1
|
Muñiz-Castrillo M, Blaya Boluda N, García-Torralba E, Jiménez-Fonseca P, González Del Rey C, Balbín M, Luengo-Gil G, Ayala de la Peña F, Esteban González E, Carmona-Bayonas A. Dysfunctional mismatch repair in patients with early triple-negative breast cancer. Clin Transl Oncol 2025:10.1007/s12094-025-03933-x. [PMID: 40319412 DOI: 10.1007/s12094-025-03933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND While mismatch repair (MMR) deficiency is well-characterized in several cancers, its role in triple-negative breast cancer (TNBC) remains unclear. We comprehensively assessed MMR in early-stage TNBC, examining its prevalence, clinical correlations, prognostic value, relationship with microsatellite instability (MSI), and patterns of intratumoral heterogeneity. METHODS Two early-stage TNBC cohorts were investigated for germline mutations using next-generation sequencing, protein expression by immunohistochemistry, and MSI status through molecular detection. Associations with clinicopathological characteristics and survival were examined. Results were validated using The Cancer Genome Atlas (TCGA) data. RESULTS Among 259 patients, MMR deficiency was observed in 8.2%, all showing PMS2 loss, while 2 germline PMS2 mutations (2.7%) were detected. At the somatic level, 35.8% showed heterogeneous MMR expression, more frequently in earlier stages (IA-IIA 41.4% vs. IIB-III 22.4%, p = 0.04) and smaller tumors (cT1-2 39.1% vs. cT3-4 18.5%, p = 0.01). MMR status showed no significant associations with other clinicopathological variables or survival. No MSI was detected in MMR-deficient cases. The 5-year recurrence rate was 16.0% (95% CI 10.0-24.0) for MMR-intact, 20.0% (95% CI 4.5-43.0) for MMR-deficient, and 17.9% (95% CI 9.8-28.1) for heterogeneous tumors (p = 0.75). Pathological complete response to neoadjuvant chemotherapy was similar across MMR status groups. These findings were consistent with analyses using TCGA data. CONCLUSION MMR system shows a low rate of alterations in TNBC, with its deficiency being infrequent and not correlated with MSI. Although MMR system isolated evaluation may not be justified in early-stage TNBC due to its limited clinical impact, its inclusion in multigene panels should be further considered.
Collapse
Affiliation(s)
- María Muñiz-Castrillo
- Department of Medical Oncology, Hospital Universitario Central de Asturias (HUCA), Avenida de Roma s/n, 33011, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Noel Blaya Boluda
- Department of Medical Oncology, Hospital Universitario Morales Meseguer (HUMM), Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Esmeralda García-Torralba
- Department of Medical Oncology, Hospital Universitario Morales Meseguer (HUMM), Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Paula Jiménez-Fonseca
- Department of Medical Oncology, Hospital Universitario Central de Asturias (HUCA), Avenida de Roma s/n, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | - Milagros Balbín
- Laboratory of Molecular Oncology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Ginés Luengo-Gil
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
- Department of Pathology, Hospital General Universitario Santa Lucía, Universidad Católica San Antonio de Murcia (UCAM), Cartagena, Spain
| | - Francisco Ayala de la Peña
- Department of Medical Oncology, Hospital Universitario Morales Meseguer (HUMM), Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Emilio Esteban González
- Department of Medical Oncology, Hospital Universitario Central de Asturias (HUCA), Avenida de Roma s/n, 33011, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Alberto Carmona-Bayonas
- Department of Medical Oncology, Hospital Universitario Morales Meseguer (HUMM), Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| |
Collapse
|
2
|
Jiang W, Zhang Y, Wang Q. Exploring the molecular mechanisms network of breast cancer by multi-omics analysis. Asia Pac J Clin Oncol 2025; 21:129-137. [PMID: 38477438 PMCID: PMC11733836 DOI: 10.1111/ajco.14052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/07/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Breast cancer (BC), the most prevalent malignancy in women globally, still lacks comprehensive research on its molecular targets and necessitates further investigation into the underlying molecular mechanisms driving its initiation and progression. METHODS The GSE20685 Series Matrix File downloaded from the Gene Expression Omnibus database was divided into a high-risk group (n = 49) and a low-risk group (n = 278) to construct the co-expression network. RESULTS Four hub genes were identified based on the Weighted Gene Co-expression Network Analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses were performed. Hub gene immune infiltration was investigated using the Tumor Immune Estimation Resource database, and CD4+ T cell expression levels were substantially correlated with hub gene expression. Based on the CancerRxGene database (Genomics of Drug Sensitivity in Cancer database), it was found that the hub genes were highly sensitive to common chemotherapy drugs such as AKT inhibitor VIII and Erlotinib. The expression of Secreted Frizzled-Related Protein 1, melanoma-inhibiting activity (MIA), and Keratin 14 was related to tumor mutation burden, and the expression of MIA also affected the microsatellite instability of the tumor. This study employs multi-omics analysis to investigate the molecular network associated with the prognosis of BC, highlighting its intricate connection with the immune microenvironment. CONCLUSION These findings pinpoint four crucial genes in BC progression, offering targets for further research and therapy. Their connections to immune infiltration and chemotherapy sensitivity underscore complex interactions in the tumor microenvironment.
Collapse
Affiliation(s)
- Wei Jiang
- Department of AnesthesiologyYongchuan Hospital of Chongqing Medical UniversityChongqingChina
| | - Yanjun Zhang
- Department of Breast SurgeryYongchuan Hospital of Chongqing Medical UniversityChongqingChina
| | - Qiuqiong Wang
- Department of Respiratory and Critical Care MedicineYongchuan Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
3
|
Ultimescu F, Hudita A, Popa DE, Olinca M, Muresean HA, Ceausu M, Stanciu DI, Ginghina O, Galateanu B. Impact of Molecular Profiling on Therapy Management in Breast Cancer. J Clin Med 2024; 13:4995. [PMID: 39274207 PMCID: PMC11396537 DOI: 10.3390/jcm13174995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Breast cancer (BC) remains the most prevalent cancer among women and the leading cause of cancer-related mortality worldwide. The heterogeneity of BC in terms of histopathological features, genetic polymorphisms, and response to therapies necessitates a personalized approach to treatment. This review focuses on the impact of molecular profiling on therapy management in breast cancer, emphasizing recent advancements in next-generation sequencing (NGS) and liquid biopsies. These technologies enable the identification of specific molecular subtypes and the detection of blood-based biomarkers such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and tumor-educated platelets (TEPs). The integration of molecular profiling with traditional clinical and pathological data allows for more tailored and effective treatment strategies, improving patient outcomes. This review also discusses the current challenges and prospects of implementing personalized cancer therapy, highlighting the potential of molecular profiling to revolutionize BC management through more precise prognostic and therapeutic interventions.
Collapse
Affiliation(s)
- Flavia Ultimescu
- OncoTeam Diagnostic S.A., 010719 Bucharest, Romania
- Doctoral School of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Ariana Hudita
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, University of Bucharest, 050663 Bucharest, Romania
| | - Daniela Elena Popa
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy Bucharest, 020956 Bucharest, Romania
| | - Maria Olinca
- OncoTeam Diagnostic S.A., 010719 Bucharest, Romania
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | | | - Mihail Ceausu
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | | | - Octav Ginghina
- Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 010221 Bucharest, Romania
- Department of Surgery 3, "Prof. Dr. Al. Trestioreanu" Institute of Oncology Bucharest, 022328 Bucharest, Romania
| | - Bianca Galateanu
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
4
|
Zou H, Liu C, Ruan Y, Fang L, Wu T, Han S, Dang T, Meng H, Zhang Y. Colorectal medullary carcinoma: a pathological subtype with intense immune response and potential to benefit from immune checkpoint inhibitors. Expert Rev Clin Immunol 2024; 20:997-1008. [PMID: 38459764 DOI: 10.1080/1744666x.2024.2328746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Different pathological types of colorectal cancer have distinguished immune landscape, and the efficacy of immunotherapy will be completely different. Colorectal medullary carcinoma, accounting for 2.2-3.2%, is characterized by massive lymphocyte infiltration. However, the attention to the immune characteristics of colorectal medullary carcinoma is insufficient. AREA COVERED We searched the literature about colorectal medullary carcinoma on PubMed through November 2023to investigate the hallmarks of colorectal medullary carcinoma's immune landscape, compare medullary carcinoma originating from different organs and provide theoretical evidence for precise treatment, including applying immunotherapy and BRAF inhibitors. EXPERT OPINION Colorectal medullary carcinoma is a pathological subtype with intense immune response, with six immune characteristics and has the potential to benefit from immunotherapy. Mismatch repair deficiency, ARID1A missing and BRAF V600E mutation often occurs. IFN-γ pathway is activated and PD-L1 expression is increased. Abundant lymphocyte infiltration performs tumor killing function. In addition, BRAF mutation plays an important role in the occurrence and development, and we can consider the combination of BRAF inhibitors and immunotherapy in patients with BRAF mutant. The exploration of colorectal medullary carcinoma will arouse researchers' attention to the correlation between pathological subtypes and immune response, and promote the process of precise immunotherapy.
Collapse
Affiliation(s)
- Haoyi Zou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Fang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University in Shandong, Qingdao, China
| | - Tong Wu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Dang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
5
|
Chaudhry Z, Boyadzhyan A, Sasaninia K, Rai V. Targeting Neoantigens in Cancer: Possibilities and Opportunities in Breast Cancer. Antibodies (Basel) 2024; 13:46. [PMID: 38920970 PMCID: PMC11200483 DOI: 10.3390/antib13020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
As one of the most prevalent forms of cancer worldwide, breast cancer has garnered significant attention within the clinical research setting. While traditional treatment employs a multidisciplinary approach including a variety of therapies such as chemotherapy, hormone therapy, and even surgery, researchers have since directed their attention to the budding role of neoantigens. Neoantigens are defined as tumor-specific antigens that result from a multitude of genetic alterations, the most prevalent of which is the single nucleotide variant. As a result of their foreign nature, neoantigens elicit immune responses upon presentation by Major Histocompatibility Complexes I and II followed by recognition by T cell receptors. Previously, researchers have been able to utilize these immunogenic properties and manufacture neoantigen-specific T-cells and neoantigen vaccines. Within the context of breast cancer, biomarkers such as tumor protein 53 (TP53), Survivin, Partner and Localizer of BRCA2 (PALB2), and protein tyrosine phosphatase receptor T (PTPRT) display exceeding potential to serve as neoantigens. However, despite their seemingly limitless potential, neoantigens must overcome various obstacles if they are to be fairly distributed to patients. For instance, a prolonged period between the identification of a neoantigen and the dispersal of treatment poses a serious risk within the context of breast cancer. Regardless of these current obstacles, it appears highly promising that future research into neoantigens will make an everlasting impact on the health outcomes within the realm of breast cancer. The purpose of this literature review is to comprehensively discuss the etiology of various forms of breast cancer and current treatment modalities followed by the significance of neoantigens in cancer therapeutics and their application to breast cancer. Further, we have discussed the limitations, future directions, and the role of transcriptomics in neoantigen identification and personalized medicine. The concepts discussed in the original and review articles were included in this review article.
Collapse
Affiliation(s)
| | | | | | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (Z.C.); (A.B.); (K.S.)
| |
Collapse
|
6
|
Maraqa B, Al- Ashhab M, Zughaier H, Barakat F, Khader M, Al Maaitah H, Alabweh R, Sughayer M. Mismatch repair protein deficiency in triple-negative breast carcinomas. J Int Med Res 2024; 52:3000605241259747. [PMID: 38902203 PMCID: PMC11193345 DOI: 10.1177/03000605241259747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Breast cancer, particularly triple-negative breast cancer (TNBC), poses a significant global health burden. Chemotherapy was the mainstay treatment for TNBC patients until immunotherapy was introduced. Studies indicate a noteworthy prevalence (0.2% to 18.6%) of mismatch repair protein (MMRP) deficiency in TNBC, with recent research highlighting the potential of immunotherapy for MMRP-deficient metastatic breast cancer. This study aims to identify MMRP deficiency in TNBC patients using immunohistochemistry. METHODS A retrospective cohort study design was used and included TNBC patients treated between 2015 and 2021 at King Hussein Cancer Center. Immunohistochemistry was conducted to assess MMRP expression. RESULTS Among 152 patients, 14 (9.2%) exhibited deficient MMR (dMMR). Loss of PMS2 expression was observed in 13 patients, 5 of whom showed loss of MLH1 expression. Loss of MSH6 and MSH2 expression was observed in one patient. The median follow-up duration was 44 (3-102) months. Despite the higher survival rate (80.8%, 5 years) of dMMR patients than of proficient MMR patients (62.3%), overall survival did not significantly differ between the two groups. CONCLUSION Approximately 9% of TNBC patients exhibit dMMR. dMMR could be used to predict outcomes and identify patients with TNBC who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Bayan Maraqa
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Maxim Al- Ashhab
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Hamza Zughaier
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Fareed Barakat
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Majd Khader
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Hussein Al Maaitah
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Ruba Alabweh
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Maher Sughayer
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
7
|
Varga Z, Maccio U. Molecular pathology in breast disease: diagnostic, prognostic, and therapeutic tools. Virchows Arch 2024; 484:247-261. [PMID: 38015260 PMCID: PMC10948467 DOI: 10.1007/s00428-023-03709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Molecular testing in breast cancer gained increasing attention and importance as specific molecular results can tailor not only oncological decisions on systemic adjuvant or neoadjuvant or in metastatic setting, but increasingly serve in diagnostic routine histopathological services to differentiate between morphologically overlapping or ambiguous histological pictures. Diagnostic tools involve in most cases a broad spectrum of immunohistochemical panels, followed by entity-specific in situ hybridization probes and in given cases NGS-based sequencing. Workflow of which methodology is applied and in which order depends on the specific entity resp. on the given differential diagnosis in question. Regarding prognostic/predictive molecular testing, the choice of assay and the workflow are based on clinical algorithms and on the evidence of targeted therapies following the molecular alterations. In this review paper, we aim to address the use of molecular technics in [1] the histological diagnostic setting (such as subtyping of invasive carcinomas/malignant spindle cell tumors and sarcomas and some B3 lesions) and [2] in the context of adjuvant or neoadjuvant or other clinical settings with special focus of targeted therapies.
Collapse
Affiliation(s)
- Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091, Zurich, Switzerland.
| | - Umberto Maccio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091, Zurich, Switzerland
| |
Collapse
|
8
|
Saeki H, Horimoto Y, Hlaing MT, Men Y, Rong L, Ishizuka Y, Uomori T, Yoshida E, Terao Y, Arakawa A, Saito T, Yao T. Clinicopathological and molecular pathological characteristics in tamoxifen‑related endometrial cancer. Oncol Lett 2024; 27:9. [PMID: 38034487 PMCID: PMC10688500 DOI: 10.3892/ol.2023.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/21/2023] [Indexed: 12/02/2023] Open
Abstract
Tamoxifen (TAM), a selective estrogen receptor modulator, is often used for long-term adjuvant endocrine therapy in patients with hormone receptor-positive breast cancer. TAM is known to increase the risk of endometrial cancer (EC); however, the mechanism has not yet been fully elucidated. Therefore, molecular genetic analysis of EC following TAM administration (TAM-related EC) was conducted. A total of 10 samples of TAM-related EC and 20 sporadic EC samples (as controls) were analyzed. Copy number variation analysis was conducted, microsatellite instability (MSI) status was assessed, and mismatch repair (MMR) protein expression was examined immunohistochemically. Copy number variation analysis revealed that KDR, NOTCH1, NTRK1, NTRK3 and PDGFRB were more frequently amplified in TAM-related EC (P=0.039, P<0.001, P=0.011, P=0.006 and P=0.035, respectively). In MSI analysis, 4 cases were classified as MSI-high (40%), which is a higher frequency compared with that among patients with sporadic EC (~10% in Japanese women). Loss of MMR proteins was confirmed in all MSI-high cases. In 1 MSI-high case, a benign lesion of hyperplasia prior to EC development was also MSI-high with loss of some MMR protein expression. Several genes were specifically amplified in TAM-related ECs. Furthermore, TAM-related ECs were frequently MSI-high. Further studies are required to be conclusive; however, the present findings may lead to a reduction of unnecessary gynaecological testing in clinical practice and also encourage the testing for MSI status for optimal individualized treatment.
Collapse
Affiliation(s)
- Harumi Saeki
- Department of Human Pathology, Juntendo University Faculty of Medicine, Tokyo 113-0033, Japan
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Yoshiya Horimoto
- Department of Human Pathology, Juntendo University Faculty of Medicine, Tokyo 113-0033, Japan
- Department of Breast Oncology, Juntendo University Faculty of Medicine, Tokyo 113-0033, Japan
| | - May Thinzar Hlaing
- Department of Breast Oncology, Juntendo University Faculty of Medicine, Tokyo 113-0033, Japan
| | - Yuan Men
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Lu Rong
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Yumiko Ishizuka
- Department of Breast Oncology, Juntendo University Faculty of Medicine, Tokyo 113-0033, Japan
| | - Toshitaka Uomori
- Department of Breast Oncology, Juntendo University Faculty of Medicine, Tokyo 113-0033, Japan
| | - Emiko Yoshida
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo 113-0033, Japan
| | - Yasuhisa Terao
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo 113-0033, Japan
| | - Atsushi Arakawa
- Department of Human Pathology, Juntendo University Faculty of Medicine, Tokyo 113-0033, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Faculty of Medicine, Tokyo 113-0033, Japan
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Faculty of Medicine, Tokyo 113-0033, Japan
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Shin K, Kim R, Park H, Lee W, Lee S, Im J, Lee JE, Kim SH, Connolly-Strong E, Ju YS, Oh BBL, Lee J. Clinical Utility of Whole-Genome Analysis as One-for-All Test for Breast Cancer: A Case Series. Case Rep Oncol 2024; 17:317-328. [PMID: 38404405 PMCID: PMC10890799 DOI: 10.1159/000536087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/26/2023] [Indexed: 02/27/2024] Open
Abstract
Introduction Breast cancer exhibits vast genomic diversity, leading to varied clinical manifestations. Integrating molecular subtyping with in-depth genomic profiling is pivotal for informed treatment choices and prognostic insights. Whole-genome clinical analysis provides a holistic view of genome-wide variations, capturing structural changes and affirming tumor suppressor gene loss of heterozygosity. Case Presentation Here we detail four unique breast cancer cases from Seoul St. Mary's Hospital, highlighting the actionable benefits and clinical value of whole-genome sequencing (WGS). As an all-in-one test, WGS demonstrates significant clinical utility in these cases, including: (1) detecting homologous recombination deficiency with underlying somatic causal variants (case 1), (2) distinguishing double primary cancer from metastasis (case 2), (3) uncovering microsatellite instability (case 3), and (4) identifying rare germline pathogenic variants in TP53 gene (case 4). Our observations underscore the enhanced clinical relevance of WGS-based testing beyond pinpointing a few driver mutations in conventional targeted panel sequencing platforms. Conclusion With genomic advancements and decreasing sequencing costs, WGS stands out as a transformative tool in oncology, paving the way for personalized treatment plans rooted in individual genetic blueprints.
Collapse
Affiliation(s)
- Kabsoo Shin
- Division of Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Ryul Kim
- Genome Insight, San Diego, CA, USA
| | | | | | | | | | - Ji Eun Lee
- Division of Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Sung Hun Kim
- Department of Radiology, College of Medicine, Seoul Saint Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | - Jeongmin Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Chung C, Yeung VTY, Wong KCW. Prognostic and predictive biomarkers with therapeutic targets in breast cancer: A 2022 update on current developments, evidence, and recommendations. J Oncol Pharm Pract 2023; 29:1343-1360. [PMID: 35971313 DOI: 10.1177/10781552221119797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To evaluate and validate the recent and emerging data for prognostic and predictive biomarkers with therapeutic targets in breast cancer. DATA SOURCES A literature search from January 2015 to March 2022 was performed using the key terms breast cancer, clinical practice guidelines, gene mutations, genomic assay, immune cancer therapy, predictive and/or prognostic biomarkers, and targeted therapies. STUDY SELECTION AND DATA EXTRACTION Relevant clinical trials, meta-analyses, seminal articles, and published evidence- and consensus-based clinical practice guidelines in the English language were identified, reviewed and evaluated. DATA SYNTHESIS Breast cancer is a biologically heterogeneous disease, leading to wide variability in treatment responses and survival outcomes. Biomarkers for breast cancer are evolving from traditional biomarkers in immunohistochemistry (IHC) such as estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor type 2 (HER2) to genetic biomarkers with therapeutic implications (e.g. breast cancer susceptibility gene 1/2 [BRCA1/2], estrogen receptor α [ESR1] gene mutation, HER2 gene mutation, microsatellite instability [MSI], phosphatidylinositol 3-kinase catalytic subunit 3Cα [PIK3CA] gene mutation, neurotrophic tyrosine receptor kinase [NTRK] gene mutation). In addition, current data are most robust for biomarkers in immunotherapy (e.g. programmed cell death receptor ligand-1 [PD-L1], microsatellite instability-high [MSI-H] or deficient mismatch repair [dMMR]). Oncotype DX assay remains the best validated gene expression assay that is both predictive and prognostic whereas MammaPrint is prognostic for genomic risk. CONCLUSIONS Biomarker-driven therapies have the potential to confer greater therapeutic advantages than standard-of-care therapies. The purported survival benefits associated with biomarker-driven therapies should be weighed against their potential harms.
Collapse
Affiliation(s)
- Clement Chung
- Department of Pharmacy, Houston Methodist West Hospital, Houston, TX, USA
| | - Vanessa T Y Yeung
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kenneth C W Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
11
|
Porta FM, Sajjadi E, Venetis K, Frascarelli C, Cursano G, Guerini-Rocco E, Fusco N, Ivanova M. Immune Biomarkers in Triple-Negative Breast Cancer: Improving the Predictivity of Current Testing Methods. J Pers Med 2023; 13:1176. [PMID: 37511789 PMCID: PMC10381494 DOI: 10.3390/jpm13071176] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant challenge in terms of prognosis and disease recurrence. The limited treatment options and the development of resistance to chemotherapy make it particularly difficult to manage these patients. However, recent research has been shifting its focus towards biomarker-based approaches for TNBC, with a particular emphasis on the tumor immune landscape. Immune biomarkers in TNBC are now a subject of great interest due to the presence of tumor-infiltrating lymphocytes (TILs) in these tumors. This characteristic often coincides with the presence of PD-L1 expression on both neoplastic cells and immune cells within the tumor microenvironment. Furthermore, a subset of TNBC harbor mismatch repair deficient (dMMR) TNBC, which is frequently accompanied by microsatellite instability (MSI). All of these immune biomarkers hold actionable potential for guiding patient selection in immunotherapy. To fully capitalize on these opportunities, the identification of additional or complementary biomarkers and the implementation of highly customized testing strategies are of paramount importance in TNBC. In this regard, this article aims to provide an overview of the current state of the art in immune-related biomarkers for TNBC. Specifically, it focuses on the various testing methodologies available and sheds light on the immediate future perspectives for patient selection. By delving into the advancements made in understanding the immune landscape of TNBC, this study aims to contribute to the growing body of knowledge in the field. The ultimate goal is to pave the way for the development of more personalized testing strategies, ultimately improving outcomes for TNBC patients.
Collapse
Affiliation(s)
- Francesca Maria Porta
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Giulia Cursano
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, 20122 Milan, Italy
| |
Collapse
|
12
|
Vaz SC, Graff SL, Ferreira AR, Debiasi M, de Geus-Oei LF. PET/CT in Patients with Breast Cancer Treated with Immunotherapy. Cancers (Basel) 2023; 15:cancers15092620. [PMID: 37174086 PMCID: PMC10177398 DOI: 10.3390/cancers15092620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Significant advances in breast cancer (BC) treatment have been made in the last decade, including the use of immunotherapy and, in particular, immune checkpoint inhibitors that have been shown to improve the survival of patients with triple negative BC. This narrative review summarizes the studies supporting the use of immunotherapy in BC. Furthermore, the usefulness of 2-deoxy-2-[18F]fluoro-D-glucose (2-[18F]FDG) positron emission/computerized tomography (PET/CT) to image the tumor heterogeneity and to assess treatment response is explored, including the different criteria to interpret 2-[18F]FDG PET/CT imaging. The concept of immuno-PET is also described, by explaining the advantages of mapping treatment targets with a non-invasive and whole-body tool. Several radiopharmaceuticals in the preclinical phase are referred too, and, considering their promising results, translation to human studies is needed to support their use in clinical practice. Overall, this is an evolving field in BC treatment, despite PET imaging developments, the future trends also include expanding immunotherapy to early-stage BC and using other biomarkers.
Collapse
Affiliation(s)
- Sofia C Vaz
- Nuclear Medicine-Radiopharmacology, Champalimaud Center for the Unkown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600-2300 RC Leiden, The Netherlands
| | - Stephanie L Graff
- Division of Hematology/Oncology, Lifespan Cancer Institute, Providence, RI 02903, USA
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Arlindo R Ferreira
- Católica Medical School, Universidade Católica Portuguesa, 2635-631 Lisbon, Portugal
| | - Márcio Debiasi
- Breast Cancer Unit, Champalimaud Center for the Unkown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600-2300 RC Leiden, The Netherlands
- Biomedical Photonic Imaging Group, University of Twente, P.O. Box 217-7500 AE Enschede, The Netherlands
- Department of radiation Science & Technology, Delft University of Technology, P.O. Postbus 5 2600 AA Delft, The Netherlands
| |
Collapse
|
13
|
Immune Checkpoint Inhibitors in Breast Cancer: A Narrative Review. Oncol Ther 2023:10.1007/s40487-023-00224-9. [PMID: 36917399 DOI: 10.1007/s40487-023-00224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy in patients worldwide and the main cause of cancer-related death. Though still incurable, metastatic breast cancer's prognosis has been considerably improved in the past 10 years due to the introduction of new targeted agents, such as immune checkpoint inhibitors (ICI). However, these medications are associated with unique side effects known as immune-mediated adverse events (irAE). In this paper, we review the clinical evidence for the use of ICIs in breast cancer, in both the metastatic as well as neoadjuvant/adjuvant setting, followed by a review of irAE most commonly seen, and the medications used to treat them. Our opinion is that any cancer specialist treating patients with breast cancer should be aware of these side effects for early detection and management, and oncologists should be the leaders of the multidisciplinary team that will take care of them.
Collapse
|
14
|
Metaxas GI, Tsiambas E, Marinopoulos S, Adamopoulou M, Spyropoulou D, Falidas E, Davris D, Manaios L, Fotiades P, Mastronikoli S, Peschos D, Dimitrakakis C. DNA Mismatch Repair System Imbalances in Breast Adenocarcinoma. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:169-174. [PMID: 36875308 PMCID: PMC9949550 DOI: 10.21873/cdp.10197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 03/07/2023]
Abstract
DNA mismatch repair system (MMR) is considered a leading genetic mechanism in stabilizing DNA structure and maintaining its function. DNA MMR is a highly conserved system in bacteria, prokaryotic, and eukaryotic cells, and provides the highest protection to DNA by repairing micro-structural alterations. DNA MMR proteins are involved in the detection and repair of intra-nucleotide base-to-base errors inside the complementary DNA strand recognizing the recently synthesized strand from the parental template. During DNA replication, a spectrum of errors including base insertion, deletion, and miss-incorporation negatively affect the molecule's structure and its functional stability. A broad spectrum of genomic alterations such as promoter hyper methylation, mutation, and loss of heterozygosity (LOH) in MMR genes including predominantly hMLH1, hMSH2, hMSH3, hMSH6, hPMS1, and hPMS2 lead to their loss of base-to-base error repairing procedure. Microsatellite instability (MSI) refers to the DNA MMR gene alterations that are observed in a variety of malignancies of different histological origins. In the current review, we present the role of DNA MMR deficiency in breast adenocarcinoma, a leading cancer-based cause of death in females worldwide.
Collapse
Affiliation(s)
- Georgios I Metaxas
- Breast Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Spyridon Marinopoulos
- Breast Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Adamopoulou
- Department of Education, Molecular Lab, Deere American College of Greece (AGC), Athens, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece
| | | | - Dimitrios Davris
- Department of Surgery, Halkida General Hospital, Halkida, Greece
| | - Loukas Manaios
- Department of Surgery, Bioclinic Medical Center, Athens, Greece
| | | | | | - Dimitrios Peschos
- Department of Physiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Constantine Dimitrakakis
- Breast Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
Valentini V, Silvestri V, Bucalo A, Conti G, Karimi M, Di Francesco L, Pomati G, Mezi S, Cerbelli B, Pignataro MG, Nicolussi A, Coppa A, D’Amati G, Giannini G, Ottini L. Molecular profiling of male breast cancer by multigene panel testing: Implications for precision oncology. Front Oncol 2023; 12:1092201. [PMID: 36686738 PMCID: PMC9854133 DOI: 10.3389/fonc.2022.1092201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Compared with breast cancer (BC) in women, BC in men is a rare disease with genetic and molecular peculiarities. Therapeutic approaches for male BC (MBC) are currently extrapolated from the clinical management of female BC, although the disease does not exactly overlap in males and females. Data on specific molecular biomarkers in MBC are lacking, cutting out male patients from more appropriate therapeutic strategies. Growing evidence indicates that Next Generation Sequencing (NGS) multigene panel testing can be used for the detection of predictive molecular biomarkers, including Tumor Mutational Burden (TMB) and Microsatellite Instability (MSI). Methods In this study, NGS multigene gene panel sequencing, targeting 1.94 Mb of the genome at 523 cancer-relevant genes (TruSight Oncology 500, Illumina), was used to identify and characterize somatic variants, Copy Number Variations (CNVs), TMB and MSI, in 15 Formalin-Fixed Paraffin-Embedded (FFPE) male breast cancer samples. Results and discussion A total of 40 pathogenic variants were detected in 24 genes. All MBC cases harbored at least one pathogenic variant. PIK3CA was the most frequently mutated gene, with six (40.0%) MBCs harboring targetable PIK3CA alterations. CNVs analysis showed copy number gains in 22 genes. No copy number losses were found. Specifically, 13 (86.7%) MBCs showed gene copy number gains. MYC was the most frequently amplified gene with eight (53.3%) MBCs showing a median fold-changes value of 1.9 (range 1.8-3.8). A median TMB value of 4.3 (range 0.8-12.3) mut/Mb was observed, with two (13%) MBCs showing high-TMB. The median percentage of MSI was 2.4% (range 0-17.6%), with two (13%) MBCs showing high-MSI. Overall, these results indicate that NGS multigene panel sequencing can provide a comprehensive molecular tumor profiling in MBC. The identification of targetable molecular alterations in more than 70% of MBCs suggests that the NGS approach may allow for the selection of MBC patients eligible for precision/targeted therapy.
Collapse
Affiliation(s)
- Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Conti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mina Karimi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Linda Di Francesco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Mezi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruna Cerbelli
- Department of Medical-Surgical Sciences and Biotechnologies Sapienza University of Rome, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Arianna Nicolussi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia D’Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy,Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy,*Correspondence: Laura Ottini,
| |
Collapse
|
16
|
Li L, Zhang F, Liu Z, Fan Z. Immunotherapy for Triple-Negative Breast Cancer: Combination Strategies to Improve Outcome. Cancers (Basel) 2023; 15:cancers15010321. [PMID: 36612317 PMCID: PMC9818757 DOI: 10.3390/cancers15010321] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Due to the absence of hormone receptor (both estrogen receptors and progesterone receptors) along with human epidermal growth factor receptor 2 (HER-2) amplification, the treatment of triple-negative breast cancer (TNBC) cannot benefit from endocrine or anti-HER-2 therapy. For a long time, chemotherapy was the only systemic treatment for TNBC. Due to the lack of effective treatment options, the prognosis for TNBC is extremely poor. The successful application of immune checkpoint inhibitors (ICIs) launched the era of immunotherapy in TNBC. However, the current findings show modest efficacy of programmed cell death- (ligand) 1 (PD-(L)1) inhibitors monotherapy and only a small proportion of patients can benefit from this approach. Based on the basic principles of immunotherapy and the characteristics of the tumor immune microenvironment (TIME) in TNBC, immune combination therapy is expected to further enhance the efficacy and expand the beneficiary population of patients. Given the diversity of drugs that can be combined, it is important to select effective biomarkers to identify the target population. Moreover, the side effects associated with the combination of multiple drugs should also be considered.
Collapse
|
17
|
Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010104. [PMID: 36612100 PMCID: PMC9817764 DOI: 10.3390/cancers15010104] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a high rate of systemic metastasis, insensitivity to conventional treatment and susceptibility to drug resistance, resulting in a poor patient prognosis. The immune checkpoint inhibitors (ICIs) represented by antibodies of programmed death receptor 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have provided new therapeutic options for TNBC. However, the efficacy of PD-1/PD-L1 blockade monotherapy is suboptimal immune response, which may be caused by reduced antigen presentation, immunosuppressive tumor microenvironment, interplay with other immune checkpoints and aberrant activation of oncological signaling in tumor cells. Therefore, to improve the sensitivity of TNBC to ICIs, suitable patients are selected based on reliable predictive markers and treated with a combination of ICIs with other therapies such as chemotherapy, radiotherapy, targeted therapy, oncologic virus and neoantigen-based therapies. This review discusses the current mechanisms underlying the resistance of TNBC to PD-1/PD-L1 inhibitors, the potential biomarkers for predicting the efficacy of anti-PD-1/PD-L1 immunotherapy and recent advances in the combination therapies to increase response rates, the depth of remission and the durability of the benefit of TNBC to ICIs.
Collapse
|
18
|
Microsatellite instability detection in breast cancer using drop-off droplet digital PCR. Oncogene 2022; 41:5289-5297. [DOI: 10.1038/s41388-022-02504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
|
19
|
Onagi H, Horimoto Y, Sakaguchi A, Ikarashi D, Yanagisawa N, Nakayama T, Nakatsura T, Ishizuka Y, Sasaki R, Watanabe J, Saito M, Saeki H, Hayashi T, Arakawa A, Yao T, Kitano S. High platelet-to-lymphocyte ratios in triple-negative breast cancer associates with immunosuppressive status of TILs. Breast Cancer Res 2022; 24:67. [PMID: 36217150 PMCID: PMC9552414 DOI: 10.1186/s13058-022-01563-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/04/2022] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Rating lymphocytes (TILs) are a prognostic marker in breast cancer and high TIL infiltration correlates with better patient outcomes. Meanwhile, parameters involving immune cells in peripheral blood have also been established as prognostic markers. High platelet-to-lymphocyte ratios (PLRs) and neutrophil-to-lymphocyte ratios (NLRs) are related to poor outcomes in breast cancer, but their mechanisms remain unknown. To date, TILs and these parameters have been examined separately. METHODS We investigated the relationship between TILs and the peripheral blood markers, PLR and NLR, in the same patients, using surgical specimens from 502 patients with invasive breast carcinoma without preoperative chemotherapy. For analysis of triple-negative breast cancer (TNBC) patient outcomes, 59 patients who received preoperative chemotherapy were also examined. For immune cell profiling, multiplexed fluorescent immunohistochemistry (mfIHC) of CD3, CD4, CD8, FOXP3 and T-bet, was conducted. RESULTS A positive correlation between PLR and TIL was observed in TNBC (P = 0.013). On mfIHC, tumors in patients with high PLR and NLR contained more CD3+CD4+FOXP3+ T-cells (P = 0.049 and 0.019, respectively), while no trend was observed in CD8+ T-cells. TNBC patients had different patterns of outcomes according to TIL and PLR, with the TIL-high/PLR-low group having the lowest rate of disease relapse and death, and the longest distant metastasis-free and overall survivals, while the TIL-low/PLR-high group had the shortest survivals. CONCLUSIONS Our data suggest that the combination of PLR with TIL assessment may enable more accurate prediction of patient outcomes with TNBC.
Collapse
Affiliation(s)
- Hiroko Onagi
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yoshiya Horimoto
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Asumi Sakaguchi
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Daiki Ikarashi
- Division of Cancer Immunotherapy Development, Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550 Japan
| | | | - Takayuki Nakayama
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 Japan
| | - Yumiko Ishizuka
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ritsuko Sasaki
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Junichiro Watanabe
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mitsue Saito
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Harumi Saeki
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Atsushi Arakawa
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550 Japan
| |
Collapse
|
20
|
Massa D, Tosi A, Rosato A, Guarneri V, Dieci MV. Multiplexed In Situ Spatial Protein Profiling in the Pursuit of Precision Immuno-Oncology for Patients with Breast Cancer. Cancers (Basel) 2022; 14:4885. [PMID: 36230808 PMCID: PMC9562913 DOI: 10.3390/cancers14194885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many solid tumors. In breast cancer (BC), immunotherapy is currently approved in combination with chemotherapy, albeit only in triple-negative breast cancer. Unfortunately, most patients only derive limited benefit from ICIs, progressing either upfront or after an initial response. Therapeutics must engage with a heterogeneous network of complex stromal-cancer interactions that can fail at imposing cancer immune control in multiple domains, such as in the genomic, epigenomic, transcriptomic, proteomic, and metabolomic domains. To overcome these types of heterogeneous resistance phenotypes, several combinatorial strategies are underway. Still, they can be predicted to be effective only in the subgroups of patients in which those specific resistance mechanisms are effectively in place. As single biomarker predictive performances are necessarily suboptimal at capturing the complexity of this articulate network, precision immune-oncology calls for multi-omics tumor microenvironment profiling in order to identify unique predictive patterns and to proactively tailor combinatorial treatments. Multiplexed single-cell spatially resolved tissue analysis, through precise epitope colocalization, allows one to infer cellular functional states in view of their spatial organization. In this review, we discuss-through the lens of the cancer-immunity cycle-selected, established, and emerging markers that may be evaluated in multiplexed spatial protein panels to help identify prognostic and predictive patterns in BC.
Collapse
Affiliation(s)
- Davide Massa
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Immunology and Molecular Oncology Diagnostics, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| |
Collapse
|
21
|
Sajjadi E, Gaudioso G, Terrasi A, Boggio F, Venetis K, Ivanova M, Bertolasi L, Lopez G, Runza L, Premoli A, Lorenzini D, Guerini-Rocco E, Ferrero S, Vaira V, Fusco N. Osteoclast-like stromal giant cells in breast cancer likely belong to the spectrum of immunosuppressive tumor-associated macrophages. Front Mol Biosci 2022; 9:894247. [PMID: 36090031 PMCID: PMC9462457 DOI: 10.3389/fmolb.2022.894247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Breast cancer with osteoclast-like stromal giant cells (OSGC) is an exceedingly rare morphological pattern of invasive breast carcinoma. The tumor immune microenvironment (TIME) of these tumors is populated by OSGC, which resemble osteoclasts and show a histiocytic-like immunophenotype. Their role in breast cancer is unknown. The osteoclast maturation in the bone is regulated by the expression of cytokines that are also present in the TIME of tumors and in breast cancer tumor-associated macrophages (TAMs). TAMs-mediated anti-tumor immune pathways are regulated by miRNAs akin to osteoclast homeostasis. Here, we sought to characterize the different cellular compartments of breast cancers with OSGC and investigate the similarities of OSGC with tumor and TIME in terms of morphology, protein, and miRNA expression, specifically emphasizing on monocytic signatures. Methods and Results: Six breast cancers with OSGC were included. Tumor-infiltrating lymphocytes (TILs) and TAMs were separately quantified. The different cellular populations (i.e., normal epithelium, cancer cells, and OSGC) were isolated from tissue sections by laser-assisted microdissection. After RNA purification, 752 miRNAs were analyzed using a TaqMan Advanced miRNA Low-Density Array for all samples. Differentially expressed miRNAs were identified by computing the fold change (log2Ratio) using the Kolmogorov-Smirnov test and p values were corrected for multiple comparisons using the false discovery rate (FDR) approach. As a similarity analysis among samples, we used the Pearson test. The association between pairs of variables was investigated using Fisher exact test. Classical and non-classical monocyte miRNA signatures were finally applied. All OSGC displayed CD68 expression, TILs (range, 45–85%) and high TAMs (range, 35–75%). Regarding the global miRNAs profile, OSGC was more similar to cancer cells than to non-neoplastic ones. Shared deregulation of miR-143-3p, miR-195-5p, miR-181a-5p, and miR-181b-5p was observed between OSGC and cancer cells. The monocyte-associated miR-29a-3p and miR-21-3p were dysregulated in OSGCs compared with non-neoplastic or breast cancer tissues. Conclusion: Breast cancers with OSGC have an activated TIME. Shared epigenetic events occur during the ontogenesis of breast cancer cells and OSGC but the innumophenotype and miRNA profiles of the different cellular compartmens suggest that OSGC likely belong to the spectrum of M2 TAMs.
Collapse
Affiliation(s)
- Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Terrasi
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Francesca Boggio
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Letizia Bertolasi
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Lopez
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Letterio Runza
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Alice Premoli
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Lorenzini
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- *Correspondence: Nicola Fusco,
| |
Collapse
|
22
|
Hacking SM, Yakirevich E, Wang Y. From Immunohistochemistry to New Digital Ecosystems: A State-of-the-Art Biomarker Review for Precision Breast Cancer Medicine. Cancers (Basel) 2022; 14:3469. [PMID: 35884530 PMCID: PMC9315712 DOI: 10.3390/cancers14143469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancers represent complex ecosystem-like networks of malignant cells and their associated microenvironment. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) are biomarkers ubiquitous to clinical practice in evaluating prognosis and predicting response to therapy. Recent feats in breast cancer have led to a new digital era, and advanced clinical trials have resulted in a growing number of personalized therapies with corresponding biomarkers. In this state-of-the-art review, we included the latest 10-year updated recommendations for ER, PR, and HER2, along with the most salient information on tumor-infiltrating lymphocytes (TILs), Ki-67, PD-L1, and several prognostic/predictive biomarkers at genomic, transcriptomic, and proteomic levels recently developed for selection and optimization of breast cancer treatment. Looking forward, the multi-omic landscape of the tumor ecosystem could be integrated with computational findings from whole slide images and radiomics in predictive machine learning (ML) models. These are new digital ecosystems on the road to precision breast cancer medicine.
Collapse
Affiliation(s)
| | | | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Rhode Island Hospital and Lifespan Medical Center, 593 Eddy Street, Providence, RI 02903, USA; (S.M.H.); (E.Y.)
| |
Collapse
|
23
|
Jiang D, Song Q, Wei X, Yu Z, Liu Y, Wang H, Wang X, Huang J, Su J, Hong Y, Xu Y, Xu C, Hou Y. PMS2 Expression With Combination of PD-L1 and TILs for Predicting Survival of Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:897527. [PMID: 35865481 PMCID: PMC9294642 DOI: 10.3389/fonc.2022.897527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background DNA mismatch repair (MMR) deficiency (dMMR) has been recognized as an important biomarker for immunotherapy in esophageal squamous cell carcinoma (ESCC), along with programmed death ligand 1 (PD-L1) expression and/or tumor-infiltrated lymphocytes (TILs). However, in ESCC, MMR protein assessment has not been well studied at present. Methods A total of 484 ESCC tissues treated between 2007 and 2010, in our hospital, were enrolled. Immunohistochemical expression of MLH1, MSH2, MSH6, PMS2, and PD-L1 on tissue microarray specimens and clinicopathological features, including TILs, were analyzed retrospectively. Results Out of the 484 studied cases, loss of MLH1, MSH2, MSH6, and PMS2 expression were found in 6.8%, 2.1%, 8.7%, and 4.8% patients, respectively. dMMR was found in 65 patients, 37 cases involved in one MMR protein, 17 cases involved in two proteins, 7 cases involved in three proteins, and 4 cases involved in four proteins. There was no significant survival difference between pMMR (MMR-proficient) and dMMR patients (P>0.05). However, 224 patients with low PMS2 expression had better DFS and OS than 260 patients with high PMS2 expression (P=0.006 for DFS and 0.008 for OS), which was identified as an independent prognostic factor in multivariate analyses. Positive PD-L1 expression was detected in 341 (70.5%) samples. In stage I-II disease, patients with PD-L1 expression had better DFS and OS than those without PD-L1 expression(P<0.05), which was not found in stage III-IV disease. With the ITWG system, 40.1% of cases were classified as high TILs. Patients in the high-TILs group tended to have better DFS (P=0.055) and OS (P=0.070) than those in the low-TILs group and the differences were statistically significant in pMMR, high MSH6, or PMS2 expression cases (P<0.05). Also, high PMS2 expression patients with both PD-L1 expression and high TILs, had similar DFS and OS compared with low PMS2 expression patients (P>0.05), which were much better than other high PMS2 expression patients. Conclusion The expression level of MMR proteins could also be used as a prognostic factor in ESCC and PMS2 expression outperformed other MMR proteins for predicting survival. The combination of PD-L1 expression and TILs may lead to more efficient risk stratification of ESCC.
Collapse
Affiliation(s)
- Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Qi Song
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaojun Wei
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufeng Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingxing Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Hong
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yingyong Hou, ; Chen Xu,
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- *Correspondence: Yingyong Hou, ; Chen Xu,
| |
Collapse
|
24
|
Wieland J, Buchan S, Sen Gupta S, Mantzouratou A. Genomic instability and the link to infertility: A focus on microsatellites and genomic instability syndromes. Eur J Obstet Gynecol Reprod Biol 2022; 274:229-237. [PMID: 35671666 DOI: 10.1016/j.ejogrb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022]
Abstract
Infertility is associated to multiple types of different genomic instabilities and is a genetic feature of genomic instability syndromes. While the mismatch repair machinery contributes to the maintenance of genome integrity, surprisingly its potential role in infertility is overlooked. Defects in mismatch repair mechanisms contribute to microsatellite instability and genomic instability syndromes, due to the inability to repair newly replicated DNA. This article reviews the literature to date to elucidate the contribution of microsatellite instability to genomic instability syndromes and infertility. The key findings presented reveal microsatellite instability is poorly researched in genomic instability syndromes and infertility.
Collapse
Affiliation(s)
- Jack Wieland
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole BH12 5BB, UK.
| | - Sarah Buchan
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole BH12 5BB, UK.
| | - Sioban Sen Gupta
- Institute for Women's Health, 86-96 Chenies Mews, University College London, London WC1E 6HX, UK.
| | - Anna Mantzouratou
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole BH12 5BB, UK.
| |
Collapse
|
25
|
Cherri S, Oneda E, Noventa S, Melocchi L, Zaniboni A. Microsatellite instability and chemosensitivity in solid tumours. Ther Adv Med Oncol 2022; 14:17588359221099347. [PMID: 35620236 PMCID: PMC9127927 DOI: 10.1177/17588359221099347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/21/2022] [Indexed: 01/01/2023] Open
Abstract
The use of biomarkers that influence a targeted choice in cancer treatments is the future of medical oncology. Within this scenario, in recent years, an important role has been played by knowledge of microsatellite instability (MSI), a molecular fingerprint that identifies defects in the mismatch repair system. This knowledge has changed clinical practice in the adjuvant setting of colon cancer, and its role in the neoadjuvant setting in gastric tumours is becoming increasingly interesting, as well as in endometrial cancers in both early and advanced diseases. Furthermore, it has undoubtedly conditioned the first lines of treatment in the metastatic setting in different types of cancers. The incidence of MSI is different in different cancer types, as well as in early cancers versus metastatic disease. Knowing the incidence of MSI in the various histologies can provide insight into the potential use of this biomarker considering its prognostic value, especially in the early stages, and its predictive role with respect to treatment response. In particular, MSI can guide the choice of chemotherapy treatments in the adjuvant setting of colon and perioperative setting in gastric tumours, which could lead to immunotherapy treatments in these patients in both the early stages of the disease and the metastatic setting where the response to immunotherapy drugs in diseases with MSI is now well established. In this review, we focus on colon, gastric and endometrial cancers, and we briefly discuss other cancer types where MSI could have a potential role in oncological treatment decisions.
Collapse
Affiliation(s)
- Sara Cherri
- Department of Clinical Oncology, Fondazione Poliambulanza, Via bissolati 57, 25124, Brescia, Italy
| | - Ester Oneda
- Department of Clinical Oncology, Fondazione Poliambulanza, Brescia, Italy
| | - Silvia Noventa
- Department of Clinical Oncology, Fondazione Poliambulanza, Brescia, Italy
| | - Laura Melocchi
- Department of Anatomical Pathology, Fondazione Poliambulanza, Brescia, Italy
| | - Alberto Zaniboni
- Department of Clinical Oncology, Fondazione Poliambulanza, Brescia, Italy
| |
Collapse
|
26
|
Chen N, Higashiyama N, Hoyos V. Predictive Biomarkers of Immune Checkpoint Inhibitor Response in Breast Cancer: Looking beyond Tumoral PD-L1. Biomedicines 2021; 9:1863. [PMID: 34944679 PMCID: PMC8698415 DOI: 10.3390/biomedicines9121863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors utilize the immune system to kill cancer cells and are now widely applied across numerous malignancies. Pembrolizumab has two breast-specific indications in triple-negative disease. Currently, programmed death ligand-1 (PD-L1) expression on tumor and surrounding immune cells is the only validated predictive biomarker for immune checkpoint inhibitors (ICIs) in breast cancer; however, it can be imprecise. Additional biomarkers are needed to identify the patient population who will derive the most benefit from these therapies. The tumor immune microenvironment contains many biomarker candidates. In tumor cells, tumor mutational burden has emerged as a robust biomarker across malignancies in general, with higher burden cancers demonstrating improved response, but will need further refinement for less mutated cancers. Preliminary studies suggest that mutations in breast cancer gene 2 (BRCA-2) are associated with increased immune infiltration and response to ICI therapy. Other genomic alterations are also being investigated as potential predictive biomarkers. In immune cells, increased quantity of tumor-infiltrating lymphocytes and CD8+ cytotoxic T cells have correlated with response to immunotherapy treatment. The role of other immune cell phenotypes is being investigated. Peripherally, many liquid-based biomarker strategies such as PD-L1 expression on circulating tumor cells and peripheral immune cell quantification are being studied; however, these strategies require further standardization and refinement prior to large-scale testing. Ultimately, multiple biomarkers utilized together may be needed to best identify the appropriate patients for these treatments.
Collapse
Affiliation(s)
- Nan Chen
- Baylor College of Medicine, Houston, TX 77030, USA; (N.H.); (V.H.)
| | | | - Valentina Hoyos
- Baylor College of Medicine, Houston, TX 77030, USA; (N.H.); (V.H.)
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
27
|
Venetis K, Fusco N, Sajjadi E. Commentary: Mismatch Repair Deficiency and Microsatellite Instability in Triple-Negative Breast Cancer: A Retrospective Study of 440 Patients. Front Oncol 2021; 11:735476. [PMID: 34660298 PMCID: PMC8511768 DOI: 10.3389/fonc.2021.735476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
28
|
Weis LN, Tolaney SM, Barrios CH, Barroso-Sousa R. Tissue-agnostic drug approvals: how does this apply to patients with breast cancer? NPJ Breast Cancer 2021; 7:120. [PMID: 34518552 PMCID: PMC8437983 DOI: 10.1038/s41523-021-00328-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Precision medicine has provided new perspectives in oncology, yielding research on the use of targeted therapies across different tumor types, regardless of their site of origin, a concept known as tissue-agnostic indication. Since 2017, the Food and Drug Administration (FDA) has approved the use of three different agents for tumor-agnostic treatment: pembrolizumab (for patients with microsatellite instability or high tumor mutational burden) and larotrectinib and entrectinib (both for use in patients harboring tumors with NTRK fusions). Importantly, the genomic alterations targeted by these agents are uncommon or rare in breast cancer, and little information exists regarding their efficacy in advanced breast cancer. In this review, we discuss the prevalence of these targets in breast cancer, their detection methods, the clinical characteristics of patients whose tumors have these alterations, and available data regarding the efficacy of these agents in breast cancer.
Collapse
Affiliation(s)
- Luiza N Weis
- Instituto de Ensino e Pesquisa Hospital Sírio-Libanês, São Paulo-SP, Brazil
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Romualdo Barroso-Sousa
- Instituto de Ensino e Pesquisa Hospital Sírio-Libanês, São Paulo-SP, Brazil.
- Oncology Center, Hospital Sírio-Libanês Brasília, Brasília-DF, Brazil.
| |
Collapse
|
29
|
Ishizuka Y, Horimoto Y, Yanagisawa N, Arakawa A, Nakai K, Saito M. Clinicopathological Examination of Metaplastic Spindle Cell Carcinoma of the Breast: Case Series. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2021; 15:11782234211039433. [PMID: 34413650 PMCID: PMC8369969 DOI: 10.1177/11782234211039433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022]
Abstract
Background: Spindle cell carcinoma (SpCC) of the breast is a rare histological type, a subtype of metaplastic carcinoma characterized by atypical spindle cell and epithelial carcinoma. The proportions of the spindle cell and epithelial components vary among tumours. Due to its rarity, biological characteristics of this disease have been poorly studied. Methods: In total, 10 patients with SpCC were surgically treated at our institution from January 2007 to December 2018. We retrospectively investigated these SpCC cases, focusing on the differences between spindle cell and epithelial components. Microsatellite status was also examined. Results: Nine cases were triple-negative breast cancer (TNBC). The rates of high tumour grade were 70% in spindle cell components and 56% in epithelial components (P = .65), while the mean Ki67 labelling index were 63% and 58%, respectively (P = .71). Mean programmed death ligand 1 (PD-L1) expression in these components was 11% and 1%, respectively (P = .20). All 10 tumours were microsatellite stable. Patient outcomes of triple-negative SpCC did not differ from those of propensity-matched patients with conventional TNBC. Conclusions: Spindle cell components showed higher values in factors examined, although there was no statistically significant difference. Our data reveal that these 2 components of SpCC may be of different biological nature.
Collapse
Affiliation(s)
- Yumiko Ishizuka
- Department of Breast Oncology, Juntendo University, School of Medicine, Tokyo, Japan
| | - Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University, School of Medicine, Tokyo, Japan.,Department of Human Pathology, Juntendo University, School of Medicine, Tokyo, Japan
| | | | - Atsushi Arakawa
- Department of Human Pathology, Juntendo University, School of Medicine, Tokyo, Japan
| | - Katsuya Nakai
- Department of Breast Oncology, Juntendo University, School of Medicine, Tokyo, Japan
| | - Mitsue Saito
- Department of Breast Oncology, Juntendo University, School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Immune checkpoint inhibitors for triple-negative breast cancer: From immunological mechanisms to clinical evidence. Int Immunopharmacol 2021; 98:107876. [PMID: 34146865 DOI: 10.1016/j.intimp.2021.107876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer type in women worldwide. Triple-negative breast cancer (TNBC), which is characterized by the absence of estrogen receptor/progesterone receptor (ER/PR) and human epidermal growth factor receptor 2 (Her2) expressions, has a poorer prognosis compared with non-TNBC breast tumors. Until recently systemic treatment for TNBC was confined to chemotherapy owing to the lack of actionable targets. Immune checkpoint molecules are expressed on malignant cells or tumor-infiltrating immune cells and can inhibit anti-cancer immune responses. Immune checkpoint inhibitors (ICI), including anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), anti-programmed cell death protein 1 (PD-1), and anti-programmed cell death 1 ligand 1 (PD-L1), induce immune responses in different types of neoplasms. They have recently gained attention for their possible role in TNBC treatment. Several clinical trials have been conducted on the role of immune checkpoint blockade in different settings for TNBC treatment. Available evidence justifies the application of ICI and chemotherapy combination in the management of metastatic TNBC and early-stage TNBC in neoadjuvant setting. This study aims to provide information on the mechanisms of action of ICIs, review the efficacy results of clinical trials using ICIs for TNBC treatment, and assess the side effects of such drugs.
Collapse
|
31
|
Saini KS, Punie K, Twelves C, Bortini S, de Azambuja E, Anderson S, Criscitiello C, Awada A, Loi S. Antibody-drug conjugates, immune-checkpoint inhibitors, and their combination in breast cancer therapeutics. Expert Opin Biol Ther 2021; 21:945-962. [PMID: 34043927 DOI: 10.1080/14712598.2021.1936494] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Advanced breast cancer (aBC) remains incurable and the quest for more effective systemic anticancer agents continues. Promising results have led to the FDA approval of three antibody-drug conjugates (ADCs) and two immune checkpoint inhibitors (ICIs) to date for patients with aBC. AREAS COVERED With the anticipated emergence of newer ADCs and ICIs for patients with several subtypes of breast cancer, and given their potential synergy, their use in combination is of clinical interest. In this article, we review the use of ADCs and ICIs in patients with breast cancer, assess the scientific rationale for their combination, and provide an overview of ongoing trials and some early efficacy and safety results of such dual therapy. EXPERT OPINION Improvement in the medicinal chemistry of next-generation ADCs, their rational combination with ICIs and other agents, and the development of multiparametric immune biomarkers could help to significantly improve the outlook for patients with refractory aBC.
Collapse
Affiliation(s)
- Kamal S Saini
- Clinical Development Services, Covance Inc, Princeton, NJ, USA
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.,Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Chris Twelves
- Leeds Institute of Medical Research, University of Leeds and Leeds Teaching Hospitals Trust, Leeds, UK
| | | | - Evandro de Azambuja
- Medical Support Team (Academic Promoting Team), Institut Jules Bordet, Brussels, Belgium.,Faculté de Médecine, Université Libre De Bruxelles (U.L.B.), Brussels, Belgium
| | - Steven Anderson
- Clinical Development Services, Covance Inc, Princeton, NJ, USA
| | - Carmen Criscitiello
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ahmad Awada
- Medical Support Team (Academic Promoting Team), Institut Jules Bordet, Brussels, Belgium
| | - Sherene Loi
- Division of Research and Clinical Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
32
|
Sajjadi E, Venetis K, Piciotti R, Invernizzi M, Guerini-Rocco E, Haricharan S, Fusco N. Mismatch repair-deficient hormone receptor-positive breast cancers: Biology and pathological characterization. Cancer Cell Int 2021; 21:266. [PMID: 34001143 PMCID: PMC8130151 DOI: 10.1186/s12935-021-01976-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
The clinical outcome of patients with a diagnosis of hormone receptor (HR)+ breast cancer has improved remarkably since the arrival of endocrine therapy. Yet, resistance to standard treatments is a major clinical challenge for breast cancer specialists and a life-threatening condition for the patients. In breast cancer, mismatch repair (MMR) status assessment has been demonstrated to be clinically relevant not only in terms of screening for inherited conditions such as Lynch syndrome, but also for prognostication, selection for immunotherapy, and early identification of therapy resistance. Peculiar traits characterize the MMR biology in HR+ breast cancers compared to other cancer types. In these tumors, MMR genetic alterations are relatively rare, occurring in ~3 % of cases. On the other hand, modifications at the protein level can be observed also in the absence of gene alterations and vice versa. In HR+ breast cancers, the prognostic role of MMR deficiency has been confirmed by several studies, but its predictive value remains a matter of controversy. The characterization of MMR status in these patients is troubled by the lack of tumor-specific guidelines and/or companion diagnostic tests. For this reason, precise identification of MMR-deficient breast cancers can be problematic. A deeper understanding of the MMR biology and clinical actionability in HR+ breast cancer may light the path to effective tumor-specific diagnostic tools. For a precise MMR status profiling, the specific strengths and limitations of the available technologies should be taken into consideration. This article aims at providing a comprehensive overview of the current state of knowledge of MMR alterations in HR+ breast cancer. The available armamentarium for MMR testing in these tumors is also examined along with possible strategies for a tailored pathological characterization.
Collapse
Affiliation(s)
- Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Roberto Piciotti
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Viale Piazza D'Armi, 1, 28100, Novara, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Svasti Haricharan
- Department of Tumor Microenvironment and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, 92037, La Jolla, CA, USA
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
33
|
Kassem N, Kassem H, Kassem L, Hassan M. Detection of activating mutations in liquid biopsy of Egyptian breast cancer patients using targeted next-generation sequencing: a pilot study. J Egypt Natl Canc Inst 2021; 33:10. [PMID: 33864517 DOI: 10.1186/s43046-021-00067-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the 2nd most prevalent malignancy worldwide and is the most prevalent cancer among Egyptian women. The number of newly described cancer-associated genes has grown exponentially since the emergence of next-generation sequencing (NGS) technology. We aim to identify activating mutations in liquid biopsy of Egyptian breast cancer patients using targeted NGS technology. We also demonstrate the microsatellite instability (MSI) status using BAT25, BAT26, and NR27 markers which are tested on the Bioanalyzer 2100 system. RESULTS Twenty-one variants were detected in 15 genes: 7 Substitution-Missense, 12 Substitution-coding silent, and 2 Substitution-intronic. Regarding ClinVar database, out of 21 variants there were 14 benign variants, 3 variants with conflicting interpretations of pathogenicity, 3 variants not reported, and 1 drug response variant. TP53 p.(Pro72Arg) missense mutations were found in 75% of patients. PIK3CA p.(Ile391Met), KDR p.(Gln472His) missense mutations were detected in 25% of patients each. Two patients revealed APC gene missense mutation with p.(Ile1307Lys) and p.(Glu1317Gln) variants. Only one patient showed ATM p.(Phe858Leu) gene mutation and one showed FGFR3 p.(Ala719Thr) variant. Regarding microsatellite instability (MSI) status, 2/8 (25%) patients were MSS, 3/8 (37.5%) patients were MSI-L, and 3/8 (37.5%) patients were MSI-HI. CONCLUSION It is essential to use and validate minimally invasive liquid biopsy for activating mutations detection by next-generation sequencing especially in patients with inoperable disease or bone metastasis. This work should be extended with larger patient series with comparison of genetic mutations in liquid-based versus tissue-based biopsy and longer follow up period.
Collapse
Affiliation(s)
- Neemat Kassem
- Clinical and Chemical Pathology Department, Kasr Al Ainy Centre of Clinical Oncology & Nuclear Medicine, School of Medicine, Cairo University, Cairo, Egypt
| | - Hebatallah Kassem
- Clinical and Chemical Pathology Department, Kasr Al Ainy Centre of Clinical Oncology & Nuclear Medicine, School of Medicine, Cairo University, Cairo, Egypt.
| | - Loay Kassem
- Clinical Oncology Department, School of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Hassan
- Clinical Oncology Department, School of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
34
|
Kreipe HH, Sinn P. [Relevant mutations in predictive breast cancer pathology]. DER PATHOLOGE 2021; 42:399-404. [PMID: 33822253 DOI: 10.1007/s00292-021-00929-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
Whereas predictive immunohistochemistry has represented a core element of breast cancer classification for decades, predictive molecular pathology, with the exception of in situ hybridization for assessment of HER2 amplification, has only recently gained importance because novel drugs have been approved for treatment of metastatic disease. For the use of PARP inhibitors, proof of BRCA1 or BRCA2 mutation is mandatory. When mutation of the catalytic subunit α of the phosphatidylinositol‑4.5‑bisphosphate 3‑kinase gene (PIK3CA) is present, which can be encountered in up to 40% of luminal breast cancers, the option for treatment with the specific inhibitor alpelisib arises. The HER2 -encoded growth factor receptor contributes to neoplastic transformation not only by amplification and overexpression but also by activating the mutation of the kinase domain, which is responsive to tyrosine kinase inhibitors of the tucatinib/neratinib type. Up to 30% of metastatic and endocrine treated luminal breast cancers acquire an activating mutation of the estrogen receptor gene ESR1, resulting in an autocrine and ligand-independent growth stimulation resistant to aromatase inhibitors. Larotrectinib-sensitive mutation of tropomyosinreceptor kinase is present in up to 50% of secretory breast cancers, whereas the other histologic subtypes display an incidence of below 1%. In conclusion, predictive molecular pathology has gained importance in metastatic breast cancer.
Collapse
Affiliation(s)
- Hans H Kreipe
- Institut für Pathologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| | - P Sinn
- Institut für Pathologie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| |
Collapse
|
35
|
Wu S, Shi X, Wang J, Wang X, Liu Y, Luo Y, Mao F, Zeng X. Triple-Negative Breast Cancer: Intact Mismatch Repair and Partial Co-Expression of PD-L1 and LAG-3. Front Immunol 2021; 12:561793. [PMID: 33717059 PMCID: PMC7943629 DOI: 10.3389/fimmu.2021.561793] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background and Aim Poor response to immune checkpoint inhibitors (ICIs) has been observed in most triple-negative breast cancer (TNBC) cases (around 80%). Our aim was to investigate the status of mismatch repair (MMR), microsatellite instability (MSI), programmed death-ligand 1 (PD-L1), and lymphocyte-activation gene 3 (LAG-3) in TNBC. Methods A total of 74 TNBC samples were retrospectively analyzed. MMR and MSI were evaluated by immunohistochemistry (IHC) and polymerase chain reaction (PCR) using Promega 1.2 and NCI panels, respectively. PD-L1, LAG-3, and CD8 expression was assessed by IHC. Results None of the cases demonstrated deficient MMR (dMMR) or MSI. In total, 43/74 cases (58.1%) were PD-L1+, including 1 tumor PD-L1+, 25 tumor-infiltrating lymphocytes (TILs) PD-L1+, and 17 cases involving concurrence of tumor and TIL PD-L1+. The rate of TIL PD-L1+ was remarkably higher than that of tumor PD-L1+ (P<0.001). We identified 20 LAG-3+ cases (27.0%, 20/74), all of which were PD-L1+. Co-expression of PD-L1 and LAG-3 was noted in 46.5% (20/43) of the PD-L1+ population. In the LAG-3+ subtype (co-expression of PD-L1 and LAG-3), high correlation between TILs PD-L1+ and LAG-3+ was observed (P<0.01). A high frequency of CD8+ (98.6%, 73/74) was observed. Conclusion dMMR/MSI characteristics may not be a practical predictive marker for ICIs in TNBC. PD-L1+ is more common in TILs than in tumors. In the PD-L1+ population, approximately half of the cases showed LAG-3 co-expression. For patients with a poor response to PD-1(L1) mono ICI, dual blockade of PD-1(L1) and LAG-3 may be a viable option for the management of TNBC.
Collapse
Affiliation(s)
- Shafei Wu
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuefei Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanyuan Liu
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yufeng Luo
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zeng
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Mediratta K, El-Sahli S, D’Costa V, Wang L. Current Progresses and Challenges of Immunotherapy in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:E3529. [PMID: 33256070 PMCID: PMC7761500 DOI: 10.3390/cancers12123529] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
With improved understanding of the immunogenicity of triple-negative breast cancer (TNBC), immunotherapy has emerged as a promising candidate to treat this lethal disease owing to the lack of specific targets and effective treatments. While immune checkpoint inhibition (ICI) has been effectively used in immunotherapy for several types of solid tumor, monotherapies targeting programmed death 1 (PD-1), its ligand PD-L1, or cytotoxic T lymphocyte-associated protein 4 (CTLA-4) have shown little efficacy for TNBC patients. Over the past few years, various therapeutic candidates have been reviewed, attempting to improve ICI efficacy on TNBC through combinatorial treatment. In this review, we describe the clinical limitations of ICI and illustrate candidates from an immunological, pharmacological, and metabolic perspective that may potentiate therapy to improve the outcomes of TNBC patients.
Collapse
Affiliation(s)
- Karan Mediratta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Vanessa D’Costa
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
37
|
Huang X, Shao D, Wu H, Zhu C, Guo D, Zhou Y, Chen C, Lin Y, Lu T, Zhao B, Wang C, Sun Q. Genomic Profiling Comparison of Germline BRCA and Non- BRCA Carriers Reveals CCNE1 Amplification as a Risk Factor for Non- BRCA Carriers in Patients With Triple-Negative Breast Cancer. Front Oncol 2020; 10:583314. [PMID: 33194720 PMCID: PMC7662137 DOI: 10.3389/fonc.2020.583314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Differences in genomic profiling and immunity-associated parameters between germline BRCA and non-BRCA carriers in TNBC with high tumor burden remain unexplored. This study aimed to compare the differences and explore potential prognostic predictors and therapeutic targets. Methods: The study cohort included 21 consecutive TNBC cases with germline BRCA1/2 mutations and 54 non-BRCA carriers with a tumor size ≥ 2 cm and/or ≥1 affected lymph nodes. Differences in clinicopathological characteristics and genomic profiles were analyzed through next-generation sequencing. Univariate Kaplan-Meier analysis and Cox regression model were applied to survival analysis. Immunohistochemistry was used to confirm the consistency between CCNE1 amplification and cyclin E1 protein overexpression. Results: The cohort included 16 and five patients with germline BRCA1 and BRCA2 mutations, respectively. Patients with germline BRCA1/2 mutations were diagnosed at a significantly younger age and were more likely to have a family history of breast and/or ovarian cancer. Six non-BRCA carriers (11.11%) carried germline mutations in other cancer susceptibility genes, including five mutations in five homologous recombination repair (HRR) pathway genes (9.26%) and one mutation in MSH3 (1.85%). Somatic mutations in HRR pathway genes were found in 22.22 and 14.29% of the non-BRCA and BRCA carriers, respectively. PIK3CA missense mutation (p = 0.046) and CCNE1 amplification (p = 0.2) were found only in the non-BRCA carriers. The median tumor mutation burden (TMB) was 4.1 Muts/Mb, whereas none of the cases had high microsatellite instability (MSI). BRCA status did not affect disease-free survival (DFS, p = 0.15) or overall survival (OS, p = 0.52). CCNE1 amplification was an independent risk factor for DFS in non-BRCA carriers with TNBC (HR 13.07, 95% CI 2.47-69.24, p = 0.003). Consistency between CCNE1 amplification and cyclin E1 protein overexpression was confirmed with an AUC of 0.967 for cyclin E1 signal intensity. Conclusions: We found differences in genetic alterations between germline BRCA and non-BRCA carriers with TNBC and a high tumor burden. TMB and MSI may not be suitable predictors of TNBC for immune checkpoint inhibitors. Notably, CCNE1 amplification is a novel potential prognostic marker and therapeutic target for non-BRCA carriers with TNBC. Cyclin E1 may be used instead of CCNE1 to improve clinical applicability.
Collapse
Affiliation(s)
- Xin Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Di Shao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | | | - Dan Guo
- Clinical Biobank, Medical Science Research Center, Peking Union Medical College Hospital, Beijing, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Chang Chen
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Tao Lu
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Bin Zhao
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
38
|
Fusco N, Sajjadi E, Venetis K, Gaudioso G, Lopez G, Corti C, Rocco EG, Criscitiello C, Malapelle U, Invernizzi M. PTEN Alterations and Their Role in Cancer Management: Are We Making Headway on Precision Medicine? Genes (Basel) 2020; 11:E719. [PMID: 32605290 PMCID: PMC7397204 DOI: 10.3390/genes11070719] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/27/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
Alterations in the tumor suppressor phosphatase and tensin homolog (PTEN) occur in a substantial proportion of solid tumors. These events drive tumorigenesis and tumor progression. Given its central role as a downregulator of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, PTEN is deeply involved in cell growth, proliferation, and survival. This gene is also implicated in the modulation of the DNA damage response and in tumor immune microenvironment modeling. Despite the actionability of PTEN alterations, their role as biomarkers remains controversial in clinical practice. To date, there is still a substantial lack of validated guidelines and/or recommendations for PTEN testing. Here, we provide an update on the current state of knowledge on biologic and genetic alterations of PTEN across the most frequent solid tumors, as well as on their actual and/or possible clinical applications. We focus on possible tailored schemes for cancer patients' clinical management, including risk assessment, diagnosis, prognostication, and treatment.
Collapse
Affiliation(s)
- Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.G.R.)
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Elham Sajjadi
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Konstantinos Venetis
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.G.R.)
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
- Doctoral Program in Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20131 Milan, Italy; (G.G.); (G.L.); (C.C.)
| | - Gianluca Lopez
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20131 Milan, Italy; (G.G.); (G.L.); (C.C.)
| | - Chiara Corti
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20131 Milan, Italy; (G.G.); (G.L.); (C.C.)
| | - Elena Guerini Rocco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.G.R.)
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Carmen Criscitiello
- New Drugs and Early Drug Development for Innovative Therapies Division, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Umberto Malapelle
- Department of Public Health, University Federico II, 80138 Naples, Italy;
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy;
| |
Collapse
|
39
|
Horimoto Y, Thinzar Hlaing M, Saeki H, Kitano S, Nakai K, Sasaki R, Kurisaki-Arakawa A, Arakawa A, Otsuji N, Matsuoka S, Tokuda E, Arai M, Saito M. Microsatellite instability and mismatch repair protein expressions in lymphocyte-predominant breast cancer. Cancer Sci 2020; 111:2647-2654. [PMID: 32449246 PMCID: PMC7385389 DOI: 10.1111/cas.14500] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
The frequency of microsatellite instability (MSI) is reportedly extremely low in breast cancer, despite widespread clinical expectations that many patients would be responsive to immune-checkpoint inhibitors (ICI). Considering that some triple-negative breast cancers (TNBC) responded well to ICI in a clinical trial and that a high density of tumor-infiltrating lymphocytes (TILs) is frequently observed in other cancers with high levels of microsatellite instability (MSI-H), we hypothesized that some TNBC with a high density of TILs would be MSI-H. Medullary carcinoma (MedCa) of the breast, a rare histological type, is characterized by a high density of TILs. Considering that MedCa of the colon is often MSI-H, we suspected that MedCa in breast cancer might also include MSI-H tumors. Therefore, we conducted MSI tests on such breast cancers with a high density of TILs. The MSI status of 63 TIL-high TNBC and 38 MedCa tumors, all from Asian women who had undergone curative surgery, were determined retrospectively. DNA mismatch repair (MMR) proteins and PD-L1 expression were also investigated immunohistochemically. All samples were microsatellite stable, being negative for all microsatellite markers. TIL-high TNBC with low MLH1 protein had higher levels of PD-L1 in stromal immune cells (P = .041). MedCa tumors showed significantly higher PD-L1 expression in immune cells than in TIL-high TNBC (<.001). We found that MSI-H tumors were absent in TIL-high breast cancers. Examination of MMR proteins, not a purpose of Lynch syndrome screening, may merit further studies to yield predictive information for identifying patients who are likely to benefit from ICI.
Collapse
Affiliation(s)
- Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - May Thinzar Hlaing
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Harumi Saeki
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigehisa Kitano
- Cancer Immunotherapy Development, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Katsuya Nakai
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ritsuko Sasaki
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Atsushi Arakawa
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naomi Otsuji
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shuji Matsuoka
- Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Emi Tokuda
- Department of Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Masami Arai
- Diagnostics and Therapeutics of Intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Clinical Genetics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsue Saito
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|