAR2B, TREM1 and USP46, and 7 negatively correlated genes, AEBP1, CDH6, HSD17B2, LUM, MS4A4A, PTN and RASSF9, were confirmed. The expression level assessment results revealed significantly increased levels of AEBP1 in DKD-derived EVs compared to those in T2DM and control EVs. Correlation analysis revealed that AEBP1 levels were positively correlated with Cr, 24-h urine protein and serum CYC and negatively correlated with eGFR and LDL, and good diagnostic efficacy for DKD was also found using AEBP1 levels to differentiate DKD patients from T2DM patients or controls. CONCLUSIONS Our results confirmed that the AEBP1 level from plasma EVs could differentiate DKD patients from T2DM patients and control subjects and was a good indication of the function of multiple critical clinical parameters. The AEBP1 level of EVs may serve as a novel and efficacious biomarker for DKD diagnosis.
Collapse
Affiliation(s)
- Yiying Tao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xing Wei
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yue Yue
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jiaxin Wang
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lei Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 215123, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Shidi Zhao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Fan Zhao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhen Weng
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 215123, China
- Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Xiahong Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
24
|
Sudo G, Aoki H, Yamamoto E, Takasawa A, Niinuma T, Yoshido A, Kitajima H, Yorozu A, Kubo T, Harada T, Ishiguro K, Kai M, Katanuma A, Yamano HO, Osanai M, Nakase H, Suzuki H. Activated macrophages promote invasion by early colorectal cancer via an interleukin 1β-serum amyloid A1 axis. Cancer Sci 2021; 112:4151-4165. [PMID: 34293235 PMCID: PMC8486202 DOI: 10.1111/cas.15080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
Submucosal invasion and lymph node metastasis are important issues affecting treatment options for early colorectal cancer (CRC). In this study, we aimed to unravel the molecular mechanism underlying the invasiveness of early CRCs. We performed RNA‐sequencing (RNA‐seq) with poorly differentiated components (PORs) and their normal counterparts isolated from T1 CRC tissues and detected significant upregulation of serum amyloid A1 (SAA1) in PORs. Immunohistochemical analysis revealed that SAA1 was specifically expressed in PORs at the invasive front of T1b CRCs. Upregulation of SAA1 in CRC cells promoted cell migration and invasion. Coculture experiments using CRC cell lines and THP‐1 cells suggested that interleukin 1β (IL‐1β) produced by macrophages induces SAA1 expression in CRC cells. Induction of SAA1 and promotion of CRC cell migration and invasion by macrophages were inhibited by blocking IL‐1β. These findings were supported by immunohistochemical analysis of primary T1 CRCs showing accumulation of M1‐like/M2‐like macrophages at SAA1‐positive invasive front regions. Moreover, SAA1 produced by CRC cells stimulated upregulation of matrix metalloproteinase‐9 in macrophages. Our data suggest that tumor‐associated macrophages at the invasive front of early CRCs promote cancer cell migration and invasion through induction of SAA1 and that SAA1 may be a predictive biomarker and a useful therapeutic target.
Collapse
Affiliation(s)
- Gota Sudo
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hironori Aoki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ayano Yoshido
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Kubo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taku Harada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Kazuya Ishiguro
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Hiro-O Yamano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
25
|
Zhang P, Meng X, Liu L, Li S, Li Y, Ali S, Li S, Xiong J, Liu X, Li S, Xia Q, Dong L. Identification of the Prognostic Signatures of Glioma With Different PTEN Status. Front Oncol 2021; 11:633357. [PMID: 34336645 PMCID: PMC8317988 DOI: 10.3389/fonc.2021.633357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
The high-grade glioma is characterized by cell heterogeneity, gene mutations, and poor prognosis. The deletions and mutations of the tumor suppressor gene PTEN (5%-40%) in glioma patients are associated with worse survival and therapeutic resistance. Characterization of unique prognosis molecular signatures by PTEN status in glioma is still unclear. This study established a novel risk model, screened optimal prognostic signatures, and calculated the risk score for the individual glioma patients with different PTEN status. Screening results revealed fourteen independent prognostic gene signatures in PTEN-wt and three in the -50PTEN-mut subgroup. Moreover, we verified risk score as an independent prognostic factor significantly correlated with tumor malignancy. Due to the higher malignancy of the PTEN-mut gliomas, we explored the independent prognostic signatures (CLCF1, AEBP1, and OS9) for a potential therapeutic target in PTEN-mut glioma. We further separated IDH wild-type glioma patients into GBM and LGG to verify the therapeutic target along with PTEN status, notably, the above screened therapeutic targets are also significant prognostic genes in both IDH-wt/PTEN-mut GBM and LGG patients. We further identified the small molecule compound (+)-JQ1 binds to all three targets, indicating a potential therapy for PTEN-mut glioma. In sum, gene signatures and risk scores in the novel risk model facilitate glioma diagnosis, prognosis prediction, and treatment.
Collapse
Affiliation(s)
- Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinyi Meng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shengzhen Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Sakhawat Ali
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jichuan Xiong
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Shouwei Li
- Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
26
|
Cornelissen A, Guo L, Fernandez R, Kelly MC, Janifer C, Kuntz S, Sakamoto A, Jinnouchi H, Sato Y, Paek KH, Kolodgie FD, Romero ME, Surve D, Virmani R, Finn AV. Endothelial Recovery in Bare Metal Stents and Drug-Eluting Stents on a Single-Cell Level. Arterioscler Thromb Vasc Biol 2021; 41:2277-2292. [PMID: 34162228 DOI: 10.1161/atvbaha.121.316472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anne Cornelissen
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.).,Department of Cardiology, University Hospital RWTH Aachen, Germany (A.C.)
| | - Liang Guo
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.)
| | - Raquel Fernandez
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.)
| | - Michael C Kelly
- Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD (M.C.K.)
| | - Christine Janifer
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.)
| | - Salome Kuntz
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.)
| | - Atsushi Sakamoto
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.)
| | - Hiroyuki Jinnouchi
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.)
| | - Yu Sato
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.)
| | - Ka Hyun Paek
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.)
| | - Frank D Kolodgie
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.)
| | - Maria E Romero
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.)
| | - Dipti Surve
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.)
| | - Renu Virmani
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.)
| | - Aloke V Finn
- CVPath Institute, Gaithersburg, MD (A.C., L.G., R.F., C.J., S.K., A.S., H.J., Y.S., K.H.P., F.D.K., M.E.R., D.S., R.V., A.V.F.).,University of Maryland, School of Medicine, Baltimore (A.V.F.)
| |
Collapse
|
27
|
Zhou J, Wen B, Xie H, Zhang C, Bai Y, Cao H, Che Q, Guo J, Su Z. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food Funct 2021; 12:926-951. [PMID: 33434251 DOI: 10.1039/d0fo02768e] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan oligosaccharides (COSs) are widely used biopolymers that have been studied in relation to a variety of abnormal biological activities in the food and biomedical fields. Since different COS preparation technologies produce COS compounds with different structural characteristics, it has not yet been possible to determine whether one or more chito-oligomers are primarily responsible for the bioactivity of COSs. The inherent biocompatibility, mucosal adhesion and nontoxic nature of COSs are well documented, as is the fact that they are readily absorbed from the intestinal tract, but their structure-activity relationship requires further investigation. This review summarizes the methods used for COS preparation, and the research findings with regard to the antioxidant, anti-inflammatory, anti-obesity, bacteriostatic and antitumour activity of COSs with different structural characteristics. The correlation between the molecular structure and bioactivities of COSs is described, and new insights into their structure-activity relationship are provided.
Collapse
Affiliation(s)
- Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou (510310), China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan (528458), China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou (510663), China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| |
Collapse
|
28
|
AEBP1 Promotes Glioblastoma Progression and Activates the Classical NF- κB Pathway. Behav Neurol 2020; 2020:8890452. [PMID: 33224311 PMCID: PMC7665936 DOI: 10.1155/2020/8890452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
Objective Our study was aimed at investigating the mechanistic consequences of the upregulation of adipocyte enhancer-binding protein 1 (AEBP1) in glioblastoma (GBM). Methods The expression of AEBP1 in GBM was assessed by bioinformatics analysis and qRT-PCR; the effects of AEBP1 on GBM cell proliferation, migration, invasion, and tumor growth in vitro and in vivo were detected by a CCK-8 assay, colony formation assay, scratch assay, Transwell assay, and subcutaneous tumor formation, respectively. The activation of related signaling pathways was monitored using western blot. Results Tumor-related databases and bioinformatics analysis revealed that AEBP1 was highly expressed in GBM and indicated poor outcome of patients; its high expression that was also confirmed in GBM tissues and cell lines was closely related to the tumor size. The results of in vitro experiments showed that AEBP1 could significantly promote GBM cell proliferation, migration, and invasion; in vivo experiments suggested that AEBP1 could contribute to the growth of GBM tumors. AEBP1 could upregulate the level of IκBα phosphorylation, decrease IκBα expression, activate the NF-κB signaling pathway, and promote the expression of downstream oncogenes. Conclusion Upregulated AEBP1 in GBM promotes GBM cell proliferation, migration, and invasion and facilitates tumor growth in vivo by activating the classical NF-κB pathway.
Collapse
|
29
|
AEBP1 is a Novel Oncogene: Mechanisms of Action and Signaling Pathways. JOURNAL OF ONCOLOGY 2020; 2020:8097872. [PMID: 32565808 PMCID: PMC7273425 DOI: 10.1155/2020/8097872] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
Abstract
Adipocyte enhancer-binding protein 1 (AEBP1) is a transcriptional repressor involved in the regulation of critical biological processes including adipogenesis, mammary gland development, inflammation, macrophage cholesterol homeostasis, and atherogenesis. Several years ago, we first reported the ability of AEBP1 to exert a positive control over the canonical NF-κB pathway. Indeed, AEBP1 positively regulates NF-κB activity via its direct interaction with IκBα, a key NF-κB inhibitor. AEBP1 overexpression results in uncontrollable activation of NF-κB, which may have severe pathogenic outcomes. Recently, the regulatory relationship between AEBP1 and NF-κB pathway has been of great interest to many researchers primarily due to the implication of NF-κB signaling in critical cellular processes such as inflammation and cancer. Since constitutive activation of NF-κB is widely implicated in carcinogenesis, AEBP1 overexpression is associated with tumor development and progression. Recent studies sought to explore the effects of the overexpression of AEBP1, as a potential oncogene, in different types of cancer. In this review, we analyze the effects of AEBP1 overexpression in a variety of malignancies (e.g., breast cancer, glioblastoma, bladder cancer, gastric cancer, colorectal cancer, ovarian cancer, and skin cancer), with a specific focus on the AEBP1-mediated control over the canonical NF-κB pathway. We also underscore the ability of AEBP1 to regulate crucial cancer-related events like cell proliferation and apoptosis in light of other key pathways (e.g., PI3K-Akt, sonic hedgehog (Shh), p53, parthanatos (PARP-1), and PTEN). Identifying AEBP1 as a potential biomarker for cancer prognosis may lead to a novel therapeutic target for the prevention and/or treatment of various types of cancer.
Collapse
|
30
|
Yorozu A, Yamamoto E, Niinuma T, Tsuyada A, Maruyama R, Kitajima H, Numata Y, Kai M, Sudo G, Kubo T, Nishidate T, Okita K, Takemasa I, Nakase H, Sugai T, Takano K, Suzuki H. Upregulation of adipocyte enhancer-binding protein 1 in endothelial cells promotes tumor angiogenesis in colorectal cancer. Cancer Sci 2020; 111:1631-1644. [PMID: 32086986 PMCID: PMC7226196 DOI: 10.1111/cas.14360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor angiogenesis is an important therapeutic target in colorectal cancer (CRC). We aimed to identify novel genes associated with angiogenesis in CRC. Using RNA sequencing analysis in normal and tumor endothelial cells (TECs) isolated from primary CRC tissues, we detected frequent upregulation of adipocyte enhancer‐binding protein 1 (AEBP1) in TECs. Immunohistochemical analysis revealed that AEBP1 is upregulated in TECs and stromal cells in CRC tissues. Quantitative RT‐PCR analysis showed that there is little or no AEBP1 expression in CRC cell lines, but that AEBP1 is well expressed in vascular endothelial cells. Levels of AEBP1 expression in Human umbilical vein endothelial cells (HUVECs) were upregulated by tumor conditioned medium derived from CRC cells or by direct coculture with CRC cells. Knockdown of AEBP1 suppressed proliferation, migration, and in vitro tube formation by HUVECs. In xenograft experiments, AEBP1 knockdown suppressed tumorigenesis and microvessel formation. Depletion of AEBP1 in HUVECs downregulated a series of genes associated with angiogenesis or endothelial function, including aquaporin 1 (AQP1) and periostin (POSTN), suggesting that AEBP1 might promote angiogenesis through regulation of those genes. These results suggest that upregulation of AEBP1 contributes to tumor angiogenesis in CRC, which makes AEBP1 a potentially useful therapeutic target.
Collapse
Affiliation(s)
- Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Tsuyada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuto Numata
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gota Sudo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Kubo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Nishidate
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenji Okita
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|